Search results for: transparent conducting oxide
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2701

Search results for: transparent conducting oxide

2491 Raman Spectroscopic of Cardioprotective Mechanism During the Metabolic Inhibition of Heart Cells

Authors: A. Almohammedi, A. J. Hudson, N. M. Storey

Abstract:

Following ischaemia/reperfusion injury, as in a myocardial infraction, cardiac myocytes undergo oxidative stress which leads to several potential outcomes including; necrotic or apoptotic cell death or dysregulated calcium homeostasis or disruption of the electron transport chain. Several studies have shown that nitric oxide donors protect cardiomyocytes against ischemia and reperfusion. However until present, the mechanism of cardioprotective effect of nitric oxide donor in isolated ventricular cardiomyocytes is not fully understood and has not been investigated before using Raman spectroscopy. For these reasons, the aim of this study was to develop a novel technique, pre-resonance Raman spectroscopy, to investigate the mechanism of cardioprotective effect of nitric oxide donor in isolated ventricular cardiomyocytes exposed to metabolic inhibition and re-energisation. The results demonstrated the first time that Raman microspectroscopy technique has the capability to monitor the metabolic inhibition of cardiomyocytes and to monitor the effectiveness of cardioprotection by nitric oxide donor prior to metabolic inhibition of cardiomyocytes. Metabolic inhibition and reenergisation were used in this study to mimic the low and high oxygen levels experienced by cells during ischaemic and reperfusion treatments. A laser wavelength of 488 nm used in this study has been found to provide the most sensitive means of observe the cellular mechanisms of myoglobin during nitric oxide donor preconditioning, metabolic inhibition and re-energisation and did not cause any damage to the cells. The data also highlight the considerably different cellular responses to metabolic inhibition to ischaemia. Moreover, the data has been shown the relationship between the release of myoglobin and chemical ischemia where that the release of myoglobin from the cell only occurred if a cell did not recover contractility.

Keywords: ex vivo biospectroscopy, Raman spectroscopy, biophotonics, cardiomyocytes, ischaemia / reperfusion injury, cardioprotection, nitric oxide donor

Procedia PDF Downloads 327
2490 Study of Mixing Conditions for Different Endothelial Dysfunction in Arteriosclerosis

Authors: Sara Segura, Diego Nuñez, Miryam Villamil

Abstract:

In this work, we studied the microscale interaction of foreign substances with blood inside an artificial transparent artery system that represents medium and small muscular arteries. This artery system had channels ranging from 75 μm to 930 μm and was fabricated using glass and transparent polymer blends like Phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide, Poly(ethylene glycol) and PDMS in order to be monitored in real time. The setup was performed using a computer controlled precision micropump and a high resolution optical microscope capable of tracking fluids at fast capture. Observation and analysis were performed using a real time software that reconstructs the fluid dynamics determining the flux velocity, injection dependency, turbulence and rheology. All experiments were carried out with fully computer controlled equipment. Interactions between substances like water, serum (0.9% sodium chloride and electrolyte with a ratio of 4 ppm) and blood cells were studied at microscale as high as 400nm of resolution and the analysis was performed using a frame-by-frame observation and HD-video capture. These observations lead us to understand the fluid and mixing behavior of the interest substance in the blood stream and to shed a light on the use of implantable devices for drug delivery at arteries with different Endothelial dysfunction. Several substances were tested using the artificial artery system. Initially, Milli-Q water was used as a control substance for the study of the basic fluid dynamics of the artificial artery system. However, serum and other low viscous substances were pumped into the system with the presence of other liquids to study the mixing profiles and behaviors. Finally, mammal blood was used for the final test while serum was injected. Different flow conditions, pumping rates, and time rates were evaluated for the determination of the optimal mixing conditions. Our results suggested the use of a very fine controlled microinjection for better mixing profiles with and approximately rate of 135.000 μm3/s for the administration of drugs inside arteries.

Keywords: artificial artery, drug delivery, microfluidics dynamics, arteriosclerosis

Procedia PDF Downloads 252
2489 Electrospun Zinc Oxide Nanowires as Highly Sensitive Piezoelectric Transduction Elements for Nano-Scale Devices

Authors: K. Brince Paul, Nagendra Pratap Singh, Shiv Govind Singh, Siva Rama Krishna Vanjari

Abstract:

In this paper, we report optimized procedure for synthesizing highly oriented, horizontally aligned, Zinc oxide (ZnO) nanowires targeted towards developing highly sensitive piezoelectric transduction elements. The synthesis was carried out using Electrospinning technique, a facile, robust, low cost technique for producing nanowires. The as-synthesized ZnO nanowires were characterized by X-ray powder diffraction (XRD), Field Emission scanning electron microscopy (FESEM) and Energy-dispersive X-ray spectroscopy (EDX).The Piezoelectric behavior of these nanowires was characterized using Peizoelectric Force microscopy (PFM). A very high d33 coefficient of 23.1 pm/V obtained through the PFM measurements is an indicative of its potential application towards developing miniaturized piezoelectric transduction elements for nanoscale devices.

