Search results for: tropical wood
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1007

Search results for: tropical wood

797 Ocular Complications in Type 1 Diabetes Mellitus in Zahedan: A Tropical Region in Southeast of Iran

Authors: Mohammad Hossain Validad, Maryam Nakhaei-Moghadam, Monire Mahjoob

Abstract:

Introduction: The prevalence of type 1 diabetes is increasing worldwide, and given the role of ethnicity and race in complications of diabetes, this study was designed to evaluate the ocular complications of type 1 diabetes mellitus in Zahedan. Methods: This prospective cross-sectional study was conducted on Type 1 diabetic children that referred to Alzahra Eye Hospital. All patients had a dilated binocular indirect ophthalmoscopy using a +90 D condensing lens and slit-lamp biomicroscopy. Age, gender, onset, duration of diabetes, and HbA1c level were recorded. Results: 76 type 1 diabetes patients with an age of 11.93 ± 3.76 years participated in this study. Out of 76 patients with diabetes, 19 people (25%) had ocular complications. There was a significant difference in age (P=0.01) and disease duration (P=0.07) between the two groups with and without ocular complications. Odd ratios for ocular complications with age and duration of diabetes were 1.32 and 1.32, respectively. Conclusion: Cataract was the most common ocular complication in type 1 diabetes in Zahedan, a tropical region that was significantly related to the duration of the disease and the age of the patients.

Keywords: diabet mellitus type one, cataract, ocular complication, hemoglobin A1C

Procedia PDF Downloads 13
796 Comfort Needs and Energy Practices in Low-Income, Tropical Housing from a Socio-Technical Perspective

Authors: Tania Sharmin

Abstract:

Energy use, overheating and thermal discomfort in low-income tropical housing remains an under-researched area. This research attempts to explore these aspects in the Loving Community, a housing colony created for former leprosy patients and their families in Ahmedabad in India. The living conditions in these households and working practices of the inhabitants in terms of how the building and its internal and external spaces are used, will be explored through interviews and monitoring which will be based on a household survey and a focus group discussion (FGD). The findings from the study will provide a unique and in-depth account of how the relocation of the affected households to the new, flood-resistant and architecturally-designed buildings may have affected the dwellers’ household routines (health and well-being, comfort, satisfaction and working practices) and overall living conditions compared to those living in poorly-designed, existing low-income housings. The new houses were built under an innovative building project supported by De Montfort University Leicester (DMU)’s Square Mile India project. A comparison of newly-built and existing building typologies will reveal how building design can affect people’s use of space and energy use. The findings will be helpful to design healthier, energy efficient and socially acceptable low-income housing in future, thus addressing United Nation’s sustainable development goals on three aspects: 3 (health and well-being), 7 (energy) and 11 (safe, resilient and sustainable human settlements). This will further facilitate knowledge exchange between policy makers, developers, designers and occupants focused on strategies to increase stakeholders’ participation in the design process.

Keywords: thermal comfort, energy use, low-income housing, tropical climate

Procedia PDF Downloads 101
795 From Ondoy to Habagat: Comparison of the Community Coping Strategies between Barangay Tumana and Provident Village, Marikina City

Authors: Dinnah Feye H. Andal, Ann Laurice V. Salonga

Abstract:

The paper investigates the flooding event that was experienced by Marikina City residents during the onslaught of Tropical Storm Ondoy on September 26, 2009 and during the heavy downpour caused by the southwest monsoon (Habagat) on August 1-8, 2012. Typhoon Ketsana, locally known as Tropical Storm Ondoy, devastated the whole of Marikina City, displacing a lot of people from their homes and damages properties as well, as flood rose at a very short period of time. Meanwhile, the massive amount of rain water brought by the southwest monsoon lasted for a week that also caused flooding to different parts of Metro Manila including Marikina City. This paper examines how the respondents’ experiences of the flooding caused by Tropical Storm Ondoy informed the coping strategies that the households in Barangay Tumana and Provident Village employed during the flooding brought by the southwest monsoon rains. Specifically, the research compares the coping strategies to flood hazards between residents of Barangay Tumana and Provident Village before, during and after the flooding caused by the southwest monsoon rains. Both study sites have relatively low elevation and are located along rivers and creeks which make them highly susceptible to flood. Interviews with affected residents were undertaken to understand how a household's coping strategies contribute to the development of community coping strategies at the respective neighborhood level. Based from the findings, income levels, local politics, religion and social relations between and among neighbors affect the way household and community coping strategies differ in the two case study sites.

Keywords: community coping strategies, Habagat, Marikina, Ondoy

Procedia PDF Downloads 293
794 Bamboo: A Trendy and New Alternative to Wood

Authors: R. T. Aggangan, R. J. Cabangon

Abstract:

Bamboo is getting worldwide attention over the last 20 to 30 years due to numerous uses and it is regarded as the closest material that can be used as substitute to wood. In the domestic market, high quality bamboo products are sold in high-end markets while lower quality products are generally sold to medium and low income consumers. The global market in 2006 stands at about 7 billion US dollars and was projected to increase to US$ 17 B from 2015 to 2020. The Philippines had been actively producing and processing bamboo products for the furniture, handicrafts and construction industry. It was however in 2010 that the Philippine bamboo industry was formalized by virtue of Executive Order 879 that stated that the Philippine bamboo industry development is made a priority program of the government and created the Philippine Bamboo Industry Development Council (PBIDC) to provide the overall policy and program directions of the program for all stakeholders. At present, the most extensive use of bamboo is for the manufacture of engineered bamboo for school desks for all public schools as mandated by EO 879. Also, engineered bamboo products are used for high-end construction and furniture as well as for handicrafts. Development of cheap adhesives, preservatives, and finishing chemicals from local species of plants, development of economical methods of drying and preservation, product development and processing of lesser-used species of bamboo, development of processing tools, equipment and machineries are the strategies that will be employed to reduce the price and mainstream engineered bamboo products in the local and foreign market. In addition, processing wastes from bamboo can be recycled into fuel products such as charcoal are already in use. The more exciting possibility, however, is the production of bamboo pellets that can be used as a substitute for wood pellets for heating, cooking and generating electricity.

