Search results for: thermal sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4736

Search results for: thermal sensor

4676 New Neuroplasmonic Sensor Based on Soft Nanolithography

Authors: Seyedeh Mehri Hamidi, Nasrin Asgari, Foozieh Sohrabi, Mohammad Ali Ansari

Abstract:

New neuro plasmonic sensor based on one dimensional plasmonic nano-grating has been prepared. To record neural activity, the sample has been exposed under different infrared laser and then has been calculated by ellipsometry parameters. Our results show that we have efficient sensitivity to different laser excitation.

Keywords: neural activity, Plasmonic sensor, Nanograting, Gold thin film

Procedia PDF Downloads 366
4675 Wireless Sensor Networks Optimization by Using 2-Stage Algorithm Based on Imperialist Competitive Algorithm

Authors: Hamid R. Lashgarian Azad, Seyed N. Shetab Boushehri

Abstract:

Wireless sensor networks (WSN) have become progressively popular due to their wide range of applications. Wireless Sensor Network is made of numerous tiny sensor nodes that are battery-powered. It is a very significant problem to maximize the lifetime of wireless sensor networks. In this paper, we propose a two-stage protocol based on an imperialist competitive algorithm (2S-ICA) to solve a sensor network optimization problem. The energy of the sensors can be greatly reduced and the lifetime of the network reduced by long communication distances between the sensors and the sink. We can minimize the overall communication distance considerably, thereby extending the lifetime of the network lifetime through connecting sensors into a series of independent clusters using 2SICA. Comparison results of the proposed protocol and LEACH protocol, which is common to solving WSN problems, show that our protocol has a better performance in terms of improving network life and increasing the number of transmitted data.

Keywords: wireless sensor network, imperialist competitive algorithm, LEACH protocol, k-means clustering

Procedia PDF Downloads 57
4674 2D-Modeling with Lego Mindstorms

Authors: Miroslav Popelka, Jakub Nozicka

Abstract:

The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.

Keywords: LEGO Mindstorms, ultrasonic sensor, real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software

Procedia PDF Downloads 442
4673 Analysis of Automotive Sensor for Engine Knock System

Authors: Miroslav Gutten, Jozef Jurcik, Daniel Korenciak, Milan Sebok, Matej Kuceraa

Abstract:

This paper deals with the phenomenon of the undesirable detonation combustion in internal combustion engines. A control unit of the engine monitors these detonations using piezoelectric knock sensors. With the control of these sensors the detonations can be objectively measured just outside the car. If this component provides small amplitude of the output voltage it could happen that there would have been in the areas of the engine ignition combustion. The paper deals with the design of a simple device for the detection of this disorder. A construction of the testing device for the knock sensor suitable for diagnostics of knock combustion in internal combustion engines will be presented. The output signal of presented sensor will be described by Bessel functions. Using the first voltage extremes on the characteristics it is possible to create a reference for the evaluation of the polynomial residue. It should be taken into account that the velocity of sound in air is 330 m/s. This sound impinges on the walls of the combustion chamber and is detected by the sensor. The resonant frequency of the clicking of the motor is usually in the range from 5 kHz to 15 kHz. The sensor worked in the field to 37 kHz, which shall be taken into account on an own sensor resonance.

Keywords: diagnostics, knock sensor, measurement, testing device

Procedia PDF Downloads 415
4672 Performance Analysis of Hierarchical Agglomerative Clustering in a Wireless Sensor Network Using Quantitative Data

Authors: Tapan Jain, Davender Singh Saini

Abstract:

Clustering is a useful mechanism in wireless sensor networks which helps to cope with scalability and data transmission problems. The basic aim of our research work is to provide efficient clustering using Hierarchical agglomerative clustering (HAC). If the distance between the sensing nodes is calculated using their location then it’s quantitative HAC. This paper compares the various agglomerative clustering techniques applied in a wireless sensor network using the quantitative data. The simulations are done in MATLAB and the comparisons are made between the different protocols using dendrograms.