Keywords: electrospinning, piezoelectric, technique, zinc oxide

Procedia PDF Downloads 378
2488 Experimental Investigation on Effects of Carrier Solvent and Oxide Fluxes in Activated TIG Welding of Reduced Activation Ferritic/Martensitic Steel

Authors: Jay J. Vora, Vishvesh J. Badheka

Abstract:

This work attempts to investigate the effect of oxide fluxes on 6mm thick Reduced Activation ferritic/martensitic steels (RAFM) during Activated TIG (A-TIG) welding. Six different fluxes Al₂O₃, Co₃O₄, CuO, HgO, MoO₃, and NiO were mixed with methanol for conversion into paste and bead-on-plate experiments were then carried out. This study, systematically investigates the influence of oxide-based flux powder and carrier solvent composition on the weld bead shape, geometric shape of weld bead and dominant depth enhancing mechanism in tungsten inert gas (TIG) welding of reduced activation ferritic/martensitic (RAFM) steel. It was inferred from the study that flux Co₃O₄ and MoO₃ imparted full and secure (more than 6mm) penetration with methanol owing to dual mechanism of reversed Marangoni and arc construction. The use of methanol imparted good spreadabilty and coverability and ultimately higher peak temperatures were observed with its use owing to stronger depth enhancing mechanisms than use of acetone with same oxide fluxes and welding conditions.

Keywords: A-TIG, flux, oxides, penetration, RAFM, temperature, welding

Procedia PDF Downloads 188
2487 Performance and Processing Evaluation of Solid Oxide Cells by Co-Sintering of GDC Buffer Layer and LSCF Air Electrode

Authors: Hyun-Jong Choi, Minjun Kwak, Doo-Won Seo, Sang-Kuk Woo, Sun-Dong Kim

Abstract:

Solid Oxide Cell(SOC) systems can contribute to the transition to the hydrogen society by utilized as a power and hydrogen generator by the electrochemical reaction with high efficiency at high operation temperature (>750 ℃). La1-xSrxCo1-yFeyO3, which is an air electrode, is occurred stability degradations due to reaction and delamination with yittria stabilized zirconia(YSZ) electrolyte in a water electrolysis mode. To complement this phenomenon SOCs need gadolinium doped ceria(GDC) buffer layer between electrolyte and air electrode. However, GDC buffer layer requires a high sintering temperature and it causes a reaction with YSZ electrolyte. This study carried out low temperature sintering of GDC layer by applying Cu-oxide as a sintering aid. The effect of a copper additive as a sintering aid to lower the sintering temperature for the construction of solid oxide fuel cells (SOFCs) was investigated. GDC buffer layer with 0.25-10 mol% CuO sintering aid was prepared by reacting GDC power and copper nitrate solution followed by heating at 600 ℃. The sintering of CuO-added GDC powder was optimized by investigating linear shrinkage, microstructure, grain size, ionic conductivity, and activation energy of CuO-GDC electrolytes at temperatures ranging from 1100 to 1400 ℃. The sintering temperature of the CuO-GDC electrolyte decreases from 1400 ℃ to 1100 ℃ by adding the CuO sintering aid. The ionic conductivity of the CuO-GDC electrolyte shows a maximum value at 0.5 mol% of CuO. However, the addition of CuO has no significant effects on the activation energy of GDC electrolyte. GDC-LSCF layers were co-sintering at 1050 and 1100 ℃ and button cell tests were carried out at 750 ℃.

Keywords: Co-Sintering, GDC-LSCF, Sintering Aid, solid Oxide Cells

Procedia PDF Downloads 224
2486 Simulation Studies of Solid-Particle and Liquid-Drop Erosion of NiAl Alloy

Authors: Rong Liu, Kuiying Chen, Ju Chen, Jingrong Zhao, Ming Liang

Abstract:

This article presents modeling studies of NiAl alloy under solid-particle erosion and liquid-drop erosion. In the solid particle erosion simulation, attention is paid to the oxide scale thickness variation on the alloy in high-temperature erosion environments. The erosion damage is assumed to be deformation wear and cutting wear mechanisms, incorporating the influence of the oxide scale on the eroded surface; thus the instantaneous oxide thickness is the result of synergetic effect of erosion and oxidation. For liquid-drop erosion, special interest is in investigating the effects of drop velocity and drop size on the damage of the target surface. The models of impact stress wave, mean depth of penetration, and maximum depth of erosion rate (Max DER) are employed to develop various maps for NiAl alloy, including target thickness vs. drop size (diameter), rate of mean depth of penetration (MDRP) vs. drop impact velocity, and damage threshold velocity (DTV) vs. drop size.

Keywords: liquid-drop erosion, NiAl alloy, oxide scale thickness, solid-particle erosion

Procedia PDF Downloads 540
2485 Blister Formation Mechanisms in Hot Rolling

Authors: Rebecca Dewfall, Mark Coleman, Vladimir Basabe

Abstract:

Oxide scale growth is an inevitable byproduct of the high temperature processing of steel. Blister is a phenomenon that occurs due to oxide growth, where high temperatures result in the swelling of surface scale, producing a bubble-like feature. Blisters can subsequently become embedded in the steel substrate during hot rolling in the finishing mill. This rolled in scale defect causes havoc within industry, not only with wear on machinery but loss of customer satisfaction, poor surface finish, loss of material, and profit. Even though blister is a highly prevalent issue, there is still much that is not known or understood. The classic iron oxidation system is a complex multiphase system formed of wustite, magnetite, and hematite, producing multi-layered scales. Each phase will have independent properties such as thermal coefficients, growth rate, and mechanical properties, etc. Furthermore, each additional alloying element will have different affinities for oxygen and different mobilities in the oxide phases so that oxide morphologies are specific to alloy chemistry. Therefore, blister regimes can be unique to each steel grade resulting in a diverse range of formation mechanisms. Laboratory conditions were selected to simulate industrial hot rolling with temperature ranges approximate to the formation of secondary and tertiary scales in the finishing mills. Samples with composition: 0.15Wt% C, 0.1Wt% Si, 0.86Wt% Mn, 0.036Wt% Al, and 0.028Wt% Cr, were oxidised in a thermo-gravimetric analyser (TGA), with an air velocity of 10litresmin-1, at temperaturesof 800°C, 850°C, 900°C, 1000°C, 1100°C, and 1200°C respectively. Samples were held at temperature in an argon atmosphere for 10minutes, then oxidised in air for 600s, 60s, 30s, 15s, and 4s, respectively. Oxide morphology and Blisters were characterised using EBSD, WDX, nanoindentation, FIB, and FEG-SEM imaging. Blister was found to have both a nucleation and growth process. During nucleation, the scale detaches from the substrate and blisters after a very short period, roughly 10s. The steel substrate is then exposed inside of the blister and further oxidised in the reducing atmosphere of the blister, however, the atmosphere within the blister is highly dependent upon the porosity of the blister crown. The blister crown was found to be consistently between 35-40um for all heating regimes, which supports the theory that the blister inflates, and the oxide then subsequently grows underneath. Upon heating, two modes of blistering were identified. In Mode 1 it was ascertained that the stresses produced by oxide growth will increase with increasing oxide thickness. Therefore, in Mode 1 the incubation time for blister formation is shortened by increasing temperature. In Mode 2 increase in temperature will result in oxide with a high ductility and high oxide porosity. The high oxide ductility and/or porosity accommodates for the intrinsic stresses from oxide growth. Thus Mode 2 is the inverse of Mode 1, and incubation time is increased with temperature. A new phenomenon was reported whereby blister formed exclusively through cooling at elevated temperatures above mode 2.

Keywords: FEG-SEM, nucleation, oxide morphology, surface defect

Procedia PDF Downloads 114
2484 A Semiotic Approach to Vulnerability in Conducting Gesture and Singing Posture

Authors: Johann Van Niekerk

Abstract:

The disciplines of conducting (instrumental or choral) and of singing presume a willingness toward an open posture and, in many cases, demand it for effective communication and technique. Yet, this very openness, with the "spread-eagle" gesture as an extreme, is oftentimes counterintuitive for musicians and within the trajectory of human evolution. Conversely, it is in this very gesture of "taking up space" that confidence-gaining techniques such as the popular "power pose" are based. This paper consists primarily of a literature review, exploring the topics of physical openness and vulnerability, considering the semiotics of the "spread-eagle" and its accompanying letter X. A major finding of this research is the discrepancy between evolutionary instinct towards physical self-protection and “folding in” and the demands of the discipline of physical and gestural openness, expansiveness and vulnerability. A secondary finding is ways in which encouragement of confidence-gaining techniques may be more effective in obtaining the required results than insistence on vulnerability, which is influenced by various cultural contexts and socialization. Choral conductors and music educators are constantly seeking ways to promote engagement and healthy singing. Much of the information and direction toward this goal is gleaned by students from conducting gestures and other pedagogies employed in the rehearsal. The findings of this research provide yet another avenue toward reaching the goals required for sufficient and effective teaching and artistry on the part of instructors and students alike.

Keywords: conducting, gesture, music, pedagogy, posture, vulnerability

Procedia PDF Downloads 37
2483 A New Approach on the Synthesis of Zinc Borates by Ultrasonic Method and Determination of the Zinc Oxide and Boric Acid Optimum Molar Ratio

Authors: A. Ersan, A. S. Kipcak, M. Yildirim, A. M. Erayvaz, E. M. Derun, S. Piskin, N. Tugrul

Abstract:

Zinc borates are used as a multi-functional flame retardant additive for its high dehydration temperature. In this study, a new method of ultrasonic mixing was used in the synthesis of zinc borates. The reactants of zinc oxide (ZnO) and boric acid (H3BO3) were used at the constant reaction parameters of 90°C reaction temperature and 55 min of reaction time. Several molar ratios of ZnO:H3BO3 (1:1, 1:2, 1:3, 1:4, and 1:5) were conducted for the determination of the optimum reaction ratio. Prior to the synthesis, the characterization of the synthesized zinc borates were made by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). From the results Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], were synthesized optimum at the molar ratio of 1:3, with a reaction efficiency of 95.2%.

Keywords: zinc borates, ultrasonic mixing, XRD, FT-IR, reaction efficiency

Procedia PDF Downloads 322
2482 Ceramic Glazes from Recycled Bottle Glass

Authors: Suraphan Rattanavadi

Abstract:

This research was a study based on an application of used glass in producing glaze on ceramics. The aim was to identify the factors in the production process that affected ceramic product property when used glass was applied as the ceramic glaze. The study factors included appropriate materials, appropriate temperature used in fusion process, percentage of water absorption, fluidity, crazing and appropriate proportion in glaze production by Biaxial Blend Technique and use of oxide in glaze coloring both on test and real product. The test of fluidity revealed that the glazes number 15 and 16 had appropriate fluidity ratio for use as basic glaze. When each glaze was mixed with oxide at different proportion, it was discovered that the glaze number 16 showed glossy brown with beautiful but not clear crazing, due to its dark shade. This was from the mixture of kaolin and pieces of glass at the ratio of 1:3 (kaolin : pieces of glass), affecting at 10% with iron oxide. When 0.5% of copper carbonate and 0.1% of tin oxide were added, the result was the glaze with glossy, Muzo emerald (green- blue) color with beautiful and clear crazing. Lastly, 0.4% of cobalt carbonate was added, ending in the glaze with glossy, bright blue with beautiful but not clear, due to its dark shade.