Keywords: bamboo charcoal and light distillates, engineered bamboo, furniture and handicraft industries, housing and construction, pellets

Procedia PDF Downloads 217
793 Broiler Chickens Meat Qualities and Death on Arrival (DOA) In-Transit in Brazilian Tropical Conditions

Authors: Arlan S. Freitas, Leila M. Carvalho, Adriana L. Soares, Arnoud Neto, Marta S. Madruga, Rafael H. Carvalho, Elza I. Ida, Massami Shimokomaki

Abstract:

The objective of this work was to evaluate the influence of microclimatic profile of broiler transport trucks and holding time (340) min under commercial conditions over the breast meat quality and DOA (Dead On Arrival) in a tropical Brazilian regions as the NorthEast. In this particular region routinely the season is divided into dry and wet seasons. Three loads of 4,100 forty seven days old broiler were monitored from farm to slaughterhouse in a distance of 273 km (320 min), morning periods of August, September and October 2015 rainy days. Meat qualities were evaluated by determining the occurrence of PSE (pale, soft, exudative) meat and DFD (dark, firm, dry) meat. The percentage of DOA per loaded truck was determined by counting the dead broiler during the hanging step at the slaughtering plant. Results showed the occurrence of 26.30% of PSE and 2.49% of DFD and 0.45% of DOA. By having PSE- and DFD- meat means that the birds were under thermal and cold stress leading as consequence to a relative high DOA index.

Keywords: animal welfare, DFD, microclimatic profile, PSE

Procedia PDF Downloads 374
792 Taxonomic Study of Squirrel Order Rodentia, Family Sciuridea of District Jamshoro Pakistan

Authors: Aisha Liaquat Ali, Ghulam Sarwar Gachal, Muhammad Yusuf Sheikh

Abstract:

The squirrel commonly known as ‘Gulhari’ belongs to the order Rodentia, family sciuridea, its sub-species inhabit tropical to sub tropical regions of Asia. The core aim of the present study is to investigate the taxonomy of squirrel in District Jamshoro. Sampling was obtained for the taxonomic identification from various adjoining areas of District Jamshoro by non random method. During present study a total number of 107 specimens were collected from July 2018 to December 2018, specimens were collected from District Jamshoro it was observed that the prevalence of the sub-species Funambulus tristriatus numarius (23.3%), Funambulus pennant tulescens (23.3%) was high while Funambulus tristriatus tristriatus ((20.5%), Funambulus palmarun brodie (18.6%) and the minimum prevalence Funambulus palmaruns palmaruns (14.1%). In the present research, it is established that the climate factors, altitude has principal importance in the poor density of squirrel.

Keywords: Jamshoro District Pakistan, squirrel, taxonomy, prevalence

Procedia PDF Downloads 135
791 Impact Assessment of Tropical Cyclone Hudhud on Visakhapatnam, Andhra Pradesh

Authors: Vivek Ganesh

Abstract:

Tropical cyclones are some of the most damaging events. They occur in yearly cycles and affect the coastal population with three dangerous effects: heavy rain, strong wind and storm surge. In order to estimate the area and the population affected by a cyclone, all the three types of physical impacts must be taken into account. Storm surge is an abnormal rise of water above the astronomical tides, generated by strong winds and drop in the atmospheric pressure. The main aim of the study is to identify the impact by comparing three different months data. The technique used here is NDVI classification technique for change detection and other techniques like storm surge modelling for finding the tide height. Current study emphasize on recent very severe cyclonic storm Hud Hud of category 3 hurricane which had developed on 8 October 2014 and hit the coast on 12 October 2014 which caused significant changes on land and coast of Visakhapatnam, Andhra Pradesh. In the present study, we have used Remote Sensing and GIS tools for investigating and quantifying the changes in vegetation and settlement.

Keywords: inundation map, NDVI map, storm tide map, track map

Procedia PDF Downloads 241
790 Staying Cool in the Heat: How Tropical Finches Behaviorally Adjust to Extreme Heat in the Wild

Authors: Mara F. Müller, Simon C. Griffith, Tara L. Crewe, Mirjam Kaestli, Sydney J. Collett, Ian J. Radford, Hamish A. Campbell

Abstract:

The intensity and frequency of heat waves have been progressively increasing because of climate change. Passerines that inhabit very hot regions are already close to their physiological thermal limit and are thus considered highly susceptible to increased ambient temperatures. However, the extent by which passerines behaviorally compensate for extreme heat in their natural habitat has rarely been assessed due to monitoring challenges. To address this knowledge gap, coded VHF-nano transmitters were attached to a tropical passerine (Gouldian finch, Chloebia gouldiae). Fine-scale activity and movement were monitored throughout the hottest and driest period of the year using an array of static VHF-receivers. The finches were found to typically show a peak activity for a few hours at sunrise and remained relatively quiescent for the rest of the day. However, on extremely hot days (max temperature >38ºC), finches showed higher activity levels earlier in the morning and presented a second peak in the afternoon. Gouldian finches are physiologically challenged when ambient temperatures exceed 38ºC, suggesting the shift in movement activity reflects a behavioral mitigation strategy to extreme heat. These tropical finches already exist on an energetic knife-edge during this time of the year due to resource scarcity. Hence, the increased energetic expenditure to mitigate thermal stress may be detrimental. The study demonstrates the value of VHF-telemetry technology in monitoring the impact of global change on the biology of small-bodied mobile species.

Keywords: animal tracking, biotelemetry, climate change, extreme heat, movement activity, radiotelemetry, VHF-telemetry

Procedia PDF Downloads 61
789 Indoor and Outdoor Forest Farming for Year-Round Food and Medicine Production, Carbon Sequestration, Soil-Building, and Climate Change Mitigation

Authors: Jerome Osentowski

Abstract:

The objective at Central Rocky Mountain Permaculture Institute has been to put in practice a sustainable way of life while growing food, medicine, and providing education. This has been done by applying methods of farming such as agroforestry, forest farming, and perennial polycultures. These methods have been found to be regenerative to the environment through carbon sequestration, soil-building, climate change mitigation, and the provision of food security. After 30 years of implementing carbon farming methods, the results are agro-diversity, self-sustaining systems, and a consistent provision of food and medicine. These results are exhibited through polyculture plantings in an outdoor forest garden spanning roughly an acre containing about 200 varieties of fruits, nuts, nitrogen-fixing trees, and medicinal herbs, and two indoor forest garden greenhouses (one Mediterranean and one Tropical) containing about 50 varieties of tropical fruits, beans, herbaceous plants and more. While the climate zone outside the greenhouse is 6, the tropical forest garden greenhouse retains an indoor climate zone of 11 with near-net-zero energy consumption through the use of a climate battery, allowing the greenhouse to serve as a year-round food producer. The effort to source food from the forest gardens is minimal compared to annual crop production. The findings at Central Rocky Mountain Permaculture Institute conclude that agroecological methods are not only beneficial but necessary in order to revive and regenerate the environment and food security.

