Search results for: unstructured terrain navigation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 754

Search results for: unstructured terrain navigation

754 Bio-Mimetic Foot Design for Legged Locomotion over Unstructured Terrain

Authors: Hannah Kolano, Paul Nadan, Jeremy Ryan, Sophia Nielsen

Abstract:

The hooves of goats and other ruminants, or the family Ruminantia, are uniquely structured to adapt to rough terrain. Their hooves possess a hard outer shell and a soft interior that allow them to both conform to uneven surfaces and hook onto prominent features. In an effort to apply this unique mechanism to a robotics context, artificial feet for a hexapedal robot have been designed based on the hooves of ruminants to improve the robot’s ability to traverse unstructured environments such as those found on a rocky planet or asteroid, as well as in earth-based environments such as rubble, caves, and mountainous regions. The feet were manufactured using a combination of 3D printing and polyurethane casting techniques and attached to a commercially available hexapedal robot. The robot was programmed with a terrain-adaptive gait and proved capable of traversing a variety of uneven surfaces and inclines. This development of more adaptable robotic feet allows legged robots to operate in a wider range of environments and expands their possible applications.

Keywords: biomimicry, legged locomotion, robotic foot design, ruminant feet, unstructured terrain navigation

Procedia PDF Downloads 99
753 Performance Analysis of Geophysical Database Referenced Navigation: The Combination of Gravity Gradient and Terrain Using Extended Kalman Filter

Authors: Jisun Lee, Jay Hyoun Kwon

Abstract:

As an alternative way to compensate the INS (inertial navigation system) error in non-GNSS (Global Navigation Satellite System) environment, geophysical database referenced navigation is being studied. In this study, both gravity gradient and terrain data were combined to complement the weakness of sole geophysical data as well as to improve the stability of the positioning. The main process to compensate the INS error using geophysical database was constructed on the basis of the EKF (Extended Kalman Filter). In detail, two type of combination method, centralized and decentralized filter, were applied to check the pros and cons of its algorithm and to find more robust results. The performance of each navigation algorithm was evaluated based on the simulation by supposing that the aircraft flies with precise geophysical DB and sensors above nine different trajectories. Especially, the results were compared to the ones from sole geophysical database referenced navigation to check the improvement due to a combination of the heterogeneous geophysical database. It was found that the overall navigation performance was improved, but not all trajectories generated better navigation result by the combination of gravity gradient with terrain data. Also, it was found that the centralized filter generally showed more stable results. It is because that the way to allocate the weight for the decentralized filter could not be optimized due to the local inconsistency of geophysical data. In the future, switching of geophysical data or combining different navigation algorithm are necessary to obtain more robust navigation results.

Keywords: Extended Kalman Filter, geophysical database referenced navigation, gravity gradient, terrain

Procedia PDF Downloads 316
752 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review

Authors: D. Vidhyaprakash, A. Elango

Abstract:

In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.

Keywords: wheeled mobile robot, terrain, wheel slippage, odometryerror, trajectory

Procedia PDF Downloads 248
751 Research on the United Navigation Mechanism of Land, Sea and Air Targets under Multi-Sources Information Fusion

Authors: Rui Liu, Klaus Greve

Abstract:

The navigation information is a kind of dynamic geographic information, and the navigation information system is a kind of special geographic information system. At present, there are many researches on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing is not deeply applied into the research of navigation information service. And the imperfection of navigation target coordination and navigation information sharing mechanism under certain navigation tasks has greatly affected the reliability and scientificity of navigation service such as path planning. Considering this, the project intends to study the multi-source information fusion and multi-objective united navigation information interaction mechanism: first of all, investigate the actual needs of navigation users in different areas, and establish the preliminary navigation information classification and importance level model; and then analyze the characteristics of the remote sensing and GIS vector data, and design the fusion algorithm from the aspect of improving the positioning accuracy and extracting the navigation environment data. At last, the project intends to analyze the feature of navigation information of the land, sea and air navigation targets, and design the united navigation data standard and navigation information sharing model under certain navigation tasks, and establish a test navigation system for united navigation simulation experiment. The aim of this study is to explore the theory of united navigation service and optimize the navigation information service model, which will lay the theory and technology foundation for the united navigation of land, sea and air targets.

