Search results for: thermochemical process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14824

Search results for: thermochemical process

14794 Production Process of Coconut-Shell Product in Amphawa District

Authors: Wannee Sutthachaidee

Abstract:

The study of the production process of coconut-shell product in Amphawa, Samutsongkram Province is objected to study the pattern of the process of coconut-shell product by focusing in the 3 main processes which are inbound logistics process, production process and outbound process. The result of the research: There were 4 main results from the study. Firstly, most of the manufacturer of coconut-shell product is usually owned by a single owner and the quantity of the finished product is quite low and the main labor group is local people. Secondly, the production process can be divided into 4 stages which are pre-production process, production process, packaging process and distribution process. Thirdly, each 3 of the logistics process of coconut shell will find process which may cause the problem to the business but the process which finds the most problem is the production process because the production process needs the skilled labor and the quantity of the labor does not match with the demand from the customers. Lastly, the factors which affect the production process of the coconut shell can be founded in almost every process of the process such as production design, packaging design, sourcing supply and distribution management.

Keywords: production process, coconut-shell product, Amphawa District, inbound logistics process

Procedia PDF Downloads 489
14793 An Overview of Thermal Storage Techniques for Solar Thermal Applications

Authors: Talha Shafiq

Abstract:

The traditional electricity operation in solar thermal plants is designed to operate on a single path initiating at power plant and executes at the consumer. Due to lack of energy storage facilities during this operation, a decrease in the efficiency is often observed with the power plant performance. This paper reviews the significance of energy storage in supply design and elaborates various methods that can be adopted in this regard which are equally cost effective and environmental friendly. Moreover, various parameters in thermal storage technique are also critically analyzed to clarify the pros and cons in this facility. Discussing the different thermal storage system, their technical and economical evaluation has also been reviewed.

Keywords: thermal energy storage, sensible heat storage, latent heat storage, thermochemical heat storage

Procedia PDF Downloads 532
14792 BI- And Tri-Metallic Catalysts for Hydrogen Production from Hydrogen Iodide Decomposition

Authors: Sony, Ashok N. Bhaskarwar

Abstract:

Production of hydrogen from a renewable raw material without any co-synthesis of harmful greenhouse gases is the current need for sustainable energy solutions. The sulfur-iodine (SI) thermochemical cycle, using intermediate chemicals, is an efficient process for producing hydrogen at a much lower temperature than that required for the direct splitting of water. No net byproduct forms in the cycle. Hydrogen iodide (HI) decomposition is a crucial reaction in this cycle, as the product, hydrogen, forms only in this step. It is an endothermic, reversible, and equilibrium-limited reaction. The theoretical equilibrium conversion at 550°C is just a meagre of 24%. There is a growing interest, therefore, in enhancing the HI conversion to near-equilibrium values at lower reaction temperatures and by possibly improving the rate. The reaction is relatively slow without a catalyst, and hence catalytic decomposition of HI has gained much significance. Bi-metallic Ni-Co, Ni-Mn, Co-Mn, and tri-metallic Ni-Co-Mn catalysts over zirconia support were tested for HI decomposition reaction. The catalysts were synthesized via a sol-gel process wherein Ni was 3wt% in all the samples, and Co and Mn had equal weight ratios in the Co-Mn catalyst. Powdered X-ray diffraction and Brunauer-Emmett-Teller surface area characterizations indicated the polycrystalline nature and well-developed mesoporous structure of all the samples. The experiments were performed in a vertical laboratory-scale packed bed reactor made of quartz, and HI (55 wt%) was fed along with nitrogen at a WHSV of 12.9 hr⁻¹. Blank experiments at 500°C for HI decomposition suggested conversion of less than 5%. The activities of all the different catalysts were checked at 550°C, and the highest conversion of 23.9% was obtained with the tri-metallic 3Ni-Co-Mn-ZrO₂ catalyst. The decreasing order of the performance of catalysts could be expressed as: 3Ni-Co-Mn-ZrO₂ > 3Ni-2Co-ZrO₂ > 3Ni-2Mn-ZrO₂ > 2.5Co-2.5Mn-ZrO₂. The tri-metallic catalyst remained active till 360 mins at 550°C without any observable drop in its activity/stability. Among the explored catalyst compositions, the tri-metallic catalyst certainly has a better performance for HI conversion when compared to the bi-metallic ones. Owing to their low costs and ease of preparation, these trimetallic catalysts could be used for large-scale hydrogen production.

