Search results for: transfer of responsibility
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3697

Search results for: transfer of responsibility

3457 Heat and Mass Transfer of an Oscillating Flow in a Porous Channel with Chemical Reaction

Authors: Zahra Neffah, Henda Kahalerras

Abstract:

A numerical study is made in a parallel-plate porous channel subjected to an oscillating flow and an exothermic chemical reaction on its walls. The flow field in the porous region is modeled by the Darcy–Brinkman–Forchheimer model and the finite volume method is used to solve the governing equations. The effects of the modified Frank-Kamenetskii (FKm) and Damköhler (Dm) numbers, the amplitude of oscillation (A), and the Strouhal number (St) are examined. The main results show an increase of heat and mass transfer rates with A and St, and their decrease with FKm and Dm.

Keywords: chemical reaction, heat and mass transfer, oscillating flow, porous channel

Procedia PDF Downloads 385
3456 Communicating Corporate Social Responsibility in Kuwait: Assessment of Environmental Responsibility Efforts and Targeted Stakeholders

Authors: Manaf Bashir

Abstract:

Corporate social responsibility (CSR) has become a tool for corporations to meet the expectations of different stakeholders about economic, social and environmental issues. It has become indispensable for an organization’s success, positive image and reputation. Equally important is how corporations communicate and report their CSR. Employing the stakeholder theory, the purpose of this research is to analyse CSR content of leading Kuwaiti corporations. No research analysis of CSR reporting has been conducted in Kuwait and this study is an attempt to redress in part this empirical deficit in the country and the region. It attempts to identify the issues and stakeholders of the CSR and if corporations are following CSR reporting standards. By analysing websites, annual and CSR reports of the top 100 Kuwaiti corporations, this study found low mentions of the CSR issues and even lower mentions of CSR stakeholders. Environmental issues were among the least mentioned despite an increasing global concern toward the environment. ‘Society’ was mentioned the most as a stakeholder and ‘The Environment’ was among the least mentioned. Cross-tabulations found few significant relationships between type of industry and the CSR issues and stakeholders. Independent sample t-tests found no significant difference between the issues and stakeholders that are mentioned on the websites and the reports. Only two companies from the sample followed reporting standards and both followed the Global Reporting Initiative. Successful corporations would be keen to identify the issues that meet the expectations of different stakeholders and address them through their corporate communication. Kuwaiti corporations did not show this keenness. As the stakeholder theory suggests, extending the spectrum of stakeholders beyond investors can open mutual dialogue and understanding between corporations and various stakeholders. However, Kuwaiti corporations focus on few CSR issues and even fewer CSR stakeholders. Kuwaiti corporations need to pay more attention to CSR and particularly toward environmental issues. They should adopt a strategic approach and allocate specialized personnel such as marketers and public relations practitioners to manage it. The government and non-profit organizations should encourage the private sector in Kuwait to do more CSR and meet the needs and expectations of different stakeholders and not only shareholders. This is in addition to reporting the CSR information professionally because of its benefits to corporate image, reputation, and transparency.

Keywords: corporate social responsibility, environmental responsibility, Kuwait, stakeholder theory

Procedia PDF Downloads 123
3455 Numerical Analysis of Internal Cooled Turbine Blade Using Conjugate Heat Transfer

Authors: Bhavesh N. Bhatt, Zozimus D. Labana

Abstract:

This work is mainly focused on the analysis of heat transfer of blade by using internal cooling method. By using conjugate heat transfer technology we can effectively compute the cooling and heat transfer analysis of blade. Here blade temperature is limited by materials melting temperature. By using CFD code, we will analyze the blade cooling with the help of CHT method. There are two types of CHT methods. In the first method, we apply coupled CHT method in which all three domains modeled at once, and in the second method, we will first model external domain and then, internal domain of cooling channel. Ten circular cooling channels are used as a cooling method with different mass flow rate and temperature value. This numerical simulation is applied on NASA C3X turbine blade, and results are computed. Here results are showing good agreement with experimental results. Temperature and pressure are high at the leading edge of the blade on stagnation point due to its first faces the flow. On pressure side, shock wave is formed which also make a sudden change in HTC and other parameters. After applying internal cooling, we are succeeded in reducing the metal temperature of blade by some extends.