Keywords: information fusion, united navigation, dynamic path planning, navigation information visualization

Procedia PDF Downloads 251
750 A Gyro-stabilized Autonomous Multi-terrain Quadrupedal-wheeled Robot: Towards Edge-enabled Self-balancing, Autonomy, and Terramechanical Efficiency of Unmanned Off-road Vehicles

Authors: Mbadiwe S. Benyeogor, Oladayo O. Olakanmi, Kosisochukwu P. Nnoli, Olusegun I. Lawal, Eric JJ. Gratton

Abstract:

For a robot or any vehicular system to navigate in off-road terrain, its driving mechanisms and the electro-software system must be capable of generating, controlling, and moderating sufficient mechanical power with precision. This paper proposes an autonomous robot with a gyro-stabilized active suspension system in form of a hybrid quadrupedal wheel drive mechanism. This system is to serve as a miniature model for demonstrating how off-road vehicles can be robotized into efficient terramechanical mobile platforms that are capable of self-balanced autonomous navigation and maneuvering on rough and uneven topographies. Results from tests and analysis show that the developed system performs as expected. Therefore, our model and control devices can be adapted to computerizing, automating, and upgrading the operation of unmanned ground vehicles for off-road navigation.

Keywords: active suspension, autonomous robots, edge computing, navigational sensors, terramechanics

Procedia PDF Downloads 122
749 Three-Dimensional Optimal Path Planning of a Flying Robot for Terrain Following/Terrain Avoidance

Authors: Amirreza Kosari, Hossein Maghsoudi, Malahat Givar

Abstract:

In this study, the three-dimensional optimal path planning of a flying robot for Terrain Following / Terrain Avoidance (TF/TA) purposes using Direct Collocation has been investigated. To this purpose, firstly, the appropriate equations of motion representing the flying robot translational movement have been described. The three-dimensional optimal path planning of the flying vehicle in terrain following/terrain avoidance maneuver is formulated as an optimal control problem. The terrain profile, as the main allowable height constraint has been modeled using Fractal Generation Method. The resulting optimal control problem is discretized by applying Direct Collocation numerical technique, and then transformed into a Nonlinear Programming Problem (NLP). The efficacy of the proposed method is demonstrated by extensive simulations, and in particular, it is verified that this approach could produce a solution satisfying almost all performance and environmental constraints encountering a low-level flying maneuver

Keywords: path planning, terrain following, optimal control, nonlinear programming

Procedia PDF Downloads 162
748 Design of an Air and Land Multi-Element Expression Pattern of Navigation Electronic Map for Ground Vehicles under United Navigation Mechanism

Authors: Rui Liu, Pengyu Cui, Nan Jiang

Abstract:

At present, there is much research on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing between land, sea, and air navigation targets is not deeply applied into the research of navigation information service, especially in the information expression. Targeting at this problem, the paper carries out works about the expression pattern of navigation electronic map for ground vehicles under air and land united navigation mechanism. At first, with the support from multi-source information fusion of GIS vector data, RS data, GPS data, etc., an air and land united information expression pattern is designed aiming at specific navigation task of emergency rescue in the earthquake. And then, the characteristics and specifications of the united expression of air and land navigation information under the constraints of map load are summarized and transferred into expression rules in the rule bank. At last, the related navigation experiment is implemented to evaluate the effect of the expression pattern. The experiment selects evaluation factors of the navigation task accomplishment time and the navigation error rate as the main index, and make comparisons with the traditional single information expression pattern. To sum up, the research improved the theory of navigation electronic map and laid a certain foundation for the design and realization of united navigation system in the aspect of real-time navigation information delivery.

Keywords: navigation electronic map, united navigation, multi-element expression pattern, multi-source information fusion

Procedia PDF Downloads 165
747 Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation

Authors: Daniel Pastor, Hyo-Sang Shin

Abstract:

This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system.