Keywords: sulfur-iodine cycle, hydrogen production, hydrogen iodide decomposition, bi-, and tri-metallic catalysts

Procedia PDF Downloads 157
14791 A Study on Unix Process Crash Based on Efficient Process Management Method

Authors: Guo Haonan, Chen Peiyu, Zhao Hanyu, Burra Venkata Durga Kumar

Abstract:

Unix and Unix-like operating systems are widely used due to their high stability but are limited by the parent-child process structure, and the child process depends on the parent process, so the crash of a single process may cause the entire process group or even the entire system to fail. Another possibility of unexpected process termination is that the system administrator inadvertently closed the terminal or pseudo-terminal where the application was launched, causing the application process to terminate unexpectedly. This paper mainly analyzes the reasons for the problems and proposes two solutions.

Keywords: process management, daemon, login-bash and non-login bash, process group

Procedia PDF Downloads 102
14790 Advanced Bio-Fuels for Biorefineries: Incorporation of Waste Tires and Calcium-Based Catalysts to the Pyrolysis of Biomass

Authors: Alberto Veses, Olga Sanhauja, María Soledad Callén, Tomás García

Abstract:

The appropriate use of renewable sources emerges as a decisive point to minimize the environmental impact caused by fossil fuels use. Particularly, the use of lignocellulosic biomass becomes one of the best promising alternatives since it is the only carbon-containing renewable source that can produce bioproducts similar to fossil fuels and it does not compete with food market. Among all the processes that can valorize lignocellulosic biomass, pyrolysis is an attractive alternative because it is the only thermochemical process that can produce a liquid biofuel (bio-oil) in a simple way and solid and gas fractions that can be used as energy sources to support the process. However, in order to incorporate bio-oils in current infrastructures and further process in future biorefineries, their quality needs to be improved. Introducing different low-cost catalysts and/or incorporating different polymer residues to the process are some of the new, simple and low-cost strategies that allow the user to directly obtain advanced bio-oils to be used in future biorefineries in an economic way. In this manner, from previous thermogravimetric analyses, local agricultural wastes such as grape seeds (GS) were selected as lignocellulosic biomass while, waste tires (WT) were selected as polymer residue. On the other hand, CaO was selected as low-cost catalyst based on previous experiences by the group. To reach this aim, a specially-designed fixed bed reactor using N₂ as a carrier gas was used. This reactor has the peculiarity to incorporate a vertical mobile liner that allows the user to introduce the feedstock in the oven once the selected temperature (550 ºC) is reached, ensuring higher heating rates needed for the process. Obtaining a well-defined phase distribution in the resulting bio-oil is crucial to ensure the viability to the process. Thus, once experiments were carried out, not only a well-defined two layers was observed introducing several mixtures (reaching values up to 40 wt.% of WT) but also, an upgraded organic phase, which is the one considered to be processed in further biorefineries. Radical interactions between GS and WT released during the pyrolysis process and dehydration reactions enhanced by CaO can promote the formation of better-quality bio-oils. The latter was reflected in a reduction of water and oxygen content of bio-oil and hence, a substantial increase of its heating value and its stability. Moreover, not only sulphur content was reduced from solely WT pyrolysis but also potential and negative issues related to a strong acidic environment of conventional bio-oils were minimized due to its basic pH and lower total acid numbers. Therefore, acidic compounds obtained in the pyrolysis such as CO₂-like substances can react with the CaO and minimize acidic problems related to lignocellulosic bio-oils. Moreover, this CO₂ capture promotes H₂ production from water gas shift reaction favoring hydrogen-transfer reactions, improving the final quality of the bio-oil. These results show the great potential of grapes seeds to carry out the catalytic co-pyrolysis process with different plastic residues in order to produce a liquid bio-oil that can be considered as a high-quality renewable vector.

Keywords: advanced bio-oils, biorefinery, catalytic co-pyrolysis of biomass and waste tires, lignocellulosic biomass

Procedia PDF Downloads 212
14789 System Analysis on Compact Heat Storage in the Built Environment

Authors: Wilko Planje, Remco Pollé, Frank van Buuren

Abstract:

An increased share of renewable energy sources in the built environment implies the usage of energy buffers to match supply and demand and to prevent overloads of existing grids. Compact heat storage systems based on thermochemical materials (TCM) are promising to be incorporated in future installations as an alternative for regular thermal buffers. This is due to the high energy density (1 – 2 GJ/m3). In order to determine the feasibility of TCM-based systems on building level several installation configurations are simulated and analyzed for different mixes of renewable energy sources (solar thermal, PV, wind, underground, air) for apartments/multistore-buildings for the Dutch situation. Thereby capacity, volume and financial costs are calculated. The simulation consists of options to include the current and future wind power (sea and land) and local roof-attached PV or solar-thermal systems. Thereby, the compact thermal buffer and optionally an electric battery (typically 10 kWhe) form the local storage elements for energy matching and shaving purposes. Besides, electric-driven heat pumps (air / ground) can be included for efficient heat generation in case of power-to-heat. The total local installation provides both space heating, domestic hot water as well as electricity for a specific case with low-energy apartments (annually 9 GJth + 8 GJe) in the year 2025. The energy balance is completed with grid-supplied non-renewable electricity. Taking into account the grid capacities (permanent 1 kWe/household), spatial requirements for the thermal buffer (< 2.5 m3/household) and a desired minimum of 90% share of renewable energy per household on the total consumption the wind-powered scenario results in acceptable sizes of compact thermal buffers with an energy-capacity of 4 - 5 GJth per household. This buffer is combined with a 10 kWhe battery and air source heat pump system. Compact thermal buffers of less than 1 GJ (typically volumes 0.5 - 1 m3) are possible when the installed wind-power is increased with a factor 5. In case of 15-fold of installed wind power compact heat storage devices compete with 1000 L water buffers. The conclusion is that compact heat storage systems can be of interest in the coming decades in combination with well-retrofitted low energy residences based on the current trends of installed renewable energy power.

Keywords: compact thermal storage, thermochemical material, built environment, renewable energy

Procedia PDF Downloads 216
14788 Mining Diagnostic Investigation Process

Authors: Sohail Imran, Tariq Mahmood

Abstract:

In complex healthcare diagnostic investigation process, medical practitioners have to focus on ways to standardize their processes to perform high quality care and optimize the time and costs. Process mining techniques can be applied to extract process related knowledge from data without considering causal and dynamic dependencies in business domain and processes. The application of process mining is effective in diagnostic investigation. It is very helpful where a treatment gives no dispositive evidence favoring it. In this paper, we applied process mining to discover important process flow of diagnostic investigation for hepatitis patients. This approach has some benefits which can enhance the quality and efficiency of diagnostic investigation processes.

Keywords: process mining, healthcare, diagnostic investigation process, process flow

Procedia PDF Downloads 491
14787 A Review on Microbial Enhanced Oil Recovery and Controlling Its Produced Hydrogen Sulfide Effects on Reservoir and Transporting Pipelines

Authors: Ali Haratian, Soroosh Emami Meybodi

Abstract:

Using viable microbial cultures within hydrocarbon reservoirs so as to the enhancement of oil recovery through metabolic activities is exactly what we recognize as microbial enhanced oil recovery (MEOR). In similar to many other processes in industries, there are some cons and pros following with MEOR. The creation of sulfides such as hydrogen sulfide as a result of injecting the sulfate-containing seawater into hydrocarbon reservoirs in order to maintain the required reservoir pressure leads to production and growth of sulfate reducing bacteria (SRB) approximately near the injection wells, turning the reservoir into sour; however, SRB is not considered as the only microbial process stimulating the formation of sulfides. Along with SRB, thermochemical sulfate reduction or thermal redox reaction (TSR) is also known to be highly effective at resulting in having extremely concentrated zones of ?2S in the reservoir fluids eligible to cause corrosion. Owing to extent of the topic, more information on the formation of ?₂S is going to be put finger on. Besides, confronting the undesirable production of sulfide species in the reservoirs can lead to serious operational, environmental, and financial problems, in particular the transporting pipelines. Consequently, conjuring up reservoir souring control strategies on the way production of oil and gas is the only way to prevent possible damages in terms of environment, finance, and manpower which requires determining the compound’s reactivity, origin, and partitioning behavior. This article is going to provide a comprehensive review of progress made in this field and the possible advent of new strategies in this technologically advanced world of the petroleum industry.

Keywords: corrosion, hydrogen sulfide, NRB, reservoir souring, SRB

Procedia PDF Downloads 179
14786 Simulation of a Fluid Catalytic Cracking Process

Authors: Sungho Kim, Dae Shik Kim, Jong Min Lee

Abstract:

Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery indusrty. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its nonlinearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flowsheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flowsheet simulator to develop an integrated process model.