Keywords: agroecology, agroforestry, carbon farming, carbon sequestration, climate battery, food security, forest farming, forest garden, greenhouse, near-net-zero, perennial polycultures

Procedia PDF Downloads 400
788 Coastal Vulnerability Index and Its Projection for Odisha Coast, East Coast of India

Authors: Bishnupriya Sahoo, Prasad K. Bhaskaran

Abstract:

Tropical cyclone is one among the worst natural hazards that results in a trail of destruction causing enormous damage to life, property, and coastal infrastructures. In a global perspective, the Indian Ocean is considered as one of the cyclone prone basins in the world. Specifically, the frequency of cyclogenesis in the Bay of Bengal is higher compared to the Arabian Sea. Out of the four maritime states in the East coast of India, Odisha is highly susceptible to tropical cyclone landfall. Historical records clearly decipher the fact that the frequency of cyclones have reduced in this basin. However, in the recent decades, the intensity and size of tropical cyclones have increased. This is a matter of concern as the risk and vulnerability level of Odisha coast exposed to high wind speed and gusts during cyclone landfall have increased. In this context, there is a need to assess and evaluate the severity of coastal risk, area of exposure under risk, and associated vulnerability with a higher dimension in a multi-risk perspective. Changing climate can result in the emergence of a new hazard and vulnerability over a region with differential spatial and socio-economic impact. Hence there is a need to have coastal vulnerability projections in a changing climate scenario. With this motivation, the present study attempts to estimate the destructiveness of tropical cyclones based on Power Dissipation Index (PDI) for those cyclones that made landfall along Odisha coast that exhibits an increasing trend based on historical data. The study also covers the futuristic scenarios of integral coastal vulnerability based on the trends in PDI for the Odisha coast. This study considers 11 essential and important parameters; the cyclone intensity, storm surge, onshore inundation, mean tidal range, continental shelf slope, topo-graphic elevation onshore, rate of shoreline change, maximum wave height, relative sea level rise, rainfall distribution, and coastal geomorphology. The study signifies that over a decadal scale, the coastal vulnerability index (CVI) depends largely on the incremental change in variables such as cyclone intensity, storm surge, and associated inundation. In addition, the study also performs a critical analysis on the modulation of PDI on storm surge and inundation characteristics for the entire coastal belt of Odisha State. Interestingly, the study brings to light that a linear correlation exists between the storm-tide with PDI. The trend analysis of PDI and its projection for coastal Odisha have direct practical applications in effective coastal zone management and vulnerability assessment.

Keywords: Bay of Bengal, coastal vulnerability index, power dissipation index, tropical cyclone

Procedia PDF Downloads 200
787 Mechanical Properties of Aspen Wood of Structural Dimensions

Authors: Barbora Herdová, Rastislav Lagaňa

Abstract:

The paper investigates the mechanical properties of European aspen (Populus tremula L.) as a potential replacement for load-bearing elements in historical structures. One of the main aims of the research has been the quantification of mechanical properties via destructive testing and the subsequent calculation of characteristic values of these properties. The research encompasses experimental testing of wood specimens for the determination of dynamic modulus of elasticity (MOEdyn), modulus of elasticity (MOE), modulus of rupture (MOR), and density. The results were analyzed and compared to established standards for structural timber. The results confirmed statistically significant dependence between MOR and MOEdyn. The correlation between the MOR and the dynamic MOEdyn enabled non-destructive strength grading using the Sylvatest Duo® system. The findings of this research contribute to the potential use of European aspen as a structural timber, which could have implications for the sustainable use of this abundant and renewable resource in the construction industry. They also show the usability of European aspen in the reconstruction of historical buildings.

Keywords: populus tremula, MOE, MOR, sylvatest Duo®.

Procedia PDF Downloads 28
786 Microstructure Characterization on Silicon Carbide Formation from Natural Wood

Authors: Noor Leha Abdul Rahman, Koay Mei Hyie, Anizah Kalam, Husna Elias, Teng Wang Dung

Abstract:

Dark Red Meranti and Kapur, kinds of important type of wood in Malaysia were used as a precursor to fabricate porous silicon carbide. A carbon template is produced by pyrolysis at 850°C in an oxygen free atmosphere. The carbon template then further subjected to infiltration with silicon by silicon melt infiltration method. The infiltration process was carried out in tube furnace in argon flow at 1500°C, at two different holding time; 2 hours and 3 hours. Thermo gravimetric analysis was done to investigate the decomposition behavior of two species of plants. The resulting silicon carbide was characterized by XRD which was found the formation of silicon carbide and also excess silicon. The microstructure was characterized by scanning electron microscope (SEM) and the density was determined by the Archimedes method. An increase in holding time during infiltration will increased the density as well as formation of silicon carbide. Dark Red Meranti precursor is likely suitable for production of silicon carbide compared to Kapur.

Keywords: density, SEM, silicon carbide, XRD

Procedia PDF Downloads 391
785 A Numerical and Experimental Study on Fast Pyrolysis of Single Wood Particle

Authors: Hamid Rezaei, Xiaotao Bi, C. Jim Lim, Anthony Lau, Shahab Sokhansanj

Abstract:

A one-dimensional heat transfer model coupled with the kinetic information has been used to predict the overall pyrolysis mass loss of a single wood particle. The kinetic parameters were determined experimentally and the regime and characteristics of the conversion were evaluated in terms of the particle size and reactor temperature. The order of overall mass loss changed from n=1 at temperatures lower than 350 °C to n=0.5 at temperatures higher that 350 °C. Conversion time analysis showed that particles larger than 0.5 mm were controlled by internal thermal resistances. The valid range of particle size to use the simplified lumped model depends on the fluid temperature around the particles. The critical particle size was 0.6-0.7 mm for the fluid temperature of 500 °C and 0.9-1.0 mm for the fluid temperature of 100 °C. Experimental pyrolysis of moist particles did not show distinct drying and pyrolysis stages. The process was divided into two hypothetical drying and pyrolysis dominated zones and empirical correlations are developed to predict the rate of mass loss in each zone.