Keywords: vision, UAV, navigation, SLAM

Procedia PDF Downloads 578
746 Development of Modular Shortest Path Navigation System

Authors: Nalinee Sophatsathit

Abstract:

This paper presents a variation of navigation systems which tallies every node along the shortest path from start to destination nodes. The underlying technique rests on the well-established Dijkstra Algorithm. The ultimate goal is to serve as a user navigation guide that furnishes stop over cost of every node along this shortest path, whereby users can decide whether or not to visit any specific nodes. The output is an implementable module that can be further refined to run on the Internet and smartphone technology. This will benefit large organizations having physical installations spreaded over wide area such as hospitals, universities, etc. The savings on service personnel, let alone lost time and unproductive work, are attributive to innovative navigation system management.

Keywords: navigation systems, shortest path, smartphone technology, user navigation guide

Procedia PDF Downloads 301
745 Modular Robotics and Terrain Detection Using Inertial Measurement Unit Sensor

Authors: Shubhakar Gupta, Dhruv Prakash, Apoorv Mehta

Abstract:

In this project, we design a modular robot capable of using and switching between multiple methods of propulsion and classifying terrain, based on an Inertial Measurement Unit (IMU) input. We wanted to make a robot that is not only intelligent in its functioning but also versatile in its physical design. The advantage of a modular robot is that it can be designed to hold several movement-apparatuses, such as wheels, legs for a hexapod or a quadpod setup, propellers for underwater locomotion, and any other solution that may be needed. The robot takes roughness input from a gyroscope and an accelerometer in the IMU, and based on the terrain classification from an artificial neural network; it decides which method of propulsion would best optimize its movement. This provides the bot with adaptability over a set of terrains, which means it can optimize its locomotion on a terrain based on its roughness. A feature like this would be a great asset to have in autonomous exploration or research drones.

Keywords: modular robotics, terrain detection, terrain classification, neural network

Procedia PDF Downloads 108
744 A Short-Baseline Dual-Antenna BDS/MEMS-IMU Integrated Navigation System

Authors: Tijing Cai, Qimeng Xu, Daijin Zhou

Abstract:

This paper puts forward a short-baseline dual-antenna BDS/MEMS-IMU integrated navigation, constructs the carrier phase double difference model of BDS (BeiDou Navigation Satellite System), and presents a 2-position initial orientation method on BDS. The Extended Kalman-filter has been introduced for the integrated navigation system. The differences between MEMS-IMU and BDS position, velocity and carrier phase indications are used as measurements. To show the performance of the short-baseline dual-antenna BDS/MEMS-IMU integrated navigation system, the experiment results show that the position error is less than 1m, the pitch angle error and roll angle error are less than 0.1°, and the heading angle error is about 1°.

Keywords: MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit), BDS (BeiDou Navigation Satellite System), dual-antenna, integrated navigation

Procedia PDF Downloads 164
743 Effects of Structure on Density-Induced Flow in Coastal and Estuarine Navigation Channel

Authors: Shuo Huang, Huomiao Guo, Wenrui Huang

Abstract:

In navigation channels located in coasts and estuaries as the waterways connecting coastal water to ports or harbors, density-induced flow often exist due to the density-gradient or gravity gradient as the results of mixing between fresh water from coastal rivers and saline water in the coasts. The density-induced flow often carries sediment transport into navigation channels and causes sediment depositions in the channels. As a result, expensive dredging may need to maintain the water depth required for navigation. In our study, we conduct a series of experiments to investigate the characteristics of density-induced flow in the estuarine navigation channels under different density gradients. Empirical equations between density flow and salinity gradient were derived. Effects of coastal structures for regulating navigation channel on density-induced flow have also been investigated. Results will be very helpful for improving the understanding of the characteristics of density-induced flow in estuarine navigation channels. The results will also provide technical support for cost-effective waterway regulation and management to maintain coastal and estuarine navigation channels.

Keywords: density flow, estuarine, navigation channel, structure

Procedia PDF Downloads 222
742 Flow Characterization in Complex Terrain for Aviation Safety

Authors: Adil Rasheed, Mandar Tabib

Abstract:

The paper describes the ability of a high-resolution Computational Fluid Dynamics model to predict terrain-induced turbulence and wind shear close to the ground. Various sensitivity studies to choose the optimal simulation setup for modeling the flow characteristics in a complex terrain are presented. The capabilities of the model are demonstrated by applying it to the Sandnessjøen Airport, Stokka in Norway, an airport that is located in a mountainous area. The model is able to forecast turbulence in real time and trigger an alert when atmospheric conditions might result in high wind shear and turbulence.