Keywords: fluid catalytic cracking, simulation, plant data, process design

Procedia PDF Downloads 426
14785 Investigation of a Single Feedstock Particle during Pyrolysis in Fluidized Bed Reactors via X-Ray Imaging Technique

Authors: Stefano Iannello, Massimiliano Materazzi

Abstract:

Fluidized bed reactor technologies are one of the most valuable pathways for thermochemical conversions of biogenic fuels due to their good operating flexibility. Nevertheless, there are still issues related to the mixing and separation of heterogeneous phases during operation with highly volatile feedstocks, including biomass and waste. At high temperatures, the volatile content of the feedstock is released in the form of the so-called endogenous bubbles, which generally exert a “lift” effect on the particle itself by dragging it up to the bed surface. Such phenomenon leads to high release of volatile matter into the freeboard and limited mass and heat transfer with particles of the bed inventory. The aim of this work is to get a better understanding of the behaviour of a single reacting particle in a hot fluidized bed reactor during the devolatilization stage. The analysis has been undertaken at different fluidization regimes and temperatures to closely mirror the operating conditions of waste-to-energy processes. Beechwood and polypropylene particles were used to resemble the biomass and plastic fractions present in waste materials, respectively. The non-invasive X-ray technique was coupled to particle tracking algorithms to characterize the motion of a single feedstock particle during the devolatilization with high resolution. A high-energy X-ray beam passes through the vessel where absorption occurs, depending on the distribution and amount of solids and fluids along the beam path. A high-speed video camera is synchronised to the beam and provides frame-by-frame imaging of the flow patterns of fluids and solids within the fluidized bed up to 72 fps (frames per second). A comprehensive mathematical model has been developed in order to validate the experimental results. Beech wood and polypropylene particles have shown a very different dynamic behaviour during the pyrolysis stage. When the feedstock is fed from the bottom, the plastic material tends to spend more time within the bed than the biomass. This behaviour can be attributed to the presence of the endogenous bubbles, which drag effect is more pronounced during the devolatilization of biomass, resulting in a lower residence time of the particle within the bed. At the typical operating temperatures of thermochemical conversions, the synthetic polymer softens and melts, and the bed particles attach on its outer surface, generating a wet plastic-sand agglomerate. Consequently, this additional layer of sand may hinder the rapid evolution of volatiles in the form of endogenous bubbles, and therefore the establishment of a poor drag effect acting on the feedstock itself. Information about the mixing and segregation of solid feedstock is of prime importance for the design and development of more efficient industrial-scale operations.

Keywords: fluidized bed, pyrolysis, waste feedstock, X-ray

Procedia PDF Downloads 145
14784 Modeling and Simulation of Fluid Catalytic Cracking Process

Authors: Sungho Kim, Dae Shik Kim, Jong Min Lee

Abstract:

Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery industry. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its non linearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flow sheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flow sheet simulator to develop an integrated process model.

Keywords: fluid catalytic cracking, simulation, plant data, process design

Procedia PDF Downloads 495
14783 Study of Skid-Mounted Natural Gas Treatment Process

Authors: Di Han, Lingfeng Li

Abstract:

Selection of low-temperature separation dehydration and dehydrochlorination process applicable to skid design, using Hysys software to simulate the low-temperature separation dehydration and dehydrochlorination process under different refrigeration modes, focusing on comparing the refrigeration effect of different refrigeration modes, the condensation amount of hydrocarbon liquids and alcoholic wastewater, as well as the adaptability of the process, and determining the low-temperature separation process applicable to the natural gas dehydration and dehydrochlorination skid into the design of skid; and finally, to carry out the CNG recycling process calculations of the processed qualified natural gas and to determine the dehydration scheme and the key parameters of the compression process.

Keywords: skidding, dehydration and dehydrochlorination, cryogenic separation process, CNG recovery process calculations

Procedia PDF Downloads 112
14782 Methods for Business Process Simulation Based on Petri Nets

Authors: K. Shoylekova, K. Grigorova

Abstract:

The Petri nets are the first standard for business process modeling. Most probably, it is one of the core reasons why all new standards created afterwards have to be so reformed as to reach the stage of mapping the new standard onto Petri nets. The paper presents a Business process repository based on a universal database. The repository provides the possibility the data about a given process to be stored in three different ways. Business process repository is developed with regard to the reformation of a given model to a Petri net in order to be easily simulated two different techniques for business process simulation based on Petri nets - Yasper and Woflan are discussed. Their advantages and drawbacks are outlined. The way of simulating business process models, stored in the Business process repository is shown.