Keywords: routing, hierarchical clustering, agglomerative, quantitative, wireless sensor network

Procedia PDF Downloads 562
4671 Development of a Combustible Gas Detector with Two Sensor Modules to Enable Measuring Range of Low Concentration

Authors: Young Gyu Kim, Sangguk Ahn, Gyoutae Park, Hiesik Kim

Abstract:

In the gas industrial fields, there are many problems to detect extremely small amounts of combustible gas (CH₄) if a conventional semiconductor is used. Those reasons are that measuring is difficult at the low concentration level, the stabilization time is long, and an initial response time is slow. In this study, we propose a method to solve these issues using two specific sensors to overcome the circumstances of temperature and humidity. This idea is to combine a catalytic and a semiconductor type sensor and to utilize every advantage from every sensor’s characteristic. In order to achieve the goal, we reduced fluctuations of a gas sensor for temperature and humidity by applying designed circuits for sensing temperature and humidity. And we induced the best calibration line of gas sensors through adjusting a weight value corresponding to changeable patterns of temperature and humidity after their data are previously acquired and stored. We proposed and developed the gas leak detector using two sensor modules, which is first operated by a semiconductor sensor for measuring small gas quantities and second a catalytic type sensor is detected if measuring range of the first sensor is beyond. We conclusively verified characteristics of sharp sensitivity and fast response time against even at lower gas concentration level through experiments other than a conventional gas sensor. We think that our proposed idea is very useful if another gas leak is developed to enable measuring extremely small quantities of toxic and flammable gases.

Keywords: gas sensor, leak detector, lower concentration, and calibration

Procedia PDF Downloads 216
4670 Highly Sensitive, Low-Cost Oxygen Gas Sensor Based on ZnO Nanoparticles

Authors: Xin Chang, Daping Chu

Abstract:

Oxygen gas sensing technology has progressed since the last century and it has been extensively used in a wide range of applications such as controlling the combustion process by sensing the oxygen level in the exhaust gas of automobiles to ensure the catalytic converter is in a good working condition. Similar sensors are also used in industrial boilers to make the combustion process economic and environmentally friendly. Different gas sensing mechanisms have been developed: ceramic-based potentiometric equilibrium sensors and semiconductor-based sensors by oxygen absorption. In this work, we present a highly sensitive and low-cost oxygen gas sensor based on Zinc Oxide nanoparticles (average particle size of 35nm) dispersion in ethanol. The sensor is able to measure the pressure range from 103 mBar to 10-5 mBar with a sensitivity of more than 102 mA/Bar. The sensor is also erasable with heat.

Keywords: nanoparticles, oxygen, sensor, ZnO

Procedia PDF Downloads 110
4669 Localization Problem in Optical Fiber Sensors

Authors: M. Zyczkowski, P. Markowski, M. Karol

Abstract:

The security industry is making many efforts to lower the costs of system installation. However, the dominant technique is the application of fiber optic sensors. It is necessary to determine the location of the disorder of long optical fiber cables. For a number of years, many research centers developed their own solutions. The article presents the construction of the sensor systems with the possibility of disorder location. We present a methodology for determining location of the disorder. The aim of investigations is to answer the question of which of optical sensor configuration offer the best performance for location of the disorder.

Keywords: fiber optic sensor, security sensor, fiber cables, system instillation

Procedia PDF Downloads 608
4668 Integrated Flavor Sensor Using Microbead Array

Authors: Ziba Omidi, Min-Ki Kim

Abstract:

This research presents the design, fabrication and application of a flavor sensor for an integrated electronic tongue and electronic nose that can allow rapid characterization of multi-component mixtures in a solution. The odor gas and liquid are separated using hydrophobic porous membrane in micro fluidic channel. The sensor uses an array composed of microbeads in micromachined cavities localized on silicon wafer. Sensing occurs via colorimetric and fluorescence changes to receptors and indicator molecules that are attached to termination sites on the polymeric microbeads. As a result, the sensor array system enables simultaneous and near-real-time analyses using small samples and reagent volumes with the capacity to incorporate significant redundancies. One of the key parts of the system is a passive pump driven only by capillary force. The hydrophilic surface of the fluidic structure draws the sample into the sensor array without any moving mechanical parts. Since there is no moving mechanical component in the structure, the size of the fluidic structure can be compact and the fabrication becomes simple when compared to the device including active microfluidic components. These factors should make the proposed system inexpensive to mass-produce, portable and compatible with biomedical applications.