Keywords: gas turbine, conjugate heat transfer, NASA C3X Blade, circular film cooling channel

Procedia PDF Downloads 299
3454 Condensation Heat Transfer and Pressure Drop of R-134a Flowing inside Dimpled Tubes

Authors: Kanit Aroonrat, Somchai Wongwises

Abstract:

A heat exchanger is one of the vital parts in a wide variety of applications. The tube with surface modification is generally referred to as an enhanced tube. With this, the thermal performance of the heat exchanger is improved. A dimpled tube is one of many kinds of enhanced tube. The heat transfer and pressure drop of two-phase flow inside dimpled tubes have received little attention in the literature, despite of having an important role in the development of refrigeration and air conditioning systems. As a result, the main aim of this study is to investigate the condensation heat transfer and pressure drop of refrigerant-134a flowing inside dimpled tubes. The test section is a counter-flow double-tube heat exchanger, which the refrigerant flows in the inner tube and water flows in the annulus. The inner tubes are one smooth tube and three dimpled tubes with different helical pitches. All test tubes are made from copper with an inside diameter of 8.1 mm and length of 1500 mm. The experiments are conducted over mass fluxes ranging from 300 to 500 kg/m²s, heat flux ranging from 10 to 20 kW/m², and condensing temperature ranging from 40 to 50 ˚C. The results show that all dimpled tubes provide higher heat transfer coefficient and frictional pressure drop compared to the smooth tube. In addition, the heat transfer coefficient and frictional pressure drop increase with decreasing of helical pitch. It can be observed that the dimpled tube with lowest helical pitch yields the heat transfer enhancement in the range of 60-89% with the frictional pressure drop increase of 289-674% in comparison to the smooth tube.

Keywords: condensation, dimpled tube, heat transfer, pressure drop

Procedia PDF Downloads 190
3453 Professionalism and Responsible Journalism in Nigeria

Authors: Shamsu Abdu Dauda

Abstract:

Mass Media have come to be identified as important agents of development all over the world, especially in conflict situations. In the North-eastern Nigeria, where the insurgency has plagued the population for more than a decade now, mass media as important stakeholders are also expected to showcase a high level of social responsibility in reconstructing, rebuilding, and reengineering the crises-ravaged people in the region. However, the intuition of the mass media can only discharge such important responsibility if they upheld professionalism and responsible journalism. This paper observes that professionalism and responsible journalism practice cannot be attained where there is no responsible media education, which is a basic requirement for transforming the region.

Keywords: media education, professionalism, responsible journalism, North-eastern Nigeria

Procedia PDF Downloads 46
3452 Reducing Pressure Drop in Microscale Channel Using Constructal Theory

Authors: K. X. Cheng, A. L. Goh, K. T. Ooi

Abstract:

The effectiveness of microchannels in enhancing heat transfer has been demonstrated in the semiconductor industry. In order to tap the microscale heat transfer effects into macro geometries, overcoming the cost and technological constraints, microscale passages were created in macro geometries machined using conventional fabrication methods. A cylindrical insert was placed within a pipe, and geometrical profiles were created on the outer surface of the insert to enhance heat transfer under steady-state single-phase liquid flow conditions. However, while heat transfer coefficient values of above 10 kW/m2·K were achieved, the heat transfer enhancement was accompanied by undesirable pressure drop increment. Therefore, this study aims to address the high pressure drop issue using Constructal theory, a universal design law for both animate and inanimate systems. Two designs based on Constructal theory were developed to study the effectiveness of Constructal features in reducing the pressure drop increment as compared to parallel channels, which are commonly found in microchannel fabrication. The hydrodynamic and heat transfer performance for the Tree insert and Constructal fin (Cfin) insert were studied using experimental methods, and the underlying mechanisms were substantiated by numerical results. In technical terms, the objective is to achieve at least comparable increment in both heat transfer coefficient and pressure drop, if not higher increment in the former parameter. Results show that the Tree insert improved the heat transfer performance by more than 16 percent at low flow rates, as compared to the Tree-parallel insert. However, the heat transfer enhancement reduced to less than 5 percent at high Reynolds numbers. On the other hand, the pressure drop increment stayed almost constant at 20 percent. This suggests that the Tree insert has better heat transfer performance in the low Reynolds number region. More importantly, the Cfin insert displayed improved heat transfer performance along with favourable hydrodynamic performance, as compared to Cfinparallel insert, at all flow rates in this study. At 2 L/min, the enhancement of heat transfer was more than 30 percent, with 20 percent pressure drop increment, as compared to Cfin-parallel insert. Furthermore, comparable increment in both heat transfer coefficient and pressure drop was observed at 8 L/min. In other words, the Cfin insert successfully achieved the objective of this study. Analysis of the results suggests that bifurcation of flows is effective in reducing the increment in pressure drop relative to heat transfer enhancement. Optimising the geometries of the Constructal fins is therefore the potential future study in achieving a bigger stride in energy efficiency at much lower costs.

Keywords: constructal theory, enhanced heat transfer, microchannel, pressure drop

Procedia PDF Downloads 307
3451 Heat Transfer Enhancement through Hybrid Metallic Nanofluids Flow with Viscous Dissipation and Joule Heating Effect

Authors: Khawar Ali

Abstract:

We present the numerical study of unsteady hydromagnetic (MHD) flow and heat transfer characteristics of a viscous incompressible electrically conducting water-based hybrid metallic nanofluid (containing Cu-Au/ H₂O nanoparticles) between two orthogonally moving porous coaxial disks with suction. Different from the classical shooting methodology, we employ a combination of a direct and an iterative method (SOR with optimal relaxation parameter) for solving the sparse systems of linear algebraic equations arising from the FD discretization of the linearized self similar nonlinear ODEs. Effects of the governing parameters on the flow and heat transfer are discussed and presented through tables and graphs. The findings of the present investigation may be beneficial for the electronic industry in maintaining the electronic components under effectiveand safe operational conditions.