Keywords: pyrolysis, kinetics, model, single particle

Procedia PDF Downloads 286
784 Numerical Modeling of Phase Change Materials Walls under Reunion Island's Tropical Weather

Authors: Lionel Trovalet, Lisa Liu, Dimitri Bigot, Nadia Hammami, Jean-Pierre Habas, Bruno Malet-Damour

Abstract:

The MCP-iBAT1 project is carried out to study the behavior of Phase Change Materials (PCM) integrated in building envelopes in a tropical environment. Through the phase transitions (melting and freezing) of the material, thermal energy can be absorbed or released. This process enables the regulation of indoor temperatures and the improvement of thermal comfort for the occupants. Most of the commercially available PCMs are more suitable to temperate climates than to tropical climates. The case of Reunion Island is noteworthy as there are multiple micro-climates. This leads to our key question: developing one or multiple bio-based PCMs that cover the thermal needs of the different locations of the island. The present paper focuses on the numerical approach to select the PCM properties relevant to tropical areas. Numerical simulations have been carried out with two softwares: EnergyPlusTM and Isolab. The latter has been developed in the laboratory, with the implicit Finite Difference Method, in order to evaluate different physical models. Both are Thermal Dynamic Simulation (TDS) softwares that predict the building’s thermal behavior with one-dimensional heat transfers. The parameters used in this study are the construction’s characteristics (dimensions and materials) and the environment’s description (meteorological data and building surroundings). The building is modeled in accordance with the experimental setup. It is divided into two rooms, cells A and B, with same dimensions. Cell A is the reference, while in cell B, a layer of commercial PCM (Thermo Confort of MCI Technologies) has been applied to the inner surface of the North wall. Sensors are installed in each room to retrieve temperatures, heat flows, and humidity rates. The collected data are used for the comparison with the numerical results. Our strategy is to implement two similar buildings at different altitudes (Saint-Pierre: 70m and Le Tampon: 520m) to measure different temperature ranges. Therefore, we are able to collect data for various seasons during a condensed time period. The following methodology is used to validate the numerical models: calibration of the thermal and PCM models in EnergyPlusTM and Isolab based on experimental measures, then numerical testing with a sensitivity analysis of the parameters to reach the targeted indoor temperatures. The calibration relies on the past ten months’ measures (from September 2020 to June 2021), with a focus on one-week study on November (beginning of summer) when the effect of PCM on inner surface temperatures is more visible. A first simulation with the PCM model of EnergyPlus gave results approaching the measurements with a mean error of 5%. The studied property in this paper is the melting temperature of the PCM. By determining the representative temperature of winter, summer and inter-seasons with past annual’s weather data, it is possible to build a numerical model of multi-layered PCM. Hence, the combined properties of the materials will provide an optimal scenario for the application on PCM in tropical areas. Future works will focus on the development of bio-based PCMs with the selected properties followed by experimental and numerical validation of the materials. 1Materiaux ´ a Changement de Phase, une innovation pour le B ` ati Tropical

Keywords: energyplus, multi-layer of PCM, phase changing materials, tropical area

Procedia PDF Downloads 64
783 Analytical Study and Conservation Processes of Scribe Box from Old Kingdom

Authors: Mohamed Moustafa, Medhat Abdallah, Ramy Magdy, Ahmed Abdrabou, Mohamed Badr

Abstract:

The scribe box under study dates back to the old kingdom. It was excavated by the Italian expedition in Qena (1935-1937). The box consists of 2pieces, the lid and the body. The inner side of the lid is decorated with ancient Egyptian inscriptions written with a black pigment. The box was made using several panels assembled together by wooden dowels and secured with plant ropes. The entire box is covered with a red pigment. This study aims to use analytical techniques in order to identify and have deep understanding for the box components. Moreover, the authors were significantly interested in using infrared reflectance transmission imaging (RTI-IR) to improve the hidden inscriptions on the lid. The identification of wood species included in this study. The visual observation and assessment were done to understand the condition of this box. 3Ddimensions and 2D programs were used to illustrate wood joints techniques. Optical microscopy (OM), X-ray diffraction (XRD), X-ray fluorescence portable (XRF) and Fourier Transform Infrared spectroscopy (FTIR) were used in this study in order to identify wood species, remains of insects bodies, red pigment, fibers plant and previous conservation adhesives, also RTI-IR technique was very effective to improve hidden inscriptions. The analysis results proved that wooden panels and dowels were identified as Acacia nilotica, wooden rail was Salix sp. the insects were identified as Lasioderma serricorne and Gibbium psylloids, the red pigment was Hematite, while the fiber plants were linen, previous adhesive was identified as cellulose nitrates. The historical study for the inscriptions proved that it’s a Hieratic writings of a funerary Text. After its transportation from the Egyptian museum storage to the wood conservation laboratory of the Grand Egyptian museum –conservation center (GEM-CC), conservation techniques were applied with high accuracy in order to restore the object including cleaning , consolidating of friable pigments and writings, removal of previous adhesive and reassembly, finally the conservation process that were applied were extremely effective for this box which became ready for display or storage in the grand Egyptian museum.

Keywords: scribe box, hieratic, 3D program, Acacia nilotica, XRD, cellulose nitrate, conservation

Procedia PDF Downloads 245
782 Evaluation of Fuel Properties of Six Tropical Hardwood Timber Species for Briquettes

Authors: Stephen J. Mitchual, Kwasi Frimpong-Mensah, Nicholas A. Darkwa

Abstract:

The fuel potential of six tropical hardwood species namely: Triplochiton scleroxylon, Ceiba pentandra, Aningeria robusta, Terminalia superba, Celtis mildbreadii and Piptadenia africana were studied. Properties studied include the species density, gross calorific value, volatile matter, ash, organic carbon, N, H, S, Cu, Pb, As and Cd content. Fuel properties were determined using standard laboratory methods. The result indicates that the Gross Calorific Value (GCV) of the species ranged from 20.16 to 22.22 MJ/kg and they slightly varied from each other. Additionally, the GCV of the biomass materials were higher than that of other biomass materials like; wheat straw, rice straw, maize straw and sugar cane. The ash and volatile matter content varied from 0.6075 to 5.0407%, and 75.23% to 83.70% respectively. The overall rating of the properties of the six biomass materials suggest that Piptadenia africana has the best fuel property to be used as briquettes and Aningeria robusta the worse. This study therefore suggests that a holistic assessment of a biomass material needs to be done before selecting it for fuel purpose.