Keywords: optical sensor, semiconductor manufacturing, smell sensor, taste sensor

Procedia PDF Downloads 412
4667 The Implementation of a Numerical Technique to Thermal Design of Fluidized Bed Cooler

Authors: Damiaa Saad Khudor

Abstract:

The paper describes an investigation for the thermal design of a fluidized bed cooler and prediction of heat transfer rate among the media categories. It is devoted to the thermal design of such equipment and their application in the industrial fields. It outlines the strategy for the fluidization heat transfer mode and its implementation in industry. The thermal design for fluidized bed cooler is used to furnish a complete design for a fluidized bed cooler of Sodium Bicarbonate. The total thermal load distribution between the air-solid and water-solid along the cooler is calculated according to the thermal equilibrium. The step by step technique was used to accomplish the thermal design of the fluidized bed cooler. It predicts the load, air, solid and water temperature along the trough. The thermal design for fluidized bed cooler revealed to the installation of a heat exchanger consists of (65) horizontal tubes with (33.4) mm diameter and (4) m length inside the bed trough.

Keywords: fluidization, powder technology, thermal design, heat exchangers

Procedia PDF Downloads 478
4666 Accurate Position Electromagnetic Sensor Using Data Acquisition System

Authors: Z. Ezzouine, A. Nakheli

Abstract:

This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.

Keywords: electromagnetic sensor, accurately, data acquisition, position measurement

Procedia PDF Downloads 258
4665 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.

Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem

Procedia PDF Downloads 45
4664 Proposing a Boundary Coverage Algorithm ‎for Underwater Sensor Network

Authors: Seyed Mohsen Jameii

Abstract:

Wireless underwater sensor networks are a type of sensor networks that are located in underwater environments and linked together by acoustic waves. The application of these kinds of network includes monitoring of pollutants (chemical, biological, and nuclear), oil fields detection, prediction of the likelihood of a tsunami in coastal areas, the use of wireless sensor nodes to monitor the passing submarines, and determination of appropriate locations for anchoring ships. This paper proposes a boundary coverage algorithm for intrusion detection in underwater sensor networks. In the first phase of the proposed algorithm, optimal deployment of nodes is done in the water. In the second phase, after the employment of nodes at the proper depth, clustering is executed to reduce the exchanges of messages between the sensors. In the third phase, the algorithm of "divide and conquer" is used to save energy and increase network efficiency. The simulation results demonstrate the efficiency of the proposed algorithm.

Keywords: boundary coverage, clustering, divide and ‎conquer, underwater sensor nodes

Procedia PDF Downloads 312
4663 Power Aware Modified I-LEACH Protocol Using Fuzzy IF Then Rules

Authors: Gagandeep Singh, Navdeep Singh

Abstract:

Due to limited battery of sensor nodes, so energy efficiency found to be main constraint in WSN. Therefore the main focus of the present work is to find the ways to minimize the energy consumption problem and will results; enhancement in the network stability period and life time. Many researchers have proposed different kind of the protocols to enhance the network lifetime further. This paper has evaluated the issues which have been neglected in the field of the WSNs. WSNs are composed of multiple unattended ultra-small, limited-power sensor nodes. Sensor nodes are deployed randomly in the area of interest. Sensor nodes have limited processing, wireless communication and power resource capabilities Sensor nodes send sensed data to sink or Base Station (BS). I-LEACH gives adaptive clustering mechanism which very efficiently deals with energy conservations. This paper ends up with the shortcomings of various adaptive clustering based WSNs protocols.

Keywords: WSN, I-Leach, MATLAB, sensor

Procedia PDF Downloads 249
4662 Improving Coverage in Wireless Sensor Networks Using Particle Swarm Optimization Algorithm

Authors: Ehsan Abdolzadeh, Sanaz Nouri, Siamak Khalaj

Abstract:

Today WSNs have many applications in different fields like the environment, military operations, discoveries, monitoring operations, and so on. Coverage size and energy consumption are the important challenges that these networks need to face. This paper tries to solve the problem of coverage with a requirement of k-coverage and minimum energy consumption. In order to minimize energy consumption, visual sensor networks have been used that observe and process just those targets that are located in their view direction. As a result, sensor rotations have decreased, and subsequently, energy consumption has been minimized. To solve the problem of coverage particle swarm optimization, coverage optimization has been able to ensure coverage requirement together with minimizing sensor rotations while meeting the problem requirement of k≤14. So energy consumption has decreased, and this could extend the sensors’ lifetime subsequently.