Keywords: heat transfer enhancement, hybrid metallic nanofluid, viscous dissipation and joule heating effect , Two dimensional flow

Procedia PDF Downloads 204
3450 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger

Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin

Abstract:

The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.

Keywords: heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet

Procedia PDF Downloads 403
3449 Hydrodynamic Analysis with Heat Transfer in Solid Gas Fluidized Bed Reactor for Solar Thermal Applications

Authors: Sam Rasoulzadeh, Atefeh Mousavi

Abstract:

Fluidized bed reactors are known as highly exothermic and endothermic according to uniformity in temperature as a safe and effective mean for catalytic reactors. In these reactors, a wide range of catalyst particles can be used and by using a continuous operation proceed to produce in succession. Providing optimal conditions for the operation of these types of reactors will prevent the exorbitant costs necessary to carry out laboratory work. In this regard, a hydrodynamic analysis was carried out with heat transfer in the solid-gas fluidized bed reactor for solar thermal applications. The results showed that in the fluid flow the input of the reactor has a lower temperature than the outlet, and when the fluid is passing from the reactor, the heat transfer happens between cylinder and solar panel and fluid. It increases the fluid temperature in the outlet pump and also the kinetic energy of the fluid has been raised in the outlet areas.

Keywords: heat transfer, solar reactor, fluidized bed reactor, CFD, computational fluid dynamics

Procedia PDF Downloads 147
3448 Student-Created Videos to Foster Active Learning in Heat Transfer Course

Authors: W.Appamana, S. Jantasee, P. Siwarasak, T. Mueansichai, C. Kaewbuddee

Abstract:

Heat transfer is important in chemical engineering field. We have to know how to predict rates of heat transfer in a variety of process situations. Therefore, heat transfer learning is one of the greatest challenges for undergraduate students in chemical engineering. To enhance student learning in classroom, active-learning method was proposed in a single classroom, using problems based on videos and creating video, think-pair-share and jigsaw technique. The result shows that active learning method can prevent copying of the solutions manual for students and improve average examination scores about 5% when comparing with students in traditional section. Overall, this project represents an effective type of class that motivates student-centric learning while enhancing self-motivation, creative thinking and critical analysis among students.

Keywords: active learning, student-created video, self-motivation, creative thinking

Procedia PDF Downloads 209
3447 Experimental Study of Heat Transfer in Pulsation Mist Flow in Rectanglar Duct Partially Filled with a Porous Medium

Authors: Hosein Shokoohmand, Mohamad Esmaeil Jomeh

Abstract:

The present thesis studies the effect of different factors such as frequency of oscillatory flow, change in constant wall heat flux and two-phase current state, on heat transfer in a pipe in presence of porous medium. In this experimental study is conducted for Reynolds numbers in a range of Re=850 to Re=10000 and oscillatory frequencies of 5, 20, 10, 30 and 40 Hz with constant heat flux of 585 w/m2 and 819 w/m2. The results indicate that increase in oscillation frequency in higher frequencies for heat flux of 585 w/m2 leads to an increase in heat transfer; however, in the rest of tests it results in a heat transfer decrease. Increasing Reynolds number in a pulsation mist flow causes an increase in average Nusselt number values. The effect of oscillation frequencies in a pulsation mist flow for different Reynolds numbers has revealed different results, in a way that for some Reynolds numbers an increase of frequency has led to a heat transfer decrease.

Keywords: Reynolds numbers, frequency of oscillatory flow, constant heat flux, mist flow

Procedia PDF Downloads 470
3446 Physical Education Effect on Sports Science Analysis Technology

Authors: Peter Adly Hamdy Fahmy

Abstract:

The aim of the study was to examine the effects of a physical education program on student learning by combining the teaching of personal and social responsibility (TPSR) with a physical education model and TPSR with a traditional teaching model, these learning outcomes involving self-learning. -Study. Athletic performance, enthusiasm for sport, group cohesion, sense of responsibility and game performance. The participants were 3 secondary school physical education teachers and 6 physical education classes, 133 participants with students from the experimental group with 75 students and the control group with 58 students, and each teacher taught the experimental group and the control group for 16 weeks. The research methods used surveys, interviews and focus group meetings. Research instruments included the Personal and Social Responsibility Questionnaire, Sports Enthusiasm Scale, Group Cohesion Scale, Sports Self-Efficacy Scale, and Game Performance Assessment Tool. Multivariate analyzes of covariance and repeated measures ANOVA were used to examine differences in student learning outcomes between combining the TPSR with a physical education model and the TPSR with a traditional teaching model. The research findings are as follows: 1) The TPSR sports education model can improve students' learning outcomes, including sports self-efficacy, game performance, sports enthusiasm, team cohesion, group awareness and responsibility. 2) A traditional teaching model with TPSR could improve student learning outcomes, including sports self-efficacy, responsibility, and game performance. 3) The sports education model with TPSR could improve learning outcomes more than the traditional teaching model with TPSR, including sports self-efficacy, sports enthusiasm, responsibility and game performance. 4) Based on qualitative data on teachers' and students' learning experience, the physical education model with TPSR significantly improves learning motivation, group interaction and sense of play. The results suggest that physical education with TPSR could further improve learning outcomes in the physical education program. On the other hand, the hybrid model curriculum projects TPSR - Physical Education and TPSR - Traditional Education are good curriculum projects for moral character education that can be used in school physics.

Keywords: approach competencies, physical, education, teachers employment, graduate, physical education and sport sciences, SWOT analysis character education, sport season, game performance, sport competence

Procedia PDF Downloads 10
3445 The Effect of Articial Intelligence on Physical Education Analysis and Sports Science

Authors: Peter Adly Hamdy Fahmy

Abstract:

The aim of the study was to examine the effects of a physical education program on student learning by combining the teaching of personal and social responsibility (TPSR) with a physical education model and TPSR with a traditional teaching model, these learning outcomes involving self-learning. -Study. Athletic performance, enthusiasm for sport, group cohesion, sense of responsibility and game performance. The participants were 3 secondary school physical education teachers and 6 physical education classes, 133 participants with students from the experimental group with 75 students and the control group with 58 students, and each teacher taught the experimental group and the control group for 16 weeks. The research methods used surveys, interviews and focus group meetings. Research instruments included the Personal and Social Responsibility Questionnaire, Sports Enthusiasm Scale, Group Cohesion Scale, Sports Self-Efficacy Scale, and Game Performance Assessment Tool. Multivariate analyzes of covariance and repeated measures ANOVA were used to examine differences in student learning outcomes between combining the TPSR with a physical education model and the TPSR with a traditional teaching model. The research findings are as follows: 1) The TPSR sports education model can improve students' learning outcomes, including sports self-efficacy, game performance, sports enthusiasm, team cohesion, group awareness and responsibility. 2) A traditional teaching model with TPSR could improve student learning outcomes, including sports self-efficacy, responsibility, and game performance. 3) The sports education model with TPSR could improve learning outcomes more than the traditional teaching model with TPSR, including sports self-efficacy, sports enthusiasm, responsibility and game performance. 4) Based on qualitative data on teachers' and students' learning experience, the physical education model with TPSR significantly improves learning motivation, group interaction and sense of play. The results suggest that physical education with TPSR could further improve learning outcomes in the physical education program. On the other hand, the hybrid model curriculum projects TPSR - Physical Education and TPSR - Traditional Education are good curriculum projects for moral character education that can be used in school physics.

Keywords: approach competencies, physical, education, teachers employment, graduate, physical education and sport sciences, SWOT analysis character education, sport season, game performance, sport competence

Procedia PDF Downloads 31
3444 Analysis and Modeling of the Building’s Facades in Terms of Different Convection Coefficients

Authors: Enes Yasa, Guven Fidan

Abstract:

Building Simulation tools need to better evaluate convective heat exchanges between external air and wall surfaces. Previous analysis demonstrated the significant effects of convective heat transfer coefficient values on the room energy balance. Some authors have pointed out that large discrepancies observed between widely used building thermal models can be attributed to the different correlations used to calculate or impose the value of the convective heat transfer coefficients. Moreover, numerous researchers have made sensitivity calculations and proved that the choice of Convective Heat Transfer Coefficient values can lead to differences from 20% to 40% of energy demands. The thermal losses to the ambient from a building surface or a roof mounted solar collector represent an important portion of the overall energy balance and depend heavily on the wind induced convection. In an effort to help designers make better use of the available correlations in the literature for the external convection coefficients due to the wind, a critical discussion and a suitable tabulation is presented, on the basis of algebraic form of the coefficients and their dependence upon characteristic length and wind direction, in addition to wind speed. Many research works have been conducted since early eighties focused on the convection heat transfer problems inside buildings. In this context, a Computational Fluid Dynamics (CFD) program has been used to predict external convective heat transfer coefficients at external building surfaces. For the building facades model, effects of wind speed and temperature differences between the surfaces and the external air have been analyzed, showing different heat transfer conditions and coefficients. In order to provide further information on external convective heat transfer coefficients, a numerical work is presented in this paper, using a Computational Fluid Dynamics (CFD) commercial package (CFX) to predict convective heat transfer coefficients at external building surface.