Keywords: ash content, briquette, calorific value, elemental composition, species, volatile matter

Procedia PDF Downloads 384
781 Assessment of Growth Variation and Phytoextraction Potential of Four Salix Varieties Grown in Zn Contaminated Soil Amended with Lime and Wood Ash

Authors: Mir Md Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen

Abstract:

Soils contaminated with metals, e.g., copper (Cu), zinc (Zn) and nickel (Ni) are one of the main global environmental problems. Zn is an important element for plant growth, but excess levels may become a threat to plant survival. Soils polluted with metals may also pose risks and hazards to human health. Afforestation based on short rotation Salix crops may be a good solution for the reduction of metals toxicity levels in the soil and in ecosystem restoration of severely polluted sites. In a greenhouse experiment, plant growth and zinc (Zn) uptake by four Salix cultivars grown in Zn contaminated soils collected from a mining area in Finland were tested to assess their suitability for phytoextraction. The sequential extraction technique and inductively coupled plasma‒mass spectrometry (ICP–MS) were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The cultivars displayed resistance to heavily polluted soils throughout the whole experiment. After uptake, the total mean Zn concentrations ranged from 776 to 1823 mg kg⁻¹. The average uptake percentage of Zn across all cultivars and treatments ranged from 97 to 223%. Lime and wood ash addition showed a significant effect on plant dry biomass growth and metal uptake percentage of Zn in most of the cultivars. The results revealed that Salix cultivars have the potential to accumulate and take up significant amounts of Zn. Ecological restoration of polluted soils could be environmentally favorable in conjunction with economically profitable practices, such as forestry and bioenergy production. As such, the utilization of Salix for phytoextraction and bioenergy purposes is of considerable interest.

Keywords: lime, phytoextraction, Salix, wood ash, zinc

Procedia PDF Downloads 129
780 A Versatile Algorithm to Propose Optimized Solutions to the Dengue Disease Problem

Authors: Fernando L. P. Santos, Luiz G. Lyra, Helenice O. Florentino, Daniela R. Cantane

Abstract:

Dengue is a febrile infectious disease caused by a virus of the family Flaviridae. It is transmitted by the bite of mosquitoes, usually of the genus Aedes aegypti. It occurs in tropical and subtropical areas of the world. This disease has been a major public health problem worldwide, especially in tropical countries such as Brazil, and its incidence has increased in recent years. Dengue is a subject of intense research. Efficient forms of mosquito control must be considered. In this work, the mono-objective optimal control problem was solved for analysing the dengue disease problem. Chemical and biological controls were considered in the mathematical aspect. This model describes the dynamics of mosquitoes in water and winged phases. We applied the genetic algorithms (GA) to obtain optimal strategies for the control of dengue. Numerical simulations have been performed to verify the versatility and the applicability of this algorithm. On the basis of the present results we may recommend the GA to solve optimal control problem with a large region of feasibility.

Keywords: genetic algorithm, dengue, Aedes aegypti, biological control, chemical control

Procedia PDF Downloads 318
779 Wood Decay Fungal Strains Useful for Bio-Composite Material Production

Authors: C. Girometta, S. Babbini, R. M. Baiguera, D. S. Branciforti, M. Cartabia, D. Dondi, M. Pellegrini, A. M. Picco, E. Savino

Abstract:

Interest on wood decay fungi (WDF) has been increasing in the last year's thanks to the potentiality of this kind of fungi; research on new WDF strains has increased as well thus pointing out the key role of the culture collections. One of the most recent biotechnological application of WDF is the development of novel materials from natural or recycled resources. Based on different combinations of fungal species, substrate, and processing treatment involved (e.g. heat pressing), it is possible to achieve a wide variety of materials with different features useful for many industrial applications: from packaging to thermal and acoustic insulation. In comparison with the conventional ones, these materials represent a 100% natural and compostable alternative involving low amounts of energy in the production process. The purpose of the present work was to isolate and select WDF strains able to colonize and degrade different plant wastes thus producing a fungal biomass shapeable to achieve bio-composite materials. Strains were selected within the mycological culture collection of Pavia University (MicUNIPV, over 300 strains of WDF). The selected strains have been investigated with regards their ability to colonize and degrade plant residues from the local major cultivations (e.g. poplar, alfalfa, maize, rice, and wheat) and produce the fungal biomass. The degradation of the substrate was assessed by Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Chemical characterization confirmed that TGA and FTIR are complementary techniques able to provide quality-quantitative information on compositional and structural variation that occurs during the transformation from the substrate to the bio-composite material. This pilot study provides a fundamental step to tune further applications in fungus-residues composite biomaterials.

Keywords: bio-composite material, lignocellulosic residues, sustainable materials, wood decay fungi

Procedia PDF Downloads 110
778 Effect of Biopesticide to Control Infestation of Whitefly Bemisia tabaci (Gennadius) on the Culantro Eryngium foetidum L.