Keywords: K coverage, particle union optimization algorithm, wireless sensor networks, visual sensor networks

Procedia PDF Downloads 72
4661 Communication of Sensors in Clustering for Wireless Sensor Networks

Authors: Kashish Sareen, Jatinder Singh Bal

Abstract:

The use of wireless sensor networks (WSNs) has grown vastly in the last era, pointing out the crucial need for scalable and energy-efficient routing and data gathering and aggregation protocols in corresponding large-scale environments. Wireless Sensor Networks have now recently emerged as a most important computing platform and continue to grow in diverse areas to provide new opportunities for networking and services. However, the energy constrained and limited computing resources of the sensor nodes present major challenges in gathering data. The sensors collect data about their surrounding and forward it to a command centre through a base station. The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) as they are very useful in target detecting and other applications. However, hierarchical clustering protocols have maximum been used in to overall system lifetime, scalability and energy efficiency. In this paper, the state of the art in corresponding hierarchical clustering approaches for large-scale WSN environments is shown.

Keywords: clustering, DLCC, MLCC, wireless sensor networks

Procedia PDF Downloads 451
4660 A Multicopy Strategy for Improved Security Wireless Sensor Network

Authors: Tuğçe Yücel

Abstract:

A Wireless Sensor Network(WSN) is a collection of sensor nodes which are deployed randomly in an area for surveillance. Efficient utilization of limited battery energy of sensors for increased network lifetime as well as data security are major design objectives for WSN. Moreover secure transmission of data sensed to a base station for further processing. Producing multiple copies of data packets and sending them on different paths is one of the strategies for this purpose, which leads to redundant energy consumption and hence reduced network lifetime. In this work we develop a restricted multi-copy multipath strategy where data move through ‘frequently’ or ‘heavily’ used sensors is copied by the sensor incident to such central nodes and sent on node-disjoint paths. We develop a mixed integer programing(MIP) model and heuristic approach present some preleminary test results.

Keywords: MIP, sensor, telecommunications, WSN

Procedia PDF Downloads 478
4659 An Attempt to Improve Student´s Understanding on Thermal Conductivity Using Thermal Cameras

Authors: Mariana Faria Brito Francisquini

Abstract:

Many thermal phenomena are present and play a substantial role in our daily lives. This presence makes the study of this area at both High School and University levels a very widely explored topic in the literature. However, a lot of important concepts to a meaningful understanding of the world are neglected at the expense of a traditional approach with senseless algebraic problems. In this work, we intend to show how the introduction of new technologies in the classroom, namely thermal cameras, can work in our favor to make a clearer understanding of many of these concepts, such as thermal conductivity. The use of thermal cameras in the classroom tends to diminish the everlasting abstractness in thermal phenomena as they enable us to visualize something that happens right before our eyes, yet we cannot see it. In our study, we will provide the same amount of heat to metallic cylindrical rods of the same length, but different materials in order to study the thermal conductivity of each one. In this sense, the thermal camera allows us to visualize the increase in temperature along each rod in real time enabling us to infer how heat is being transferred from one part of the rod to another. Therefore, we intend to show how this approach can contribute to the exposure of students to more enriching, intellectually prolific, scenarios than those provided by traditional approaches.

Keywords: teaching physics, thermal cameras, thermal conductivity, thermal physics

Procedia PDF Downloads 250
4658 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms

Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi

Abstract:

A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.

Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization

Procedia PDF Downloads 394
4657 An Energy Efficient Clustering Approach for Underwater ‎Wireless Sensor Networks

Authors: Mohammad Reza Taherkhani‎

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make a connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: underwater sensor networks, clustering, learning automata, energy consumption

Procedia PDF Downloads 334
4656 The Design, Development, and Optimization of a Capacitive Pressure Sensor Utilizing an Existing 9DOF Platform

Authors: Andrew Randles, Ilker Ocak, Cheam Daw Don, Navab Singh, Alex Gu

Abstract:

Nine Degrees of Freedom (9 DOF) systems are already in development in many areas. In this paper, an integrated pressure sensor is proposed that will make use of an already existing monolithic 9 DOF inertial MEMS platform. Capacitive pressure sensors can suffer from limited sensitivity for a given size of membrane. This novel pressure sensor design increases the sensitivity by over 5 times compared to a traditional array of square diaphragms while still fitting within a 2 mm x 2 mm chip and maintaining a fixed static capacitance. The improved design uses one large diaphragm supported by pillars with fixed electrodes placed above the areas of maximum deflection. The design optimization increases the sensitivity from 0.22 fF/kPa to 1.16 fF/kPa. Temperature sensitivity was also examined through simulation.

Keywords: capacitive pressure sensor, 9 DOF, 10 DOF, sensor, capacitive, inertial measurement unit, IMU, inertial navigation system, INS

Procedia PDF Downloads 515
4655 A Survey on a Critical Infrastructure Monitoring Using Wireless Sensor Networks

Authors: Khelifa Benahmed, Tarek Benahmed

Abstract:

There are diverse applications of wireless sensor networks (WSNs) in the real world, typically invoking some kind of monitoring, tracking, or controlling activities. In an application, a WSN is deployed over the area of interest to sense and detect the events and collect data through their sensors in a geographical area and transmit the collected data to a Base Station (BS). This paper presents an overview of the research solutions available in the field of environmental monitoring applications, more precisely the problems of critical area monitoring using wireless sensor networks.

Keywords: critical infrastructure monitoring, environment monitoring, event region detection, wireless sensor networks

Procedia PDF Downloads 317
4654 Thermal Stability and Insulation of a Cement Mixture Using Graphene Oxide Nanosheets

Authors: Nasser A. M. Habib

Abstract:

The impressive physical properties of graphene derivatives, including thermal properties, have made them an attractive addition to advanced construction nanomaterial. In this study, we investigated the impact of incorporating low amounts of graphene oxide (GO) into cement mixture nanocomposites on their heat storage and thermal stability. The composites were analyzed using Fourier transmission infrared, thermo-gravimetric analysis, and field emission scanning electron microscopy. Results showed that GO significantly improved specific heat by 30%, reduced thermal conductivity by 15%, and reduced thermal decomposition to only 3% at a concentration of 1.2 wt%. These findings suggest that the cement mixture can withstand high temperatures and may be suitable for specific applications requiring thermal stability and insulation properties.

Keywords: cement mixture composite, graphene oxide, thermal decomposition, thermal conductivity

Procedia PDF Downloads 28
4653 Maximization of Lifetime for Wireless Sensor Networks Based on Energy Efficient Clustering Algorithm

Authors: Frodouard Minani

Abstract:

Since last decade, wireless sensor networks (WSNs) have been used in many areas like health care, agriculture, defense, military, disaster hit areas and so on. Wireless Sensor Networks consist of a Base Station (BS) and more number of wireless sensors in order to monitor temperature, pressure, motion in different environment conditions. The key parameter that plays a major role in designing a protocol for Wireless Sensor Networks is energy efficiency which is a scarcest resource of sensor nodes and it determines the lifetime of sensor nodes. Maximizing sensor node’s lifetime is an important issue in the design of applications and protocols for Wireless Sensor Networks. Clustering sensor nodes mechanism is an effective topology control approach for helping to achieve the goal of this research. In this paper, the researcher presents an energy efficiency protocol to prolong the network lifetime based on Energy efficient clustering algorithm. The Low Energy Adaptive Clustering Hierarchy (LEACH) is a routing protocol for clusters which is used to lower the energy consumption and also to improve the lifetime of the Wireless Sensor Networks. Maximizing energy dissipation and network lifetime are important matters in the design of applications and protocols for wireless sensor networks. Proposed system is to maximize the lifetime of the Wireless Sensor Networks by choosing the farthest cluster head (CH) instead of the closest CH and forming the cluster by considering the following parameter metrics such as Node’s density, residual-energy and distance between clusters (inter-cluster distance). In this paper, comparisons between the proposed protocol and comparative protocols in different scenarios have been done and the simulation results showed that the proposed protocol performs well over other comparative protocols in various scenarios.