Keywords: CFD in buildings, external convective heat transfer coefficients, building facades, thermal modelling

Procedia PDF Downloads 395
3443 CFD-Parametric Study in Stator Heat Transfer of an Axial Flux Permanent Magnet Machine

Authors: Alireza Rasekh, Peter Sergeant, Jan Vierendeels

Abstract:

This paper copes with the numerical simulation for convective heat transfer in the stator disk of an axial flux permanent magnet (AFPM) electrical machine. Overheating is one of the main issues in the design of AFMPs, which mainly occurs in the stator disk, so that it needs to be prevented. A rotor-stator configuration with 16 magnets at the periphery of the rotor is considered. Air is allowed to flow through openings in the rotor disk and channels being formed between the magnets and in the gap region between the magnets and the stator surface. The rotating channels between the magnets act as a driving force for the air flow. The significant non-dimensional parameters are the rotational Reynolds number, the gap size ratio, the magnet thickness ratio, and the magnet angle ratio. The goal is to find correlations for the Nusselt number on the stator disk according to these non-dimensional numbers. Therefore, CFD simulations have been performed with the multiple reference frame (MRF) technique to model the rotary motion of the rotor and the flow around and inside the machine. A minimization method is introduced by a pattern-search algorithm to find the appropriate values of the reference temperature. It is found that the correlations are fast, robust and is capable of predicting the stator heat transfer with a good accuracy. The results reveal that the magnet angle ratio diminishes the stator heat transfer, whereas the rotational Reynolds number and the magnet thickness ratio improve the convective heat transfer. On the other hand, there a certain gap size ratio at which the stator heat transfer reaches a maximum.

Keywords: AFPM, CFD, magnet parameters, stator heat transfer

Procedia PDF Downloads 222
3442 Factors Influencing Disclosure and CSR Spending in Indian Companies: An Econometric Analysis

Authors: Shekar Babu, Amalendu Jyothishi

Abstract:

The New Companies Bill-2013 in India has mandated all the companies with a certain profit to spend on Corporate Social Responsibility (CSR). Despite the Corporate Governance (CG) compliances at the strategic level the firms have to engage in social good. For both the Central Public Sector Enterprises (CPSE) and the private companies in India the need for strategic CSR focus through operational efficiency measures are mandated. In this paper the focus is to find out if the Indian companies understand their responsibility towards the society despite government making CSR mandatory. Analyzing both the CPSEs and Private companies the researchers find out which set of companies behave responsibly towards the society. Does any particular industry group(s) impact the society by disclosing their CSR spending activities. The key financial and non-financial parameters that influence CSR spending were identified and through econometric analysis methodologies (logistic regression and OLS models) the results were analyzed. The innovative methods were developed to identify if the firms operate efficiently and at the same time complying with the new CSR laws. An innovative matrix was developed to explain how companies could operate efficiently and be compliant in parallel how some of the companies can strategically realign their spending by operating efficiently.

Keywords: corporate social responsibility(CSR), corporate governance(CG), India, logit function, ordinary least squares (OLS)

Procedia PDF Downloads 330
3441 Effect of Media Reputation on Financial Performance and Abnormal Returns of Corporate Social Responsibility Winner

Authors: Yu-Chen Wei, Dan-Leng Wang

Abstract:

This study examines whether the reputation from media press affect the financial performance and market abnormal returns around the announcement of corporate social responsibility (CSR) award in the Taiwan Stock Market. The differences between this study and prior literatures are that the media reputation of media coverage and net optimism are constructed by using content analyses. The empirical results show the corporation which won CSR awards could promote financial performance next year. The media coverage and net optimism related to CSR winner are higher than the non-CSR companies prior and after the CSR award is announced, and the differences are significant, but the difference would decrease when the day was closing to announcement. We propose that non-CSR companies may try to manipulate media press to increase the coverage and positive image received by investors compared to the CSR winners. The cumulative real returns and abnormal returns of CSR winners did not significantly higher than the non-CSR samples however the leading returns of CSR winners would higher after the award announcement two months. The comparisons of performances between CSR and non-CSR companies could be the consideration of portfolio management for mutual funds and investors.

Keywords: corporate social responsibility, financial performance, abnormal returns, media, reputation management

Procedia PDF Downloads 401
3440 Unleashing the Potential of Waqf: An Exploratory Study of Contemporary Waqf Models in Islamic Finance Ecosystem

Authors: Mohd Bahroddin Badri, Ridzuan Masri

Abstract:

Despite the existence of large volume of waqf assets, it is argued that the potential of these assets not fully unleashed. There are many waqf assets especially in the form of land waqf that are idle and undeveloped mainly because of the insufficient fund and lack of investment expertise. This paper attempts to explore few cases on the innovation of waqf development in Malaysia and some countries that demonstrate synergistic collaboration between stakeholders, e.g., the government, nazir, Islamic religious councils, corporate entities and Islamic financial institutions for waqf development. This paper shows that cash waqf, corporate waqf, Build-Operate-Transfer (BOT) and Sukuk are found to be contemporary mechanisms within Islamic finance ecosystem that drive and rejuvenate the development of waqf to the next level. It further highlights few samples of waqf Sukuk that were successfully issued in selected countries. This paper also demonstrates that the benefit of waqf is beyond religious matters, which may also include education, healthcare, social care, infrastructure and corporate social responsibility (CSR) activities. This research is qualitative in nature, whereby the researcher employs descriptive method on the collected data. The researcher applies case study and library research method to collect and analyse data from journal articles, research papers, conference paper and annual reports. In a nutshell, the potential of contemporary models as demonstrated in this paper is very promising, in which the practical application of those instruments should be expanded for the rejuvenation of waqf asset.