Keywords: aviation safety, terrain-induced turbulence, atmospheric flow, alert system

Procedia PDF Downloads 384
741 The Effect of Land Cover on Movement of Vehicles in the Terrain

Authors: Krisstalova Dana, Mazal Jan

Abstract:

This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms etc., have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is the surface of a terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for the commander`s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.

Keywords: movement in a terrain, geographical factors, surface of a field, mathematical evaluation, optimization and searching paths

Procedia PDF Downloads 396
740 Tactile Cues and Spatial Navigation in Mice

Authors: Rubaiyea Uddin

Abstract:

The hippocampus, located in the limbic system, is most commonly known for its role in memory and spatial navigation (as cited in Brain Reward and Pathways). It maintains an especially important role in specifically episodic and declarative memory. The hippocampus has also recently been linked to dopamine, the reward pathway’s primary neurotransmitter. Since research has found that dopamine also contributes to memory consolidation and hippocampal plasticity, this neurotransmitter is potentially responsible for contributing to the hippocampus’s role in memory formation. In this experiment we tested to see the effect of tactile cues on spatial navigation for eight different mice. We used a radial arm that had one designated 'reward' arm containing sucrose. The presence or absence of bedding was our tactile cue. We attempted to see if the memory of that cue would enhance the mice’s memory of having received the reward in that arm. The results from our study showed there was no significant response from the use of tactile cues on spatial navigation on our 129 mice. Tactile cues therefore do not influence spatial navigation.

Keywords: mice, radial arm maze, memory, spatial navigation, tactile cues, hippocampus, reward, sensory skills, Alzheimer’s, neurodegnerative disease

Procedia PDF Downloads 622
739 Relative Navigation with Laser-Based Intermittent Measurement for Formation Flying Satellites

Authors: Jongwoo Lee, Dae-Eun Kang, Sang-Young Park

Abstract:

This study presents a precise relative navigational method for satellites flying in formation using laser-based intermittent measurement data. The measurement data for the relative navigation between two satellites consist of a relative distance measured by a laser instrument and relative attitude angles measured by attitude determination. The relative navigation solutions are estimated by both the Extended Kalman filter (EKF) and unscented Kalman filter (UKF). The solutions estimated by the EKF may become inaccurate or even diverge as measurement outage time gets longer because the EKF utilizes a linearization approach. However, this study shows that the UKF with the appropriate scaling parameters provides a stable and accurate relative navigation solutions despite the long measurement outage time and large initial error as compared to the relative navigation solutions of the EKF. Various navigation results have been analyzed by adjusting the scaling parameters of the UKF.

Keywords: satellite relative navigation, laser-based measurement, intermittent measurement, unscented Kalman filter

Procedia PDF Downloads 324
738 Users’ Preferences for Map Navigation Gestures

Authors: Y. Y. Pang, N. A. Ismail

Abstract:

The map is a powerful and convenient tool in helping us to navigate to different places, but the use of indirect devices often makes its usage cumbersome. This study intends to propose a new map navigation dialogue that uses hand gesture. A set of dialogue was developed from users’ perspective to provide users complete freedom for panning, zooming, rotate, and find direction operations. A participatory design experiment was involved here where one hand gesture and two hand gesture dialogues had been analysed in the forms of hand gestures to develop a set of usable dialogues. The major finding was that users prefer one-hand gesture compared to two-hand gesture in map navigation.

Keywords: hand gesture, map navigation, participatory design, intuitive interaction

Procedia PDF Downloads 249
737 Propagation of DEM Varying Accuracy into Terrain-Based Analysis

Authors: Wassim Katerji, Mercedes Farjas, Carmen Morillo

Abstract:

Terrain-Based Analysis results in derived products from an input DEM and these products are needed to perform various analyses. To efficiently use these products in decision-making, their accuracies must be estimated systematically. This paper proposes a procedure to assess the accuracy of these derived products, by calculating the accuracy of the slope dataset and its significance, taking as an input the accuracy of the DEM. Based on the output of previously published research on modeling the relative accuracy of a DEM, specifically ASTER and SRTM DEMs with Lebanon coverage as the area of study, analysis have showed that ASTER has a low significance in the majority of the area where only 2% of the modeled terrain has 50% or more significance. On the other hand, SRTM showed a better significance, where 37% of the modeled terrain has 50% or more significance. Statistical analysis deduced that the accuracy of the slope dataset, calculated on a cell-by-cell basis, is highly correlated to the accuracy of the input DEM. However, this correlation becomes lower between the slope accuracy and the slope significance, whereas it becomes much higher between the modeled slope and the slope significance.