Keywords: base station, clustering algorithm, energy efficient, sensors, wireless sensor networks

Procedia PDF Downloads 109
4652 Field Study for Evaluating Winter Thermal Performance of Auckland School Buildings

Authors: Bin Su

Abstract:

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only needs heating during the winter. The Auckland school building thermal design should more focus on winter thermal performance and indoor thermal comfort for energy efficiency. This field study of testing indoor and outdoor air temperatures, relative humidity and indoor surface temperatures of three classrooms with different envelopes were carried out in the Avondale College during the winter months in 2013. According to the field study data, this study is to compare and evaluate winter thermal performance and indoor thermal conditions of school buildings with different envelopes.

Keywords: building envelope, building mass effect, building thermal comfort, building thermal performance, school building

Procedia PDF Downloads 390
4651 A Study on Using Network Coding for Packet Transmissions in Wireless Sensor Networks

Authors: Rei-Heng Cheng, Wen-Pinn Fang

Abstract:

A wireless sensor network (WSN) is composed by a large number of sensors and one or a few base stations, where the sensor is responsible for detecting specific event information, which is sent back to the base station(s). However, how to save electricity consumption to extend the network lifetime is a problem that cannot be ignored in the wireless sensor networks. Since the sensor network is used to monitor a region or specific events, how the information can be reliably sent back to the base station is surly important. Network coding technique is often used to enhance the reliability of the network transmission. When a node needs to send out M data packets, it encodes these data with redundant data and sends out totally M + R packets. If the receiver can get any M packets out from these M + R packets, it can decode and get the original M data packets. To transmit redundant packets will certainly result in the excess energy consumption. This paper will explore relationship between the quality of wireless transmission and the number of redundant packets. Hopefully, each sensor can overhear the nearby transmissions, learn the wireless transmission quality around it, and dynamically determine the number of redundant packets used in network coding.

Keywords: energy consumption, network coding, transmission reliability, wireless sensor networks

Procedia PDF Downloads 362
4650 Thermal Fatigue Behavior of Austenitic Stainless Steels

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Continually increasing working temperature and growing need for greater efficiency and reliability of automotive exhaust require systematic investigation into the thermal fatigue properties especially of high temperature stainless steels. In this study, thermal fatigue properties of 300 series austenitic stainless steels have been evaluated in the temperature ranges of 200-800°C and 200-900°C. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. Load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property.

Keywords: austenitic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation

Procedia PDF Downloads 349
4649 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control

Authors: Sung-Jun Yoo, Kazuhide Ito

Abstract:

In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.

Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality

Procedia PDF Downloads 323
4648 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks

Authors: N. Nalini, Lokesh B. Bhajantri

Abstract:

In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.

Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology

Procedia PDF Downloads 422
4647 A Sensor Placement Methodology for Chemical Plants

Authors: Omid Ataei Nia, Karim Salahshoor

Abstract:

In this paper, a new precise and reliable sensor network methodology is introduced for unit processes and operations using the Constriction Coefficient Particle Swarm Optimization (CPSO) method. CPSO is introduced as a new search engine for optimal sensor network design purposes. Furthermore, a Square Root Unscented Kalman Filter (SRUKF) algorithm is employed as a new data reconciliation technique to enhance the stability and accuracy of the filter. The proposed design procedure incorporates precision, cost, observability, reliability together with importance-of-variables (IVs) as a novel measure in Instrumentation Criteria (IC). To the best of our knowledge, no comprehensive approach has yet been proposed in the literature to take into account the importance of variables in the sensor network design procedure. In this paper, specific weight is assigned to each sensor, measuring a process variable in the sensor network to indicate the importance of that variable over the others to cater to the ultimate sensor network application requirements. A set of distinct scenarios has been conducted to evaluate the performance of the proposed methodology in a simulated Continuous Stirred Tank Reactor (CSTR) as a highly nonlinear process plant benchmark. The obtained results reveal the efficacy of the proposed method, leading to significant improvement in accuracy with respect to other alternative sensor network design approaches and securing the definite allocation of sensors to the most important process variables in sensor network design as a novel achievement.

Keywords: constriction coefficient PSO, importance of variable, MRMSE, reliability, sensor network design, square root unscented Kalman filter

Procedia PDF Downloads 137