Keywords: cash waqf, corporate waqf, Sukuk waqf, build-operate-transfer

Procedia PDF Downloads 147
3439 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications

Authors: R. M. Kalayappan, N. Kathiravan

Abstract:

In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.

Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry

Procedia PDF Downloads 372
3438 The Effect of the Construction Contract System by Simulating the Comparative Costs of Capital to the Financial Feasibility of the Construction of Toll Bali Mandara

Authors: Mas Pertiwi I. G. AG Istri, Sri Kristinayanti Wayan, Oka Aryawan I. Gede Made

Abstract:

Ability of government to meet the needs of infrastructure investment constrained by the size of the budget commitments for other sectors. Another barrier is the complexity of the process of land acquisition. Public Private Partnership can help bridge the investment gap by including the amount of funding from the private sector, shifted the responsibility of financing, construction of the asset, and the operation and post-project design and care to them. In principle, a construction project implementation always requires the investor as a party to provide resources in the form of funding which it must be contained in a successor agreement in the form of a contract. In general, construction contracts consist of contracts which passed in Indonesia and contract International. One source of funding used in the implementation of construction projects comes from funding that comes from the collaboration between the government and the private sector, for example with the system: BLT (Build Lease Transfer), BOT (Build Operate Transfer), BTO (Build Transfer Operate) and BOO (Build Operate Own). And form of payment under a construction contract can be distinguished several ways: monthly payment, payments based on progress and payment after completed projects (Turn Key). One of the tools used to analyze the feasibility of the investment is to use financial models. The financial model describes the relationship between different variables and assumptions used. From a financial model will be known how the cash flow structure of the project, which includes revenues, expenses, liabilities to creditors and the payment of taxes to the government. Net cash flow generated from the project will be used as a basis for analyzing the feasibility of investment source of project financing Public Private Partnership could come from equity or debt. The proportion of funding according to its source is a comparison of a number of investment funds originating from each source of financing for a total investment cost during the construction period by selected the contract system and several alternative financing percentage ratio determined according to sources will generate cash flow structure that is different. Of the various possibilities for the structure of the cash flow generated will be analyzed by software is to test T Paired to compared the contract system used by various alternatives comparison of financing to determine the effect of the contract system and the comparison of such financing for the feasibility of investment toll road construction project for the economic life of 20 (twenty) years. In this use case studies of toll road contruction project Bali Mandara. And in this analysis only covered two systems contracts, namely Build Operate Transfer and Turn Key. Based on the results obtained by analysis of the variable investment feasibility of the NPV, BCR and IRR between the contract system Build Operate Transfer and contract system Turn Key on the interest rate of 9%, 12% and 15%.

Keywords: contract system, financing, internal rate of return, net present value

Procedia PDF Downloads 204
3437 Community Participation of the Villagers: Corporate Social Responsibility Programme in Pantai Harapan Jaya Village, Bekasi Regency, West Java

Authors: Auliya Adzillatin Uzhma, Ismu Rini Dwi Ari, I. Nyoman Suluh Wijaya

Abstract:

Corporate Social Responsibility (CSR) programme in Pantai Harapan Jaya village is cultivation of mangrove and fishery capital distribution, to achieve the goal the CSR programme needed participation from the society in it. Moeliono in Fahrudin (2011) mentioned that participation from society is based by intrinsic reason from inside people it self and extrinsic reason from the other who related to him or from connection with other people. The fundamental connection who caused more boundaries from action which the organization can do called the social structure. The purpose of this research is to know the form of public participation and the density of the villager and people who is participated in CSR programme. This research use Social Network Analysis method by knew the Rate of Participation and Density. The result of the research is people who is involved in the programme is lived in Dusun Pondok Dua and they work in fisheries field. Rate of Participation is 11,61 and that means people involved in 11 or 12 activites of CSR Programme. The rate of participation of CSR Programme is categorized as high rate participation. The density value from the participant is 0.516 it’s mean that 51.6% of the people that participated is involved in the same step of CSR programme.