Authors: Udomporn Pangnakorn, Sombat Chuenchooklin

Abstract:

Effect of the biopesticide from entomopathogenic nematode (Steinernema thailandensis n. sp.), bacteria ISR (Pseudomonas fluorescens), wood vinegar and fermented organic substances from plants: (neem Azadirachta indica + citronella grass Cymbopogon nardus Rendle + bitter bush Chromolaena odorata L.) were tested on culantro (Eryngium foetidum L.). The biopesticide was carried out for reduction infestation of the major insects pest (whitefly Bemisia tabaci (Gennadius)). The experimental plots were located at farmers’ farm in Tumbol Takhian Luean, Nakhon Sawan Province, Thailand. This study was undertaken during the drought season (lately November to May). The populations of whitefly were observed and recorded every hour up to 3 hours with insect net and yellow sticky traps after the treatments were applied. The results showed that bacteria ISR was the highest effectiveness for control whitefly infestation on culantro, the whitefly numbers on insect net were 12.5, 10.0, and 7.5 after spraying in 1hr, 2hr, and 3hr, respectively. While the whitefly on yellow sticky traps showed 15.0, 10.0, and 10.0 after spraying in 1hr, 2hr, and 3hr, respectively. Furthermore, overall the experiments showed that treatment of bacteria ISR found the average whitefly numbers only 8.06 and 11.0 on insect net and sticky tap respectively, followed by treatment of nematode found the average whitefly with 9.87 and 11.43 on the insect net and sticky tap, respectively. Therefore, the application of biopesticide from entomopathogenic nematodes, bacteria ISR, organic substances from plants and wood vinegar combined with natural enemies is the alternative method of Integrated Pest Management (IPM) for against infestation of whitefly.

Keywords: whitefly (Bemisia tabaci Gennadius), culantro (Eryngium foetidum L.), entomopathogenic nematode (Steinernema thailandensis n. sp.), bacteria ISR (Pseudomonas fluorescens), wood vinegar, fermented organic substances

Procedia PDF Downloads 340
777 Kenaf MDF Panels with Soy Based Adhesive. The Influence of Preparation Parameters on Physciomechanical Properties

Authors: Imtiaz Ali, Krishnan Jayaraman, Debes Bhattacharyya

Abstract:

Soybean concentrate is abundant material and renewable product that is recently been explored as an alternative to conventional formaldehyde based resins in wood based products. The main goal of this study is to evaluate the technical feasibility of manufacturing environment friendly MDF panels from renewable resources. The panels are made by using kenaf bast fibers (KB) as wood substitute and soy based adhesive as bonding material. Second order response surface regression models are used to understand the effects and interactions of resin content (RC) and pressing time (PT) on the mechanical and water soaking properties of kenaf panels. The mechanical and water soaking properties are significantly improved as the RC increased and reached at the highest level at maximum resin loading (12%). The effect of pressing time is significant in the first phase when the pressing time increased from 4 to 6 min; however the effect was not as significant when pressing time further increased to 8 min. The second order regression equations further confirm that the variation in process parameters has strong relationship with the physciomechanical properties. The MDF panels the minimum requirements of internal bond strength, modulus of rupture and modulus of elasticity as recommended by US wood MDF standard specifications for G110, G120, G130 and G140 grade MDF panels. However, the thickness swelling results are considerably poorer than the recommended values of general purpose standard requirements. This deficiency can be counterbalanced by the advantage of being formaldehyde free panels made from renewable sources and by making them suitable alternative for less humid environment applications.

Keywords: kenaf, Medium density fibreboard, soy adhesive, mechanical properties, water soaking properties

Procedia PDF Downloads 341
776 Fungal Pigments For Fabrics Dyeing: Initial Tests Using Industrial Dyeing Conditions

Authors: Vicente A. Hernandez, Felipe Galleguillos, Rene Thibaut, Alejandro Muller

Abstract:

Natural pigments have been proposed as an eco-friendly alternative to artificial pigments. Among the diverse organisms able to synthesize natural pigments, several wood colonizing fungi produce extracellular pigments which have been tested to dye fabrics at laboratory conditions with good results. However, the dyeing conditions used at laboratory level not necessary meet the real conditions in which dyeing of fabrics is conducted at industrial level. In this work, yellow and red pigments from the fungi Penicillium murcianum and Talaromyces australis, respectively, were used to dye yarn and linen fabrics using dyeing processes optimized according to the standard conditions used at industrial level. After dyeing treatments, fabrics were tested for color fastness to wash and to wet and dry rubbing, but also to tensile strength tests. Satisfactory result was obtained with both yellow and red pigments in yarn and linen, when used alone or mixed to different proportions. According to these results, natural pigments synthesized by both wood colonizing fungi have a great potential to be used in dyeing processes at industrial level.

Keywords: natural pigments, fungal pigments, yarn, linen

Procedia PDF Downloads 297
775 Total Life Cycle Cost and Life Cycle Assessment of Mass Timber Buildings in the US

Authors: Hongmei Gu, Shaobo Liang, Richard Bergman

Abstract:

With current worldwide trend in designs to have net-zero emission buildings to mitigate climate change, widespread use of mass timber products, such as Cross Laminated Timber (CLT), or Nail Laminated Timber (NLT) or Dowel Laminated Timber (DLT) in buildings have been proposed as one approach in reducing Greenhouse Gas (GHG) emissions. Consequentially, mass timber building designs are being adopted more and more by architectures in North America, especially for mid- to high-rise buildings where concrete and steel buildings are currently prevalent, but traditional light-frame wood buildings are not. Wood buildings and their associated wood products have tended to have lower environmental impacts than competing energy-intensive materials. It is common practice to conduct life cycle assessments (LCAs) and life cycle cost analyses on buildings with traditional structural materials like concrete and steel in the building design process. Mass timber buildings with lower environmental impacts, especially GHG emissions, can contribute to the Net Zero-emission goal for the world-building sector. However, the economic impacts from CLT mass timber buildings still vary from the life-cycle cost perspective and environmental trade-offs associated with GHG emissions. This paper quantified the Total Life Cycle Cost and cradle-to-grave GHG emissions of a pre-designed CLT mass timber building and compared it to a functionally-equivalent concrete building. The Total life cycle Eco-cost-efficiency is defined in this study and calculated to discuss the trade-offs for the net-zero emission buildings in a holistic view for both environmental and economic impacts. Mass timber used in buildings for the United States is targeted to the materials from the nation’s sustainable managed forest in order to benefit both national and global environments and economies.