Keywords: business process repository, petri nets, simulation, Woflan, Yasper

Procedia PDF Downloads 339
14781 Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice

Authors: S. Bangphan, P. Bangphan, T.Boonkang

Abstract:

Quality control helps industries in improvements of its product quality and productivity. Statistical Process Control (SPC) is one of the tools to control the quality of products that turning practice in bringing a department of industrial engineering process under control. In this research, the process control of a turning manufactured at workshops machines. The varying measurements have been recorded for a number of samples of a rice polished cylinder obtained from a number of trials with the turning practice. SPC technique has been adopted by the process is finally brought under control and process capability is improved.

Keywords: rice polished cylinder, statistical process control, control charts, process capability

Procedia PDF Downloads 466
14780 Business Process Orientation: Case of Croatia

Authors: Ljubica Milanović Glavan

Abstract:

Because of the increasing business pressures, companies must be adaptable and flexible in order to withstand them. Inadequate business processes and low level of business process orientation, that in its core accentuates business processes as opposed to business functions and focuses on process performance and customer satisfaction, hider the ability to adapt to changing environment. It has been shown in previous studies that the companies which have reached higher business process maturity level consistently outperform those that have not reached them. The aim of this paper is to provide a basic understanding of business process orientation concept and business process maturity model. Besides that the paper presents the state of business process orientation in Croatia that has been captured with a study conducted in 2013. Based on the results some practical implications and guidelines for managers are given.

Keywords: business process orientation, business process maturity, Croatia, maturity score

Procedia PDF Downloads 503
14779 Modeling of a Pilot Installation for the Recovery of Residual Sludge from Olive Oil Extraction

Authors: Riad Benelmir, Muhammad Shoaib Ahmed Khan

Abstract:

The socio-economic importance of the olive oil production is significant in the Mediterranean region, both in terms of wealth and tradition. However, the extraction of olive oil generates huge quantities of wastes that may have a great impact on land and water environment because of their high phytotoxicity. Especially olive mill wastewater (OMWW) is one of the major environmental pollutants in olive oil industry. This work projects to design a smart and sustainable integrated thermochemical catalytic processes of residues from olive mills by hydrothermal carbonization (HTC) of olive mill wastewater (OMWW) and fast pyrolysis of olive mill wastewater sludge (OMWS). The byproducts resulting from OMWW-HTC treatment are a solid phase enriched in carbon, called biochar and a liquid phase (residual water with less dissolved organic and phenolic compounds). HTC biochar can be tested as a fuel in combustion systems and will also be utilized in high-value applications, such as soil bio-fertilizer and as catalyst or/and catalyst support. The HTC residual water is characterized, treated and used in soil irrigation since the organic and the toxic compounds will be reduced under the permitted limits. This project’s concept includes also the conversion of OMWS to a green diesel through a catalytic pyrolysis process. The green diesel is then used as biofuel in an internal combustion engine (IC-Engine) for automotive application to be used for clean transportation. In this work, a theoretical study is considered for the use of heat from the pyrolysis non-condensable gases in a sorption-refrigeration machine for pyrolysis gases cooling and condensation of bio-oil vapors.

Keywords: biomass, olive oil extraction, adsorption cooling, pyrolisis

Procedia PDF Downloads 53
14778 A Goal-Oriented Social Business Process Management Framework

Authors: Mohammad Ehson Rangiha, Bill Karakostas

Abstract:

Social Business Process Management (SBPM) promises to overcome limitations of traditional BPM by allowing flexible process design and enactment through the involvement of users from a social community. This paper proposes a meta-model and architecture for socially driven business process management systems. It discusses the main facets of the architecture such as goal-based role assignment that combines social recommendations with user profile, and process recommendation, through a real example of a charity organization.

Keywords: business process management, goal-based modelling, process recommendation social collaboration, social BPM

Procedia PDF Downloads 466
14777 Signature Verification System for a Banking Business Process Management

Authors: A. Rahaf, S. Liyakathunsia

Abstract:

In today’s world, unprecedented operational pressure is faced by banks that test the efficiency, effectiveness, and agility of their business processes. In a typical banking process, a person’s authorization is usually based on his signature on most all of the transactions. Signature verification is considered as one of the highly significant information needed for any bank document processing. Banks usually use Signature Verification to authenticate the identity of individuals. In this paper, a business process model has been proposed in order to increase the quality of the verification process and to reduce time and needed resources. In order to understand the current process, a survey has been conducted and distributed among bank employees. After analyzing the survey, a process model has been created using Bizagi modeler which helps in simulating the process after assigning time and cost of it. The outcomes show that the automation of signature verification process is highly recommended for a banking business process.