Keywords: community participation, social network analysis, corporate social responsibility, urban and regional studies

Procedia PDF Downloads 489
3436 Transfer of Electrical Energy by Magnetic Induction

Authors: Carlos Oliveira Santiago Filho, Ciro Egoavil, Eduardo Oliveira, Jéferson Galdino, Moises Galileu, Tiago Oliveira Correa

Abstract:

Transfer of Electrical Energy through resonant inductive magnetic coupling is demonstrated experimentally in a system containing coil primary for transmission and secondary reception. The topology used in the prototype of the Class-E amplifier, has been identified as optimal for power transfer applications. Characteristic of the inductor and the load are defined by the requirements of the resonant inductive system. The frequency limitation the of circuit restricts unloaded “Q-Factor”, quality factor of the coils and thus the link efficiency. With a suitable circuit, copper coil unloaded Q-Factors of over 1,000 can be achieved in the low Mhz region, enabling a cost-effective high Q coil assembly. The circuit is capable system capable of transmitting energy with direct current to load efficiency above 60% at 2 Mhz.

Keywords: magnetic induction, transfer of electrical energy, magnetic coupling, Q-Factor

Procedia PDF Downloads 485
3435 Effect of Tilt Angle of Herringbone Microstructures on Enhancement of Heat and Mass Transfer

Authors: Nathan Estrada, Fangjun Shu, Yanxing Wang

Abstract:

The heat and mass transfer characteristics of a simple shear flow over a surface covered with staggered herringbone structures are numerically investigated using the lattice Boltzmann method. The focus is on the effect of ridge angle of the structures on the enhancement of heat and mass transfer. In the simulation, the temperature and mass concentration are modeled as a passive scalar released from the moving top wall and absorbed at the structured bottom wall. Reynolds number is fixed at 100. Two Prandtl or Schmidt numbers, 1 and 10, are considered. The results show that the advective scalar transport plays a more important role at larger Schmidt numbers. The fluid travels downward with higher scalar concentration into the grooves at the backward grove tips and travel upward with lower scalar concentration at the forward grove tips. Different tile angles result in different flow advection in wall-normal direction and thus different heat and mass transport efficiencies. The maximum enhancement is achieved at an angle between 15o and 30o. The mechanism of heat and mass transfer is analyzed in detail.

Keywords: fluid mechanics, heat and mass transfer, microfluidics, staggered herringbone mixer

Procedia PDF Downloads 84
3434 Effects of Heat Source Position on Heat Transfer in an Inclined Square Enclosure Filled with Nanofluids

Authors: Khamis Al Kalbani

Abstract:

The effects of a uniform heat source position on the heat transfer flow inside an inclined square enclosure filled with different types of nanofluids having various shapes of the nanoparticles are investigated numerically following one component thermal equilibrium model. The effects of the Brownian diffusion of the nanoparticles, magnetic field intensity and orientation are taken into consideration in nanofluid modeling. The heat source is placed in the middle of a wall of the enclosure while the opposite wall of it is kept at different temperature. The other walls of the enclosure are kept insulated. The results indicate that the heat source position significantly controls the heat transfer rates of the nanofluids. The distributions of the average heat transfer rates varying the position of the heat source with respect to the geometry inclination angle are calculated for the first time. The outcomes of the present research may be helpful for designing solar thermal collectors, radiators, building insulators and advanced cooling of a nuclear system.

Keywords: heat source, inclined, square enclosure, nanofluids

Procedia PDF Downloads 278
3433 A Tale of Seven Districts: Reviewing The Past, Present and Future of Patent Litigation Filings to Form a Two-Step Burden-Shifting Framework for 28 U.S.C. § 1404(a)

Authors: Timothy T. Hsieh

Abstract:

Current patent venue transfer laws under 28 U.S.C. § 1404(a) e.g., the Gilbert factors from Gulf Oil Corp. v. Gilbert, 330 U.S. 501 (1947) are too malleable in that they often lead to frequent mandamus orders from the U.S. Court of Appeals for the Federal Circuit (“Federal Circuit”) overturning district court rulings on venue transfer motions. Thus, this paper proposes a more robust two-step burden-shifting framework that replaces the eight Gilbert factors. Moreover, a brief history of venue transfer patterns in the seven most active federal patent district courts is covered, with special focus devoted to the venue transfer orders from Judge Alan D Albright of the U.S. District Court for the Western District of Texas. A comprehensive data summary of 45 case sets where the Federal Circuit ruled on writs of mandamus involving Judge Albright’s transfer orders is subsequently provided, with coverage summaries of certain cases including four precedential ones from the Federal Circuit. This proposed two-step burden shifting framework is then applied to these venue transfer cases, as well as Federal Circuit mandamus orders ruling on those decisions. Finally, alternative approaches to remedying the frequent reversals for venue transfer will be discussed, including potential legislative solutions, adjustments to common law framework approaches to venue transfer, deference to the inherent powers of Article III U.S. District Judge, and a unified federal patent district court. Overall, this paper seeks to offer a more robust and consistent three-step burden-shifting framework for venue transfer and for the Federal Circuit to follow in administering mandamus orders, which might change somewhat in light of Western District of Texas Chief Judge Orlando Garcia’s order on redistributing Judge Albright’s patent cases.