Keywords: terrain-based analysis, slope, accuracy assessment, Digital Elevation Model (DEM)

Procedia PDF Downloads 420
736 Terrain Classification for Ground Robots Based on Acoustic Features

Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow

Abstract:

The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.

Keywords: acoustic features, autonomous robots, feature extraction, terrain classification

Procedia PDF Downloads 335
735 Performance Evaluation of GPS/INS Main Integration Approach

Authors: Othman Maklouf, Ahmed Adwaib

Abstract:

This paper introduces a comparative study between the main GPS/INS coupling schemes, this will include the loosely coupled and tightly coupled configurations, several types of situations and operational conditions, in which the data fusion process is done using Kalman filtering. This will include the importance of sensors calibration as well as the alignment of the strap down inertial navigation system. The limitations of the inertial navigation systems are investigated.

Keywords: GPS, INS, Kalman filter, sensor calibration, navigation system

Procedia PDF Downloads 556
734 Exposure to Tactile Cues Does Not Influence Spatial Navigation in 129 S1/SvLm Mice

Authors: Rubaiyea Uddin, Rebecca Taylor, Emily Levesque

Abstract:

The hippocampus, located in the limbic system, is most commonly known for its role in memory and spatial navigation (as cited in Brain Reward and Pathways). It maintains an especially important role in specifically episodic and declarative memory. The hippocampus has also recently been linked to dopamine, the reward pathway’s primary neurotransmitter. Since research has found that dopamine also contributes to memory consolidation and hippocampal plasticity, this neurotransmitter is potentially responsible for contributing to the hippocampus’s role in memory formation. In this experiment we tested to see the effect of tactile cues on spatial navigation for eight different mice. We used a radial arm that had one designated “reward” arm containing sucrose. The presence or absence of bedding was our tactile cue. We attempted to see if the memory of that cue would enhance the mice’s memory of having received the reward in that arm. The results from our study showed there was no significant response from the use of tactile cues on spatial navigation on our 129 mice. Tactile cues therefore do not influence spatial navigation.

Keywords: mice, radial arm maze, memory, spatial navigation, tactile cues, hippocampus, reward, sensory skills, Alzheimer's, neuro-degenerative diseases

Procedia PDF Downloads 651
733 Genetic Algorithms Based ACPS Safety

Authors: Emine Laarouchi, Daniela Cancila, Laurent Soulier, Hakima Chaouchi

Abstract:

Cyber-Physical Systems as drones proved their efficiency for supporting emergency applications. For these particular applications, travel time and autonomous navigation algorithms are of paramount importance, especially when missions are performed in urban environments with high obstacle density. In this context, however, safety properties are not properly addressed. Our ambition is to optimize the system safety level under autonomous navigation systems, by preserving performance of the CPS. At this aim, we introduce genetic algorithms in the autonomous navigation process of the drone to better infer its trajectory considering the possible obstacles. We first model the wished safety requirements through a cost function and then seek to optimize it though genetics algorithms (GA). The main advantage in the use of GA is to consider different parameters together, for example, the level of battery for navigation system selection. Our tests show that the GA introduction in the autonomous navigation systems minimize the risk of safety lossless. Finally, although our simulation has been tested for autonomous drones, our approach and results could be extended for other autonomous navigation systems such as autonomous cars, robots, etc.