Keywords: glaze, recycled, bottle glass, ceramic

Procedia PDF Downloads 284
2481 Synthesis of Nickel Oxide Nanoparticles in Presence of Sodium Dodecyl Sulphate

Authors: Fereshteh Chekin, Sepideh Sadeghi

Abstract:

Nickel nanoparticles have attracted much attention because of applications in catalysis, medical diagnostics and magnetic applications. In this work, we reported a simple and low-cost procedure to synthesize nickel oxide nanoparticles (NiO-NPs) by using sodium dodecyl sulphate (SDS) and gelatin as stabilizer. The synthesized NiO-NPs were characterized by a variety of means such as transmission electron microscope (TEM), powder X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis spectroscopy. The results show that the NiO nanoparticles with high crystalline can be obtained using this simple method. The grain size measured by TEM was 16 in presence of SDS, which agrees well with the XRD data. SDS plays an important role in the formation of the NiO nanoparticles. Moreover, the NiO nanoparticles have been used as a solid phase catalyst for the decomposition of hydrazine hydrate at room temperatures. The decomposition process has been monitored by UV–vis analysis. The present study showed that nanoparticles are not poisoned after their repeated use in decomposition of hydrazine.

Keywords: nickel oxide nanoparticles, sodium dodecyl sulphate, synthesis, stabilizer

Procedia PDF Downloads 460
2480 Effect of Aquatic Seed Extract of (Cichorium intybus L.) and Metformin on Nitric Oxide in Type 2 Diabetic Rats

Authors: Lotfollah Rezagholizadeh

Abstract:

Background and Aim: Diabetes mellitus is related to high mortality and morbidity caused by the early development of atherosclerosis correlated to diabetic macroangiopathy. The endothelium-derived vasodilator, nitric oxide (NO) has been implicated in the development of vascular complications via the regulation of blood flow, and various antiatherosclerotic actions. Patients with type 2 diabetes (T2D) have a decreased level of endothelial nitric oxide release. In this study we aimed to examine the effect of aquatic seed extract of Cichorium intybus L. (chicory) and metformin (a known prescription drug for diabetes) on NO levels in T2D rats. Methods: Five groups of adult male Wistar rats were used (n=6): Non-diabetic controls without extract treatment (Control), Non-diabetic controls with extract treatment (Chicory-control), T2D rats without extract treatment (NIA/STZ), T2D rats treated with the extract (Chicory-NIA/STZ), and T2D groups that received metformin (100 mg/kg) but no extract (Metformin-NIA/STZ). T2D was induced with intraperitoneal (i.p) injection of niacinamide (NIA, 200 mg/kg), 15 min after an i.p administration of streptozotocin (STZ, 55 mg/kg). Lyophilized chicory extract (125 mg/kg) was dissolved in 0.2 ml normal saline and administered one dose a day. The experiments lasted for 3 weeks after the diabetes induction. NO analysis was performed by assay based on the Griess reaction. Data were reported as the mean ± SD and statistical analysis was performed by ANOVA. Results: Serum nitric oxide levels decreased significantly in NIA/STZ group compared with Control and Chicory-control. Treatment with chicory extract caused a significant increase in serum levels of NO in Chicory-NIA/STZ group compare to NIA/STZ group (p<05). Metformin-NIA/STZ group did not show considerable difference when compared with NIA/STZ, with respect to NO levels. In a group of rats made diabetic by STZ alone (type 1 diabetic rats, T1D), chicory did not have a significant ameliorating effect. Conclusion: In this study, we clearly showed a relationship between low serum nitric oxide levels and diabetes mellitus in rats. The increase in serum nitric oxide by chicory extract is an indication of antiatherogenic effect of this plant. Chicory seed extract was more efficient than metformin in improving the NO levels in NO-deficient T2D diabetic rats.

Keywords: type 2 diabetes mellitus, nitric oxide, chicory, metformin

Procedia PDF Downloads 305
2479 Synthesis of Graphene Oxide/Chitosan Nanocomposite for Methylene Blue Adsorption

Authors: S. Melvin Samuel, Jayanta Bhattacharya

Abstract:

In the present study, a graphene oxide/chitosan (GO-CS) composite material was prepared and used as an adsorbent for the removal of methylene blue (MB) from aqueous solution. The synthesized GO-CS adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopes (SEM), transmission electron microscopy (TEM), Raman spectroscopy and thermogravimetric analysis (TGA). The removal of MB was conducted in batch mode. The effect of parameters influencing the adsorption of MB such as pH of the solution, initial MB concentration, shaking speed, contact time and adsorbent dosage were studied. The results showed that the GO-CS composite material has high adsorption capacity of 196 mg/g of MB solution at pH 9.0. Further, the adsorption of MB on GO-CS followed pseudo second order kinetics and equilibrium adsorption data well fitted by the Langmuir isotherm model. The study suggests that the GO-CS is a favorable adsorbent for the removal of MB from aqueous solution.

Keywords: Methylene blue, Graphene oxide-chitosan, Isotherms, Kinetics.

Procedia PDF Downloads 150
2478 Semi-Transparent Dye-Sensitized Solar Panels for Energy Autonomous Greenhouses

Authors: A. Mourtzikou, D. Sygkridou, T. Georgakopoulos, G. Katsagounos, E. Stathatos

Abstract:

Over 60% highly transparent quasi-solid-state dye-sensitized solar cells (DSSCs) with dimension of 50x50 cm2 were fabricated via inkjet printing process using nanocomposite inks as raw materials and tested under outdoor illumination conditions. The cells were electrically characterized, and their possible application to the shell of greenhouses was also examined. The panel design was in Z-interconnection, where the working electrode was inkjet printed on one conductive glass and the counter electrode on a second glass in a sandwich configuration. Silver current collective fingers were printed on the glasses to make the internal electrical connections. In that case, the adjacent cells were connected in series via silver fingers and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte.