Keywords: Patent law, venue, judge Alan Albright, minimum contacts, western district of Texas

Procedia PDF Downloads 71
3432 Heat Transfer Studies for LNG Vaporization During Underwater LNG Releases

Authors: S. Naveen, V. Sivasubramanian

Abstract:

A modeling theory is proposed to consider the vaporization of LNG during its contact with water following its release from an underwater source. The spillage of LNG underwater can lead to a decrease in the surface temperature of water and subsequent freezing. This can in turn affect the heat flux distribution from the released LNG onto the water surrounding it. The available models predict the rate of vaporization considering the surface of contact as a solid wall, and considering the entire phenomena as a solid-liquid operation. This assumption greatly under-predicted the overall heat transfer on LNG water interface. The vaporization flux would first decrease during the film boiling, followed by an increase during the transition boiling and a steady decrease during the nucleate boiling. A superheat theory is introduced to enhance the accuracy in the prediction of the heat transfer between LNG and water. The work suggests that considering the superheat theory can greatly enhance the prediction of LNG vaporization on underwater releases and also help improve the study of overall thermodynamics.

Keywords: evaporation rate, heat transfer, LNG vaporization, underwater LNG release

Procedia PDF Downloads 412
3431 Unsteady Stagnation-Point Flow towards a Shrinking Sheet with Radiation Effect

Authors: F. M. Ali, R. Nazar, N. M. Arifin, I. Pop

Abstract:

In this paper, the problem of unsteady stagnation-point flow and heat transfer induced by a shrinking sheet in the presence of radiation effect is studied. The transformed boundary layer equations are solved numerically by the shooting method. The influence of radiation, unsteadiness and shrinking parameters, and the Prandtl number on the reduced skin friction coefficient and the heat transfer coefficient, as well as the velocity and temperature profiles are presented and discussed in detail. It is found that dual solutions exist and the temperature distribution becomes less significant with radiation parameter.

Keywords: heat transfer, radiation effect, shrinking sheet unsteady flow

Procedia PDF Downloads 359
3430 CFD simulation of Near Wall Turbulence and Heat Transfer of Molten Salts

Authors: C. S. Sona, Makrand A. Khanwale, Channamallikarjun S. Mathpati

Abstract:

New generation nuclear power plants are currently being developed to be highly economical, to be passive safe, to produce hydrogen. An important feature of these reactors will be the use of coolants at temperature higher than that being used in current nuclear reactors. The molten fluoride salt with a eutectic composition of 46.5% LiF - 11.5% NaF - 42% KF (mol %) commonly known as FLiNaK is a leading candidate for heat transfer coolant for these nuclear reactors. CFD simulations were carried out using large eddy simulations to investigate the flow characteristics of molten FLiNaK at 850°C at a Reynolds number of 10,500 in a cylindrical pipe. Simulation results have been validated with the help of mean velocity profile using direct numerical simulation data. Transient velocity information was used to identify and characterise turbulent structures which are important for transfer of heat across solid-fluid interface. A wavelet transform based methodology called wavelet transform modulus maxima was used to identify and characterise the singularities. This analysis was also used for flow visualisation, and also to calculate the heat transfer coefficient using small eddy model. The predicted Nusselt number showed good agreement with the available experimental data.

Keywords: FLiNaK, heat transfer, molten salt, turbulent structures

Procedia PDF Downloads 425
3429 Evaluation of Transfer Capability Considering Uncertainties of System Operating Condition and System Cascading Collapse

Authors: Nur Ashida Salim, Muhammad Murtadha Othman, Ismail Musirin, Mohd Salleh Serwan

Abstract:

Over the past few decades, the power system industry in many developing and developed countries has gone through a restructuring process of the industry where they are moving towards a deregulated power industry. This situation will lead to competition among the generation and distribution companies to achieve a certain objective which is to provide quality and efficient production of electric energy, which will reduce the price of electricity. Therefore it is important to obtain an accurate value of the Available Transfer Capability (ATC) and Transmission Reliability Margin (TRM) in order to ensure the effective power transfer between areas during the occurrence of uncertainties in the system. In this paper, the TRM and ATC is determined by taking into consideration the uncertainties of the system operating condition and system cascading collapse by applying the bootstrap technique. A case study of the IEEE RTS-79 is employed to verify the robustness of the technique proposed in the determination of TRM and ATC.

Keywords: available transfer capability, bootstrap technique, cascading collapse, transmission reliability margin

Procedia PDF Downloads 376
3428 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall

Authors: Sanjib Kr Pal, S. Bhattacharyya

Abstract:

Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.

Keywords: conjugate heat transfer, mixed convection, nano fluid, wall waviness

Procedia PDF Downloads 235