Keywords: business process management, process modeling, quality, Signature Verification

Procedia PDF Downloads 392
14776 Nanoporous Activated Carbons for Fuel Cells and Supercapacitors

Authors: A. Volperts, G. Dobele, A. Zhurinsh, I. Kruusenberg, A. Plavniece, J. Locs

Abstract:

Nowadays energy consumption constantly increases and development of effective and cheap electrochemical sources of power, such as fuel cells and electrochemical capacitors, is topical. Due to their high specific power, charge and discharge rates, working lifetime supercapacitor based energy accumulation systems are more and more extensively being used in mobile and stationary devices. Lignocellulosic materials are widely used as precursors and account for around 45% of the total raw materials used for the manufacture of activated carbon which is the most suitable material for supercapacitors. First part of our research is devoted to study of influence of main stages of wood thermochemical activation parameters on activated carbons porous structure formation. It was found that the main factors governing the properties of carbon materials are specific surface area, volume and pore size distribution, particles dispersity, ash content and oxygen containing groups content. Influence of activated carbons attributes on capacitance and working properties of supercapacitor are demonstrated. The correlation between activated carbons porous structure indices and electrochemical specifications of supercapacitors with electrodes made from these materials has been determined. It is shown that if synthesized activated carbons are used in supercapacitors then high specific capacitances can be reached – more than 380 F/g in 4.9M sulfuric acid based electrolytes and more than 170 F/g in 1 M tetraethylammonium tetrafluoroborate in acetonitrile electrolyte. Power specifications and minimal price of H₂-O₂ fuel cells are limited by the expensive platinum-based catalysts. The main direction in development of non-platinum catalysts for the oxygen reduction is the study of cheap porous carbonaceous materials which can be obtained by the pyrolysis of polymers including renewable biomass. It is known that nitrogen atoms in carbon materials to a high degree determine properties of the doped activated carbons, such as high electrochemical stability, hardness, electric resistance, etc. The lack of sufficient knowledge on the doping of the carbon materials calls for the ongoing researches of properties and structure of modified carbon matrix. In the second part of this study, highly porous activated carbons were synthesized using alkali thermochemical activation from wood, cellulose and cellulose production residues – craft lignin and sewage sludge. Activated carbon samples were doped with dicyandiamide and melamine for the application as fuel cell cathodes. Conditions of nitrogen introduction (solvent, treatment temperature) and its content in the carbonaceous material, as well as porous structure characteristics, such as specific surface and pore size distribution, were studied. It was found that efficiency of doping reaction depends on the elemental oxygen content in the activated carbon. Relationships between nitrogen content, porous structure characteristics and electrodes electrochemical properties are demonstrated.

Keywords: activated carbons, low-temperature fuel cells, nitrogen doping, porous structure, supercapacitors

Procedia PDF Downloads 93
14775 Transitivity Analysis in Reading Passage of English Text Book for Senior High School

Authors: Elitaria Bestri Agustina Siregar, Boni Fasius Siregar

Abstract:

The paper concerned with the transitivity in the reading passage of English textbook for Senior High School. The six types of process were occurred in the passages with percentage as follows: Material Process is 166 (42%), Relational Process is 155 (39%), Mental Process is 39 (10%), Verbal Process is 21 (5%), Existential Process is 13 (3), and Behavioral Process is 5 (1%). The material processes were found to be the most frequently used process type in the samples in our corpus (41,60 %). This indicates that the twenty reading passages are centrally concerned with action and events. Related to developmental psychology theory, this book fits the needs of students of this age.

Keywords: transitivity, types of processes, reading passages, developmental psycholoy

Procedia PDF Downloads 374
14774 Corrosion Behavior of Fe-Ni-Cr and Zr Alloys in Supercritical Water Reactors

Authors: Igor Svishchev, Kashif Choudhry

Abstract:

Progress in advanced energy technologies is not feasible without understanding how engineering materials perform under extreme environmental conditions. The corrosion behaviour of Fe-Ni-Cr and Zr alloys has been systematically examined under high-temperature and supercritical water flow conditions. The changes in elemental release rate and dissolved gas concentration provide valuable insights into the mechanism of passivation by forming oxide films. A non-intrusive method for monitoring the extent of surface oxidation based on hydrogen release rate has been developed. This approach can be used for the on-line monitoring corrosion behavior of reactor materials without the need to interrupt the flow and remove corrosion coupons. Surface catalysed thermochemical reactions may generate sufficient hydrogen to have an effect on the accumulation of oxidizing species generated by radiolytic processes in the heat transport systems of the supercritical water cooled nuclear reactor.