Keywords: safety, unmanned aerial vehicles , CPS, ACPS, drones, path planning, genetic algorithms

Procedia PDF Downloads 145
732 Digital Twin Platform for BDS-3 Satellite Navigation Using Digital Twin Intelligent Visualization Technology

Authors: Rundong Li, Peng Wu, Junfeng Zhang, Zhipeng Ren, Chen Yang, Jiahui Gan, Lu Feng, Haibo Tong, Xuemei Xiao, Yuying Chen

Abstract:

The research of Beidou-3 satellite navigation is on the rise, but in actual work, it is inevitable that satellite data is insecure, research and development is inefficient, and there is no ability to deal with failures in advance. Digital twin technology has obvious advantages in the simulation of life cycle models of aerospace satellite navigation products. In order to meet the increasing demand, this paper builds a Beidou-3 satellite navigation digital twin platform (BDSDTP). The basic establishment of BDSDTP was completed by establishing a digital twin double, Beidou-3 comprehensive digital twin design, predictive maintenance (PdM) mathematical model, and visual interaction design. Finally, this paper provides a time application case of the platform, which provides a reference for the application of BDSDTP in various fields of navigation and provides obvious help for extending the full cycle life of Beidou-3 satellite navigation.

Keywords: BDS-3, digital twin, visualization, PdM

Procedia PDF Downloads 79
731 Screen Method of Distributed Cooperative Navigation Factors for Unmanned Aerial Vehicle Swarm

Authors: Can Zhang, Qun Li, Yonglin Lei, Zhi Zhu, Dong Guo

Abstract:

Aiming at the problem of factor screen in distributed collaborative navigation of dense UAV swarm, an efficient distributed collaborative navigation factor screen method is proposed. The method considered the balance between computing load and positioning accuracy. The proposed algorithm utilized the factor graph model to implement a distributed collaborative navigation algorithm. The GNSS information of the UAV itself and the ranging information between the UAVs are used as the positioning factors. In this distributed scheme, a local factor graph is established for each UAV. The positioning factors of nodes with good geometric position distribution and small variance are selected to participate in the navigation calculation. To demonstrate and verify the proposed methods, the simulation and experiments in different scenarios are performed in this research. Simulation results show that the proposed scheme achieves a good balance between the computing load and positioning accuracy in the distributed cooperative navigation calculation of UAV swarm. This proposed algorithm has important theoretical and practical value for both industry and academic areas.

Keywords: screen method, cooperative positioning system, UAV swarm, factor graph, cooperative navigation

Procedia PDF Downloads 48
730 Mapping Soils from Terrain Features: The Case of Nech SAR National Park of Ethiopia

Authors: Shetie Gatew

Abstract:

Current soil maps of Ethiopia do not represent accurately the soils of Nech Sar National Park. In the framework of studies on the ecology of the park, we prepared a soil map based on field observations and a digital terrain model derived from SRTM data with a 30-m resolution. The landscape comprises volcanic cones, lava and basalt outflows, undulating plains, horsts, alluvial plains and river deltas. SOTER-like terrain mapping units were identified. First, the DTM was classified into 128 terrain classes defined by slope gradient (4 classes), relief intensity (4 classes), potential drainage density (2 classes), and hypsometry (4 classes). A soil-landscape relation between the terrain mapping units and WRB soil units was established based on 34 soil profile pits. Based on this relation, the terrain mapping units were either merged or split to represent a comprehensive soil and terrain map. The soil map indicates that Leptosols (30 %), Cambisols (26%), Andosols (21%), Fluvisols (12 %), and Vertisols (9%) are the most widespread Reference Soil Groups of the park. In contrast, the harmonized soil map of Africa derived from the FAO soil map of the world indicates that Luvisols (70%), Vertisols (14%) and Fluvisols (16%) would be the most common Reference Soil Groups. However, these latter mapping units are not consistent with the topography, nor did we find such extensive areas occupied by Luvisols during the field survey. This case study shows that with the now freely available SRTM data, it is possible to improve current soil information layers with relatively limited resources, even in a complex terrain like Nech Sar National Park.

Keywords: andosols, cambisols, digital elevation model, leptosols, soil-landscaps relation

Procedia PDF Downloads 54
729 New Approaches to the Determination of the Time Costs of Movements

Authors: Dana Kristalova

Abstract:

This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms, etc. have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is surface of the terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for commander´s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.