Keywords: GHG, economic impact, eco-cost-efficiency, total life-cycle costs

Procedia PDF Downloads 108
774 Production of Bio-Composites from Cocoa Pod Husk for Use in Packaging Materials

Authors: L. Kanoksak, N. Sukanya, L. Napatsorn, T. Siriporn

Abstract:

A growing population and demand for packaging are driving up the usage of natural resources as raw materials in the pulp and paper industry. Long-term effects of environmental is disrupting people's way of life all across the planet. Finding pulp sources to replace wood pulp is therefore necessary. To produce wood pulp, various other potential plants or plant parts can be employed as substitute raw materials. For example, pulp and paper were made from agricultural residue that mainly included pulp can be used in place of wood. In this study, cocoa pod husks were an agricultural residue of the cocoa and chocolate industries. To develop composite materials to replace wood pulp in packaging materials. The paper was coated with polybutylene adipate-co-terephthalate (PBAT). By selecting and cleaning fresh cocoa pod husks, the size was reduced. And the cocoa pod husks were dried. The morphology and elemental composition of cocoa pod husks were studied. To evaluate the mechanical and physical properties, dried cocoa husks were extracted using the soda-pulping process. After selecting the best formulations, paper with a PBAT bioplastic coating was produced on a paper-forming machine Physical and mechanical properties were studied. By using the Field Emission Scanning Electron Microscope/Energy Dispersive X-Ray Spectrometer (FESEM/EDS) technique, the structure of dried cocoa pod husks showed the main components of cocoa pod husks. The appearance of porous has not been found. The fibers were firmly bound for use as a raw material for pulp manufacturing. Dry cocoa pod husks contain the major elements carbon (C) and oxygen (O). Magnesium (Mg), potassium (K), and calcium (Ca) were minor elements that were found in very small levels. After that cocoa pod husks were removed from the soda-pulping process. It found that the SAQ5 formula produced pulp yield, moisture content, and water drainage. To achieve the basis weight by TAPPI T205 sp-02 standard, cocoa pod husk pulp and modified starch were mixed. The paper was coated with bioplastic PBAT. It was produced using bioplastic resin from the blown film extrusion technique. It showed the contact angle, dispersion component and polar component. It is an effective hydrophobic material for rigid packaging applications.

Keywords: cocoa pod husks, agricultural residue, composite material, rigid packaging

Procedia PDF Downloads 44
773 Investigating the Organizational Capacity of Communities Affecting Water Supply Resilience

Authors: Behrooz Balaei, Suzanne Wilkinson, Regan Potangaroa, Larry Abel, Philip McFarlane

Abstract:

Water supply system failure has serious direct and indirect effects on people wellbeing. Post-disaster water system serviceability depends on a variety of factors from technical characteristics to social, economic, and organizational attributes of communities. This paper tests the organizational factors affecting water supply resilience to outline how these factors contributed to previous disasters. To do so, a framework is briefly introduced in this study to provide a clear guide to identify the significant relevant organizational factors. Then the factors affecting water serviceability following a disaster are outlines. Next, these factors are measured in the case of Tropical Cyclone Pam, which hit Vanuatu in March 2015. Reviewing the existing literature has also been carried out to obtain a comprehensive understanding of the background A site visit and a series of interviews have also been undertaken following the cyclone to collect site-specific data and information. In the end, the organizational factors were ranked to enable decision makers to identify significance of each factor compared to the others.

Keywords: water supply, resilience, organizational capacity, Vanuatu, Tropical Cyclone Pam

Procedia PDF Downloads 102
772 Monitoring Deforestation Using Remote Sensing And GIS

Authors: Tejaswi Agarwal, Amritansh Agarwal

Abstract:

Forest ecosystem plays very important role in the global carbon cycle. It stores about 80% of all above ground and 40% of all below ground terrestrial organic carbon. There is much interest in the extent of tropical forests and their rates of deforestation for two reasons: greenhouse gas contributions and the impact of profoundly negative biodiversity. Deforestation has many ecological, social and economic consequences, one of which is the loss of biological diversity. The rapid deployment of remote sensing (RS) satellites and development of RS analysis techniques in the past three decades have provided a reliable, effective, and practical way to characterize terrestrial ecosystem properties. Global estimates of tropical deforestation vary widely and range from 50,000 to 170,000km2 /yr Recent FAO tropical deforestation estimates for 1990–1995 cite 116,756km2 / yr globally. Remote Sensing can prove to be a very useful tool in monitoring of forests and associated deforestation to a sufficient level of accuracy without the need of physically surveying the forest areas as many of them are physically inaccessible. The methodology for the assessment of forest cover using digital image processing (ERDAS) has been followed. The satellite data for the study was procured from Indian institute of remote Sensing (IIRS), Dehradoon in the digital format. While procuring the satellite data, care was taken to ensure that the data was cloud free and did not belong to dry and leafless season. The Normalized Difference Vegetation Index (NDVI) has been used as a numerical indicator of the reduction in ground biomass. NDVI = (near I.R - Red)/ (near I.R + Red). After calculating the NDVI variations and associated mean, we have analysed the change in ground biomass. Through this paper, we have tried to indicate the rate of deforestation over a given period of time by comparing the forest cover at different time intervals. With the help of remote sensing and GIS techniques, it is clearly shown that the total forest cover is continuously degrading and transforming into various land use/land cover category.

Keywords: remote sensing, deforestation, supervised classification, NDVI, change detection

Procedia PDF Downloads 1139
771 NDVI as a Measure of Change in Forest Biomass

Authors: Amritansh Agarwal, Tejaswi Agarwal

Abstract:

Forest ecosystem plays very important role in the global carbon cycle. It stores about 80% of all above ground and 40% of all below ground terrestrial organic carbon. There is much interest in the extent of tropical forests and their rates of deforestation for two reasons: greenhouse gas contributions and the impact of profoundly negative biodiversity. Deforestation has many ecological, social and economic consequences, one of which is the loss of biological diversity. The rapid deployment of remote sensing (RS) satellites and development of RS analysis techniques in the past three decades have provided a reliable, effective, and practical way to characterize terrestrial ecosystem properties. Global estimates of tropical deforestation vary widely and range from 50,000 to 170,000 km2 /yr Recent FAO tropical deforestation estimates for 1990–1995 cite 116,756km2 / yr globally. Remote Sensing can prove to be a very useful tool in monitoring of forests and associated deforestation to a sufficient level of accuracy without the need of physically surveying the forest areas as many of them are physically inaccessible. The methodology for the assessment of forest cover using digital image processing (ERDAS) has been followed. The satellite data for the study was procured from USGS website in the digital format. While procuring the satellite data, care was taken to ensure that the data was cloud and aerosol free by making using of FLAASH atmospheric correction technique. The Normalized Difference Vegetation Index (NDVI) has been used as a numerical indicator of the reduction in ground biomass. NDVI = (near I.R - Red)/ (near I.R + Red). After calculating the NDVI variations and associated mean we have analysed the change in ground biomass. Through this paper we have tried to indicate the rate of deforestation over a given period of time by comparing the forest cover at different time intervals. With the help of remote sensing and GIS techniques it is clearly shows that the total forest cover is continuously degrading and transforming into various land use/land cover category.