Keywords: high-temperature corrosion, non-intrusive monitoring, reactor materials, supercritical water

Procedia PDF Downloads 112
14773 Knowledge Discovery from Production Databases for Hierarchical Process Control

Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata

Abstract:

The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system, thus, the proposed solution has been verified. The paper documents how it is possible to apply new discovery knowledge to be used in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.

Keywords: hierarchical process control, knowledge discovery from databases, neural network, process control

Procedia PDF Downloads 450
14772 Covariance of the Queue Process Fed by Isonormal Gaussian Input Process

Authors: Samaneh Rahimirshnani, Hossein Jafari

Abstract:

In this paper, we consider fluid queueing processes fed by an isonormal Gaussian process. We study the correlation structure of the queueing process and the rate of convergence of the running supremum in the queueing process. The Malliavin calculus techniques are applied to obtain relations that show the workload process inherits the dependence properties of the input process. As examples, we consider two isonormal Gaussian processes, the sub-fractional Brownian motion (SFBM) and the fractional Brownian motion (FBM). For these examples, we obtain upper bounds for the covariance function of the queueing process and its rate of convergence to zero. We also discover that the rate of convergence of the queueing process is related to the structure of the covariance function of the input process.

Keywords: queue length process, Malliavin calculus, covariance function, fractional Brownian motion, sub-fractional Brownian motion

Procedia PDF Downloads 28
14771 Design and Characterization of a CMOS Process Sensor Utilizing Vth Extractor Circuit

Authors: Rohana Musa, Yuzman Yusoff, Chia Chieu Yin, Hanif Che Lah

Abstract:

This paper presents the design and characterization of a low power Complementary Metal Oxide Semiconductor (CMOS) process sensor. The design is targeted for implementation using Silterra’s 180 nm CMOS process technology. The proposed process sensor employs a voltage threshold (Vth) extractor architecture for detection of variations in the fabrication process. The process sensor generates output voltages in the range of 401 mV (fast-fast corner) to 443 mV (slow-slow corner) at nominal condition. The power dissipation for this process sensor is 6.3 µW with a supply voltage of 1.8V with a silicon area of 190 µm X 60 µm. The preliminary result of this process sensor that was fabricated indicates a close resemblance between test and simulated results.

Keywords: CMOS process sensor, PVT sensor, threshold extractor circuit, Vth extractor circuit

Procedia PDF Downloads 150
14770 Business Process Mashup

Authors: Fethia Zenak, Salima Benbernou, Linda Zaoui

Abstract:

Recently, many companies are based on process development from scratch to achieve their business goals. The process development is not trivial and the main objective of enterprise managing processes is to decrease the software development time. Several concepts have been proposed in the field of business process-based reused development, known as BP Mashup. This concept consists of reusing existing business processes which have been modeled in order to respond to a particular goal. To meet user process requirements, our contribution is to mix parts of processes as 'processes fragments' components to build a new process (i.e. process mashup). The main idea of our paper is to offer graphical framework tool for both creating and running processes mashup. Allow users to perform a mixture of fragments, using a simple interface with set of graphical mixture operators based on a proposed formal model. A process mashup and mixture behavior are described within a new specification of a high-level language, language for process mashup (BPML).

Keywords: business process, mashup, fragments, bp mashup

Procedia PDF Downloads 594
14769 Application of Failure Mode and Effects Analysis (FMEA) on the Virtual Process Hazard Analysis of Acetone Production Process

Authors: Princes Ann E. Prieto, Denise F. Alpuerto, John Rafael C. Unlayao, Neil Concibido, Monet Concepcion Maguyon-Detras

Abstract:

Failure Mode and Effects Analysis (FMEA) has been used in the virtual Process Hazard Analysis (PHA) of the Acetone production process through the dehydrogenation of isopropyl alcohol, for which very limited process risk assessment has been published. In this study, the potential failure modes, effects, and possible causes of selected major equipment in the process were identified. During the virtual FMEA mock sessions, the risks in the process were evaluated and recommendations to reduce and/or mitigate the process risks were formulated. The risk was estimated using the calculated risk priority number (RPN) and was classified into four (4) levels according to their effects on acetone production. Results of this study were also used to rank the criticality of equipment in the process based on the calculated criticality rating (CR). Bow tie diagrams were also created for the critical hazard scenarios identified in the study.