Keywords: Dye-sensitized solar panels, inkjet printing, quasi-solid state electrolyte, semi-transparency, scale up

Procedia PDF Downloads 110
2477 Theoretical and Experimental Study of Iron Oxide Thin Film

Authors: Fahima Djefaflia, M. Loutfi Benkhedir

Abstract:

The aim of this work was to development and characterisation of iron oxide thin films by spray pyrolysis technique. Influences of deposition parameters pile temperature on structural and optical properties have been studied Thin films are analysed by various techniques of materials. The structural characterization of films by analysis of spectra of X-ray diffraction showed that the films prepared at T=350,400,450 are crystalline and amorphous at T=300C. For particular condition, two phases hematiteFe2O3 and magnetite Fe3O4 have been observed.The UV-Visible spectrophotometer of this films confirms that it is possible to obtain films with a transmittance of about 15-30% in the visible range. In addition, this analysis allowed us to determine the optical gap and disorder of films. We conclude that the increase in temperature is accompanied by a reduction in the optical gap with increasing in disorder. An ab initio calculation for this phase shows that the results are in good agreement with the experimental results.

Keywords: spray pyrolysis technique, iron oxide, ab initio calculation, optical properties

Procedia PDF Downloads 531
2476 Investigation on Morphologies, Forming Mechanism, Photocatalytic and Electronic Properties of Co-Zn Ferrite Nanostructure Grown on the Reduced Graphene Oxide Support

Authors: Qinglei Liu, Ali Charkhesht, Tiva Sharifi, Ashkan Bahadoran

Abstract:

Graphene sheets are promising nanoscale building blocks as a support material for the dispersion of nanoparticles. In this work, a solvothermal method employed to directly grow Co1-xZnxFe2O4 ferrite nanospheres on graphene oxide support that is subsequently reduced to graphene. The samples morphology, structure and crystallography were investigated using field-emission scanning electron microscopy (FE-SEM) and powder X-ray diffraction (XRD). The influences of the Zn2+ content on photocatalytic activity, electrical conductivity and magnetic property of the samples are also investigated. The results showed that Co1-x Znx Fe2 O4 nanoparticles are dispersed on graphene sheets and obtained nanocomposites are soft magnetic materials. In addition the samples showed excellent photocatalytic activity under visible light irradiation.

Keywords: reduced graphene oxide, ferrite, magnetic nanocomposite, photocatalytic activity, solvothermal method

Procedia PDF Downloads 222
2475 Polycaprolactone/Thermally Exfoliated Graphene Oxide Biocomposite Films: A Promising Moisture Absorption Behavior

Authors: Neetu Malik, Sharad Shrivastava, Subrata Bandhu Ghosh

Abstract:

Biocomposite materials were fabricated using mixing biodegradable polymer polycaprolactone (PCL) and Thermally Exfoliated Graphene Oxide (TEGO) through solution casting. Various samples of biocomposite films were prepared by varying the TEGO wt% composition by 0.1%, 0.5%, 1% and 1.5%. Thereafter, the density and water absorption of the composites were investigated with respect to immersion time in water. The moisture absorption results show that with an increase in weight percentage (from 0.1 to wt 1.5%) of TEGO within the biopolymer films, the absorption value of bio-nanocomposite films reduced rapidly from 27.4% to 14.3%. The density of hybrid composites also increased with increase in weight percentage of TEGO. These results indicate that the optimized composition of constituents in composite membrane could effectively reduce the anhydrous conditions of bio-composite film.

Keywords: thermally exfoliated graphene oxide, PCL, water absorption, density

Procedia PDF Downloads 282
2474 Optical Characterization and Surface Morphology of SnO2 Thin Films Prepared by Spin Coating Technique

Authors: J. O. Ajayi, S. S. Oluyamo, D. B. Agunbiade

Abstract:

In this work, tin oxide thin films (SnO2) were prepared using the spin coating technique. The effects of precursor concentration on the thin film properties were investigated. Tin oxide was synthesized from anhydrous Tin (II) Chloride (SnCl2) dispersed in Methanol and Acetic acid. The metallic oxide (SnO2) films deposited were characterized using the UV Spectrophotometer and the Scanning Electron Microscope (SEM). From the absorption spectra, absorption increases with decrease in precursor concentration. Absorbance in the VIS region is lower than 0 % at higher concentration. The optical transmission spectrum shows that transmission increases as the concentration of precursor decreases and the maximum transmission in visible region is about 90% for films prepared with 0.2 M. Also, there is increase in the reflectance of thin films as concentration of precursor increases. The films have high transparency (more than 85%) and low reflectance (less than 40%) in the VIS region. Investigation showed that the direct band gap value increased from 3.79eV, to 3.82eV as the precursor concentration decreased from 0.6 M to 0.2 M. Average direct bandgap energy for all the tin oxide films was estimated to be 3.80eV. The effect of precursor concentration was directly observed in crystal outgrowth and surface particle densification. They were found to increase proportionately with higher concentration.