Keywords: surface of a terrain, movement of vehicles, geographical factor, optimization of routes

Procedia PDF Downloads 435
728 Digital Rehabilitation for Navigation Impairment

Authors: Milan N. A. Van Der Kuil, Anne M. A. Visser-Meily, Andrea W. M. Evers, Ineke J. M. Van Der Ham

Abstract:

Navigation ability is essential for autonomy and mobility in daily life. In patients with acquired brain injury, navigation impairment is frequently impaired; however, in this study, we tested the effectiveness of a serious gaming training protocol as a tool for cognitive rehabilitation to reduce navigation impairment. In total, 38 patients with acquired brain injury and subjective navigation complaints completed the experiment, with a partially blind, randomized control trial design. An objective navigation test was used to construct a strengths and weaknesses profile for each patient. Subsequently, patients received personalized compensation training that matched their strengths and weaknesses by addressing an egocentric or allocentric strategy or a strategy aimed at minimizing the use of landmarks. Participants in the experimental condition received psychoeducation and a home-based rehabilitation game with a series of exercises (e.g., map reading, place finding, and turn memorization). The exercises were developed to stimulate the adoption of more beneficial strategies, according to the compensatory approach. Self-reported navigation ability (wayfinding questionnaire), participation level, and objective navigation performance were measured before and after 1 and 4 weeks after completing the six-week training program. Results indicate that the experimental group significantly improved in subjective navigation ability both 1 and 4 weeks after completion of the training, in comparison to the score before training and the scores of the control group. Similarly, goal attainment showed a significant increase after the first and fourth week after training. Objective navigation performance was not affected by the training. This navigation training protocol provides an effective solution to address navigation impairment after acquired brain injury, with clear improvements in subjective performance and goal attainment of the participants. The outcomes of the training should be re-examined after implementation in a clinical setting.

Keywords: spatial navigation, cognitive rehabilitation, serious gaming, acquired brain injury

Procedia PDF Downloads 145
727 Integrated Navigation System Using Simplified Kalman Filter Algorithm

Authors: Othman Maklouf, Abdunnaser Tresh

Abstract:

GPS and inertial navigation system (INS) have complementary qualities that make them ideal use for sensor fusion. The limitations of GPS include occasional high noise content, outages when satellite signals are blocked, interference and low bandwidth. The strengths of GPS include its long-term stability and its capacity to function as a stand-alone navigation system. In contrast, INS is not subject to interference or outages, have high bandwidth and good short-term noise characteristics, but have long-term drift errors and require external information for initialization. A combined system of GPS and INS subsystems can exhibit the robustness, higher bandwidth and better noise characteristics of the inertial system with the long-term stability of GPS. The most common estimation algorithm used in integrated INS/GPS is the Kalman Filter (KF). KF is able to take advantages of these characteristics to provide a common integrated navigation implementation with performance superior to that of either subsystem (GPS or INS). This paper presents a simplified KF algorithm for land vehicle navigation application. In this integration scheme, the GPS derived positions and velocities are used as the update measurements for the INS derived PVA. The KF error state vector in this case includes the navigation parameters as well as the accelerometer and gyroscope error states.

Keywords: GPS, INS, Kalman filter, inertial navigation system

Procedia PDF Downloads 447
726 Synchronization of Two Mobile Robots

Authors: R. M. López-Gutiérrez, J. A. Michel-Macarty, H. Cervantes-De Avila, J. I. Nieto-Hipólito, C. Cruz-Hernández, L. Cardoza-Avendaño, S. Cortiant-Velez

Abstract:

It is well know that mankind benefits from the application of robot control by virtual handlers in industrial environments. In recent years, great interest has emerged in the control of multiple robots in order to carry out collective tasks. One main trend is to copy the natural organization that some organisms have, such as, ants, bees, school of fish, birds’ migration, etc. Surely, this collaborative work, results in better outcomes than those obtain in an isolated or individual effort. This topic has a great drive because collaboration between several robots has the potential capability of carrying out more complicated tasks, doing so, with better efficiency, resiliency and fault tolerance, in cases such as: coordinate navigation towards a target, terrain exploration, and search-rescue operations. In this work, synchronization of multiple autonomous robots is shown over a variety of coupling topologies: star, ring, chain, and global. In all cases, collective synchronous behavior is achieved, in the complex networks formed with mobile robots. Nodes of these networks are modeled by a mass using Matlab to simulate them.

Keywords: robots, synchronization, bidirectional, coordinate navigation

Procedia PDF Downloads 328
725 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery

Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori

Abstract:

The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.

Keywords: autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS

Procedia PDF Downloads 160