Keywords: remote sensing, deforestation, supervised classification, NDVI change detection

Procedia PDF Downloads 369
770 Optimization of Adsorption Performance of Lignocellulosic Waste Pretreatment and Chemical Modification

Authors: Bendjelloul Meriem, Elandaloussi El Hadj

Abstract:

In this work, we studied the effectiveness of a lignocellulosic waste (wood sawdust) for the removal of cadmium Cd (II) in aqueous solution. The adsorbent material SBO-CH2-CO2Na has been prepared by alkaline pretreatment of wood sawdust followed by a chemical modification with sodium salt of chloroacetic acid. The characterization of the as-prepared material by FTIR has proven that the grafting of acetate spacer took actually place in the lignocellulosic backbone by the appearance of characteristic band of carboxylic groups in the IR spectrum. The removal study of Cd2+ by SBO-CH2-CO2Na material at the solid-liquid interface was carried out by kinetics, sorption isotherms, effect of temperature and thermodynamic parameters were evaluated. The last part of this work was dedicated to assess the regenerability of the adsorbent material after three reuse cycles. The results indicate that SBO-CH2-CO2Na matrix possesses a high effectiveness in removing Cd (II) with an adsorption capacity of 222.22 mg/g, yet a better value that those of many low-cost adsorbents so far reported in the literature. The results found in the course of this study suggest that ionic exchange is the most appropriate mechanism involved in the removal of cadmium ions.

Keywords: adsorption, cadmium, isotherms, lignocellulosic, regenerability

Procedia PDF Downloads 306
769 Mechanism of Veneer Colouring for Production of Multilaminar Veneer from Plantation-Grown Eucalyptus Globulus

Authors: Ngoc Nguyen

Abstract:

There is large plantation of Eucalyptus globulus established which has been grown to produce pulpwood. This resource is not suitable for the production of decorative products, principally due to low grades of wood and “dull” appearance but many trials have been already undertaken for the production of veneer and veneer-based engineered wood products, such as plywood and laminated veneer lumber (LVL). The manufacture of veneer-based products has been recently identified as an unprecedented opportunity to promote higher value utilisation of plantation resources. However, many uncertainties remain regarding the impacts of inferior wood quality of young plantation trees on product recovery and value, and with respect to optimal processing techniques. Moreover, the quality of veneer and veneer-based products is far from optimal as trees are young and have small diameters; and the veneers have the significant colour variation which affects to the added value of final products. Developing production methods which would enhance appearance of low-quality veneer would provide a great potential for the production of high-value wood products such as furniture, joinery, flooring and other appearance products. One of the methods of enhancing appearance of low quality veneer, developed in Italy, involves the production of multilaminar veneer, also named “reconstructed veneer”. An important stage of the multilaminar production is colouring the veneer which can be achieved by dyeing veneer with dyes of different colours depending on the type of appearance products, their design and market demand. Although veneer dyeing technology has been well advanced in Italy, it has been focused on poplar veneer from plantation which wood is characterized by low density, even colour, small amount of defects and high permeability. Conversely, the majority of plantation eucalypts have medium to high density, have a lot of defects, uneven colour and low permeability. Therefore, detailed study is required to develop dyeing methods suitable for colouring eucalypt veneers. Brown reactive dye is used for veneer colouring process. Veneers from sapwood and heartwood of two moisture content levels are used to conduct colouring experiments: green veneer and veneer dried to 12% MC. Prior to dyeing, all samples are treated. Both soaking (dipping) and vacuum pressure methods are used in the study to compare the results and select most efficient method for veneer dyeing. To date, the results of colour measurements by CIELAB colour system showed significant differences in the colour of the undyed veneers produced from heartwood part. The colour became moderately darker with increasing of Sodium chloride, compared to control samples according to the colour measurements. It is difficult to conclude a suitable dye solution used in the experiments at this stage as the variables such as dye concentration, dyeing temperature or dyeing time have not been done. The dye will be used with and without UV absorbent after all trials are completed using optimal parameters in colouring veneers.

Keywords: Eucalyptus globulus, veneer colouring/dyeing, multilaminar veneer, reactive dye

Procedia PDF Downloads 316
768 Exploration of Environmental Parameters on the Evolution of Vernacular Building Techniques in East Austria

Authors: Hubert Feiglstorfer

Abstract:

Due to its location in a transition zone from the Pannonian to the pre-Alpine region, the east of Austria shows a small-scale diversity in the regional development of certain vernacular building techniques. In this article the relationship between natural building material resources, topography and climate will be examined. Besides environmental preconditions, social and economic historical factors have developed different construction techniques within certain regions in the Weinviertel and Burgenland, the two eastern federal states of Austria. But even within these regions, varying building techniques were found, due to the locally different use of raw materials like wood, stone, clay, lime, or organic fibres. Within these small-scale regions, building traditions were adapted over the course of time due to changes in the use of the building material, for example from wood to brick or from wood to earth. The processing of the raw materials varies from region to region, for example as rammed earth, cob, log, or brick construction. Environmental preconditions cross national borders. For that reason, developments in the neighbouring countries, the Czech Republic, Slovakia, Hungary and Slovenia are included in this analysis. As an outcome of this research a map was drawn which shows the interrelation between locally available building materials, topography, climate and local building techniques? As a result of this study, which covers the last 300 years, one can see how the local population used natural resources very sensitively adapted to local environmental preconditions. In the case of clay, for example, changes of proportions of lime and particular minerals cause structural changes that differ from region to region. Based on material analyses in the field of clay mineralogy, on ethnographic research, literature and archive research, explanations for certain local structural developments will be given for the first time over the region of East Austria.

Keywords: European crafts, material culture, architectural history, earthen architecture, earth building history

Procedia PDF Downloads 200