Keywords: anhydrous TIN (II) chloride, densification, NIS- VIS region, spin coating technique

Procedia PDF Downloads 239
2473 Antibacterial Property of ZnO Nanoparticles: Effect of Intrinsic Defects

Authors: Suresh Kumar Verma, Jugal Kishore Das, Ealisha Jha, Mrutyunjay Suar, SKS Parashar

Abstract:

In recent years nanoforms of inorganic metallic oxides has attracted a lot of interest due to their small size and significantly improved physical, chemical and biological properties compared to their molecular precursor. Some of the inorganic materials such as TiO2, ZnO, MgO, CaO, Al2O3 have been extensively used in biological applications. Zinc Oxide is a Wurtzite-type semiconductor and piezo-electric material exhibiting excellent electrical, optical and chemical properties with a band energy gap of 3.1-3.4 eV. Nanoforms of Zinc Oxide (ZnO) are increasingly recognised for their utility in biological application. The significant physical parameters such as surface area, particle size, surface charge and Zeta potential of Zinc Oxide (ZnO) nanoparticles makes it suitable for the uptake, persistance, biological, and chemical activities inside the living cells. The present study shows the effect of intrinsic defects of ZnO nanocrystals synthesized by high energy ball milling (HEBM) technique in their antibacterial activities. Bulk Zinc oxide purchased from market were ball milled for 7 h, 10 h, and 15 h respectively to produce nanosized Zinc Oxide. The structural and optical modification of such synthesized particles were determined by X-ray diffraction (XRD), Scanning Electron Microscopy and Electron Paramagnetic Resonance (EPR). The antibacterial property of synthesized Zinc Oxide nanoparticles was tested using well diffusion, minimum inhibitory Concentration, minimum bacteriocidal concentration, reactive oxygen species (ROS) estimation and membrane potential determination methods. In this study we observed that antibacterial activity of ZnO nanoparticles is because of the intrinsic defects that exist as a function of difference in size and milling time.

Keywords: high energy ball milling, ZnO nanoparticles, EPR, Antibacterial properties

Procedia PDF Downloads 402
2472 Ion Beam Writing and Implantation in Graphene Oxide, Reduced Graphene Oxide and Polyimide Through Polymer Mask for Sensorics Applications

Authors: Jan Luxa, Vlastimil Mazanek, Petr Malinsky, Alexander Romanenko, Mariapompea Cutroneo, Vladimir Havranek, Josef Novak, Eva Stepanovska, Anna Mackova, Zdenek Sofer

Abstract:

Using accelerated energetic ions is an interesting method for the introduction of structural changes in various carbon-based materials. This way, the properties can be altered in two ways: a) the ions lead to the formation of conductive pathways in graphene oxide structures due to the elimination of oxygen functionalities and b) doping with selected ions to form metal nanoclusters, thus increasing the conductivity. In this work, energetic beams were employed in two ways to prepare capacitor structures in graphene oxide (GO), reduced graphene oxide (rGO) and polyimide (PI) on a micro-scale. The first method revolved around using ion beam writing with a focused ion beam, and the method involved ion implantation via a polymeric mask. To prepare the polymeric mask, a direct spin-coating of PMMA on top of the foils was used. Subsequently, proton beam writing and development in isopropyl alcohol were employed. Finally, the mask was removed using acetone solvent. All three materials were exposed to ion beams with an energy of 2.5-5 MeV and an ion fluence of 3.75x10¹⁴ cm-² (1800 nC.mm-²). Thus, prepared microstructures were thoroughly characterized by various analytical methods, including Scanning electron microscopy (SEM) with Energy-Dispersive X-ray spectroscopy (EDS), X-ray Photoelectron spectroscopy (XPS), micro-Raman spectroscopy, Rutherford Back-scattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) spectroscopy. Finally, these materials were employed and tested as sensors for humidity using electrical conductivity measurements. The results clearly demonstrate that the type of ions, their energy and fluence all have a significant influence on the sensory properties of thus prepared sensors.

Keywords: graphene, graphene oxide, polyimide, ion implantation, sensors

Procedia PDF Downloads 50
2471 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties

Authors: M. Kheirandish, S. Borhani

Abstract:

In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.

Keywords: electrospininng, nanoparticle, polystyrene, ZnO

Procedia PDF Downloads 210
2470 Towards A Framework for Using Open Data for Accountability: A Case Study of A Program to Reduce Corruption

Authors: Darusalam, Jorish Hulstijn, Marijn Janssen

Abstract:

Media has revealed a variety of corruption cases in the regional and local governments all over the world. Many governments pursued many anti-corruption reforms and have created a system of checks and balances. Three types of corruption are faced by citizens; administrative corruption, collusion and extortion. Accountability is one of the benchmarks for building transparent government. The public sector is required to report the results of the programs that have been implemented so that the citizen can judge whether the institution has been working such as economical, efficient and effective. Open Data is offering solutions for the implementation of good governance in organizations who want to be more transparent. In addition, Open Data can create transparency and accountability to the community. The objective of this paper is to build a framework of open data for accountability to combating corruption. This paper will investigate the relationship between open data, and accountability as part of anti-corruption initiatives. This research will investigate the impact of open data implementation on public organization.

Keywords: open data, accountability, anti-corruption, framework

Procedia PDF Downloads 296
2469 Infra Red Laser Induced Ablation of Graphene Based Polymer Nanocomposites

Authors: Jadranka Blazhevska Gilev

Abstract:

IR laser-induced ablation of poly(butylacrylate-methylmethacrylate/hydroxyl ethyl methacrylate)/reduced graphene oxide (p(BA/MMA/HEMA)/rGO) was examined with 0.5, 0.75 and 1 wt% reduced graphene oxide content in relation to polymer. The irradiation was performed with TEA (transversely excited atmosphere) CO₂ laser using incident fluence of 15-20 J/cm², repetition frequency of 1 Hz, in an evacuated (10-3 Pa) Pyrex spherical vessel. Thin deposited nanocomposites films with large specific area were obtained using different substrates. The properties of the films deposited on these substrates were evaluated by TGA, FTIR, (Thermogravimetric analysis, Fourier Transformation Infrared) Raman spectroscopy and SEM microscopy. Homogeneous distribution of graphene sheets was observed from the SEM images, making polymer/rGO deposit an ideal candidate for SERS application. SERS measurements were performed using Rhodamine 6G as probe molecule on the substrate Ag/p(BA/MMA/HEMA)/rGO.