Keywords: chemical process safety, failure mode and effects analysis (FMEA), process hazard analysis (PHA), process safety management (PSM)

Procedia PDF Downloads 104
14768 A Holistic Workflow Modeling Method for Business Process Redesign

Authors: Heejung Lee

Abstract:

In a highly competitive environment, it becomes more important to shorten the whole business process while delivering or even enhancing the business value to the customers and suppliers. Although the workflow management systems receive much attention for its capacity to practically support the business process enactment, the effective workflow modeling method remain still challenging and the high degree of process complexity makes it more difficult to gain the short lead time. This paper presents a workflow structuring method in a holistic way that can reduce the process complexity using activity-needs and formal concept analysis, which eventually enhances the key performance such as quality, delivery, and cost in business process.

Keywords: workflow management, re-engineering, formal concept analysis, business process

Procedia PDF Downloads 382
14767 Numerical Investigation of Plasma-Fuel System (PFS) for Coal Ignition and Combustion

Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

To enhance the efficiency of solid fuels’ use, to decrease the fuel oil rate in the thermal power plants fuel balance and to minimize harmful emissions, a plasma technology of coal ignition, gasification and incineration is successfully applied. This technology is plasma thermochemical preparation of fuel for burning (PTCPF). In the framework of this concept, some portion of pulverized solid fuel (PF) is separated from the main PF flow and undergone the activation by arc plasma in a specific chamber with plasma torch – PFS. The air plasma flame is a source of heat and additional oxidation, it provides a high-temperature medium enriched with radicals, where the fuel mixture is heated, volatile components of coal are extracted, and carbon is partially gasified. This active blended fuel can ignite the main PF flow supplied into the furnace. This technology provides the boiler start-up and stabilization of PF flame and eliminates the necessity for addition of highly reactive fuel. In the report, a model of PTCPF, implemented as a program PlasmaKinTherm for the PFS calculation is described. The model combines thermodynamic and kinetic methods for describing the process of PTCPF in PFS. The numerical investigation of operational parameters of PFS depending on the electric power of the plasma generator and steam coal ash content revealed the temperature and velocity of gas and coal particles, and concentrations of PTCPF products dependences on the PFS length. Main mechanisms of PTCPF were disclosed. It was found that in the range of electric power of plasma generator from 40 to 100 kW high ash bituminous coal, having consumption 1667 kg/h is ignited stably. High level of temperature (1740 K) and concentration of combustible components (44%) at the PFS exit is a confirmation of it. Augmentation in power of plasma generator results displacement maxima temperatures and speeds of PTCPF products upstream (in the direction of the plasma source). The maximum temperature and velocity vary in a narrow range of values and practically do not depend on the power of the plasma torch. The numerical study of indicators of the process of PTCPF depending on the ash content in the range of its values 20-70% demonstrated that at the exit of PFS concentration of combustible components decreases with an increase in coal ash, the temperature of the gaseous products is increasing, and coal carbon conversion rate is increased to a maximum value when the ash content of 60%, dramatically decreasing with further increase in the ash content.

Keywords: coal, efficiency, ignition, numerical modeling, plasma generator, plasma-fuel system

Procedia PDF Downloads 277
14766 A Case Study of Conceptual Framework for Process Performance

Authors: Ljubica Milanović Glavan, Vesna Bosilj Vukšić, Dalia Suša

Abstract:

In order to gain a competitive advantage, many companies are focusing on reorganization of their business processes and implementing process-based management. In this context, assessing process performance is essential because it enables individuals and groups to assess where they stand in comparison to their competitors. In this paper, it is argued that process performance measurement is a necessity for a modern process-oriented company and it should be supported by a holistic process performance measurement system. It seems very unlikely that a universal set of performance indicators can be applied successfully to all business processes. Thus, performance indicators must be process-specific and have to be derived from both the strategic enterprise-wide goals and the process goals. Based on the extensive literature review and interviews conducted in Croatian company a conceptual framework for process performance measurement system was developed. The main objective of such system is to help process managers by providing comprehensive and timely information on the performance of business processes. This information can be used to communicate goals and current performance of a business process directly to the process team, to improve resource allocation and process output regarding quantity and quality, to give early warning signals, to make a diagnosis of the weaknesses of a business process, to decide whether corrective actions are needed and to assess the impact of actions taken.

Keywords: Croatia, key performance indicators, performance measurement, process performance

Procedia PDF Downloads 642
14765 Fixed Points of Contractive-Like Operators by a Faster Iterative Process

Authors: Safeer Hussain Khan

Abstract:

In this paper, we prove a strong convergence result using a recently introduced iterative process with contractive-like operators. This improves and generalizes corresponding results in the literature in two ways: the iterative process is faster, operators are more general. In the end, we indicate that the results can also be proved with the iterative process with error terms.

Keywords: contractive-like operator, iterative process, fixed point, strong convergence

Procedia PDF Downloads 400