Keywords: laser ablation, reduced graphene oxide, polymer/rGO nanocomposites, thin deposited film

Procedia PDF Downloads 166
2468 Analysis of the Contribution of Drude and Brendel Model Terms to the Dielectric Function

Authors: Christopher Mkirema Maghanga, Maurice Mghendi Mwamburi

Abstract:

Parametric modeling provides a means to deeper understand the properties of materials. Drude, Brendel, Lorentz and OJL incorporated in SCOUT® software are some of the models used to study dielectric films. In our work, we utilized Brendel and Drude models to extract the optical constants from spectroscopic data of fabricated undoped and niobium doped titanium oxide thin films. The individual contributions by the two models were studied to establish how they influence the dielectric function. The effect of dopants on their influences was also analyzed. For the undoped films, results indicate minimal contribution from the Drude term due to the dielectric nature of the films. However as doping levels increase, the rise in the concentration of free electrons favors the use of Drude model. Brendel model was confirmed to work well with dielectric films - the undoped titanium Oxide films in our case.

Keywords: modeling, Brendel model, optical constants, titanium oxide, Drude Model

Procedia PDF Downloads 155
2467 The Evaluation of Fuel Desulfurization Performance of Choline-Chloride Based Deep Eutectic Solvents with Addition of Graphene Oxide as Catalyst

Authors: Chiau Yuan Lim, Hayyiratul Fatimah Mohd Zaid, Fai Kait Chong

Abstract:

Deep Eutectic Solvent (DES) is used in various applications due to its simplicity in synthesis procedure, biodegradable, inexpensive and easily available chemical ingredients. Graphene Oxide is a popular catalyst that being used in various processes due to its stacking carbon sheets in layer which theoretically rapid up the catalytic processes. In this study, choline chloride based DESs were synthesized and ChCl-PEG(1:4) was found to be the most effective DES in performing desulfurization, which it is able to remove up to 47.4% of the sulfur content in the model oil in just 10 minutes, and up to 95% of sulfur content after repeat the process for six times. ChCl-PEG(1:4) able to perform up to 32.7% desulfurization on real diesel after 6 multiple stages. Thus, future research works should focus on removing the impurities on real diesel before utilising DESs in petroleum field.

Keywords: choline chloride, deep eutectic solvent, fuel desulfurization, graphene oxide

Procedia PDF Downloads 123
2466 Potential Applications and Future Prospects of Zinc Oxide Thin Films

Authors: Temesgen Geremew

Abstract:

ZnO is currently receiving a lot of attention in the semiconductor industry due to its unique characteristics. ZnO is widely used in solar cells, heat-reflecting glasses, optoelectronic bias, and detectors. In this composition, we provide an overview of the ZnO thin flicks' packages, methods of characterization, and implicit operations. They consist of Transmission spectroscopy, Raman spectroscopy, Field emigration surveying electron microscopy, and X-ray diffraction. This review content also demonstrates how ZnO thin flicks function in electrical components for piezoelectric bias, optoelectronics, detectors, and renewable energy sources. Zinc oxide (ZnO) thin films offer a captivating tapestry of possibilities due to their unique blend of electrical, optical, and mechanical properties. This review delves into the realm of their potential applications and future prospects, highlighting the pivotal contributions of research endeavors aimed at tailoring their functionalities.

Keywords: Zinc oxide, raman spectroscopy, thin films, piezoelectric devices

Procedia PDF Downloads 59
2465 Effect of Preoxidation on the Effectiveness of Gd₂O₃ Nanoparticles Applied as a Source of Active Element in the Crofer 22 APU Coated with a Protective-conducting Spinel Layer

Authors: Łukasz Mazur, Kamil Domaradzki, Maciej Bik, Tomasz Brylewski, Aleksander Gil

Abstract:

Interconnects used in solid oxide fuel and electrolyzer cells (SOFCₛ/SOECs) serve several important functions, and therefore interconnect materials must exhibit certain properties. Their thermal expansion coefficient needs to match that of the ceramic components of these devices – the electrolyte, anode and cathode. Interconnects also provide structural rigidity to the entire device, which is why interconnect materials must exhibit sufficient mechanical strength at high temperatures. Gas-tightness is also a prerequisite since they separate gas reagents, and they also must provide very good electrical contact between neighboring cells over the entire operating time. High-chromium ferritic steels meets these requirements to a high degree but are affected by the formation of a Cr₂O₃ scale, which leads to increased electrical resistance. The final criterion for interconnect materials is chemical inertness in relation to the remaining cell components. In the case of ferritic steels, this has proved difficult due to the formation of volatile and reactive oxyhydroxides observed when Cr₂O3 is exposed to oxygen and water vapor. This process is particularly harmful on the cathode side in SOFCs and the anode side in SOECs. To mitigate this, protective-conducting ceramic coatings can be deposited on an interconnect's surface. The area-specific resistance (ASR) of a single interconnect cannot exceed 0.1 m-2 at any point of the device's operation. The rate at which the CrO₃ scale grows on ferritic steels can be reduced significantly via the so-called reactive element effect (REE). Research has shown that the deposition of Gd₂O₃ nanoparticles on the surface of the Crofer 22 APU, already modified using a protective-conducting spinel layer, further improves the oxidation resistance of this steel. However, the deposition of the manganese-cobalt spinel layer is a rather complex process and is performed at high temperatures in reducing and oxidizing atmospheres. There was thus reason to believe that this process may reduce the effectiveness of Gd₂O₃ nanoparticles added as an active element source. The objective of the present study was, therefore, to determine any potential impact by introducing a preoxidation stage after the nanoparticle deposition and before the steel is coated with the spinel. This should have allowed the nanoparticles to incorporate into the interior of the scale formed on the steel. Different samples were oxidized for 7000 h in air at 1073 K under quasi-isothermal conditions. The phase composition, chemical composition, and microstructure of the oxidation products formed on the samples were determined using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. A four-point, two-probe DC method was applied to measure ASR. It was found that coating deposition does indeed reduce the beneficial effect of Gd₂O₃ addition, since the smallest mass gain and the lowest ASR value were determined for the sample for which the additional preoxidation stage had been performed. It can be assumed that during this stage, gadolinium incorporates into and segregates at grain boundaries in the thin Cr₂O₃ that is forming. This allows the Gd₂O₃ nanoparticles to be a more effective source of the active element.

Keywords: interconnects, oxide nanoparticles, reactive element effect, SOEC, SOFC

Procedia PDF Downloads 56
2464 Chemical Functionalization of Graphene Oxide for Improving Mechanical and Thermal Properties of Polyurethane Composites

Authors: Qifei Jing, Vadim V. Silberschmidt, Lin Li, ZhiLi Dong

Abstract:

Graphene oxide (GO) was chemically functionalized to prepare polyurethane (PU) composites with improved mechanical and thermal properties. In order to achieve a well exfoliated and stable GO suspension in an organic solvent (dimethylformamide, DMF), 4, 4′- methylenebis(phenyl isocyanate) and polycaprolactone diol, which were the two monomers for synthesizing PU, were selectively used to functionalize GO. The obtained functionalized GO (FGO) could form homogeneous dispersions in DMF solvent and the PU matrix, as well as provide a good compatibility with the PU matrix. The most efficient improvement of mechanical properties was achieved when 0.4 wt% FGO was added into the PU matrix, showing increases in the tensile stress, elongation at break and toughness by 34.2%, 27.6% and 64.5%, respectively, compared with those of PU. Regarding the thermal stability, PU filled with 1 wt% FGO showed the largest extent of improvement with T2% and T50% (the temperatures at which 2% and 50% weight-loss happened) 16 °C and 21 °C higher than those of PU, respectively. The significant improvement in both mechanical properties and thermal stability of FGO/PU composites should be attributed to the homogeneous dispersion of FGO in the PU matrix and strong interfacial interaction between them.

Keywords: composite, dispersion, graphene oxide, polyurethane

Procedia PDF Downloads 227
2463 Photocatalytic Degradation of Toxic Phenols Using Zinc Oxide Doped Prussian Blue Nanocomposite

Authors: Rachna, Uma Shanker

Abstract:

Aromatic phenols, being priority pollutants, are found in various industrial effluents and seeking the attention of environmentalists worldwide, owing to their life-threatening effects. In the present study, the coupling of zinc oxide with Prussian blue was achieved involving co-precipitation synthesis process using Azadirachta indica plant extract. The fabricated nanocatalyst was employed for the sunlight mediated photodegradation of various phenols (Phenol, 3-Aminophenol, and 2,4-Dinitrophenol). Doping of zinc oxide with Prussian blue caused an increase in the surface area to value 80.109 m²g⁻¹ and also enhanced the semiconducting tendency of the nanocomposite with band gap energy 1.101 eV. The experiment was performed at different parameters of phenols concentration, catalyst amount, pH, time, and exposure of sunlight. The obtained results showed a lower elimination of 2,4-DNP (93%) than 3-AP (97%) and phenol (95%) owing to their molecular weight and basicity differences. In comparison to the starting material (zinc oxide and Prussian blue), nanocomposite was more capable in degrading the phenols and lowered the t1/2 value of phenol (4.405 h), 3-AP (4.04 h) and 2,4-DNP (4.68 h) to a greater extent. Effect of different foreign anions was also studied to check nanocomposite’s liability under natural conditions. The extent of charge recombination being the most limiting factor in the photodegradation of pollutants was determined through the photoluminescence. Sunlight active ZnO@FeHCF nanocomposite was proven to exhibit good catalytic ability up to 10 cycles.

Keywords: nanocomposite, phenols, photodegradation, sunlight, water

Procedia PDF Downloads 88
2462 Development of (Cu2o-Zno) Binary Oxide Anode for Electrochemical Degradation of Dye

Authors: M. El Hajji, A. Hallaoui, L. Bazzi, A. Benlhachemi, O. Jbara, A. Tara, B. Bakiz, L. Bazzi, M. Hilali

Abstract:

The objective of this study was the development of zinc-copper binary oxide "Cu2O-ZnO" thin films by the electrochemical method "cathodic electrodeposition" and their uses for the degradation of a basic dye "Congo Red" by direct anodic oxidation. The anode materials synthesized were characterized by X-ray diffraction "XRD" and by scanning electron microscopy "SEM" coupled to EDS.

Keywords: Cu2O-ZnO thin films, cathodic electrodeposition, electrodegradation, Congo Red, BDD

Procedia PDF Downloads 324