Search results for: the microwave spectra
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1140

Search results for: the microwave spectra

900 Isolation and Characterization of Collagen from Chicken Feet

Authors: P. Hashim, M. S. Mohd Ridzwan, J. Bakar

Abstract:

Collagen was isolated from chicken feet by using papain and pepsin enzymes in acetic acid solution at 4°C for 24h with a yield of 18.16% and 22.94% by dry weight, respectively. Chemical composition and characteristics of chicken feet collagen such as amino acid composition, SDS-PAGE patterns, FTIR spectra and thermal properties were evaluated. The chicken feet collagen is rich in the amino acids glycine, glutamic acid, proline and hydroxyproline. Electrophoresis pattern demonstrated two distinct α-chains (α1 and α2) and β chain, indicating that type I collagen is a major component of chicken feet collagen. The thermal stability of collagen isolated by papain and pepsin revealed stable denaturation temperatures of 48.40 and 53.35°C, respectively. The FTIR spectra of both collagens were similar with amide regions in A, B, I, II, and III. The study demonstrated that chicken feet collagen using papain isolation method is possible as commercial alternative ingredient.

Keywords: chicken feet, collagen, papain, pepsin

Procedia PDF Downloads 384
899 Monte Carlo Simulation of X-Ray Spectra in Diagnostic Radiology and Mammography Using MCNP4C

Authors: Sahar Heidary, Ramin Ghasemi Shayan

Abstract:

The overall goal Monte Carlo N-atom radioactivity transference PC program (MCNP4C) was done for the regeneration of x-ray groups in diagnostic radiology and mammography. The electrons were transported till they slow down and stopover in the target. Both bremsstrahlung and characteristic x-ray creation were measured in this study. In this issue, the x-ray spectra forecast by several computational models recycled in the diagnostic radiology and mammography energy kind have been calculated by appraisal with dignified spectra and their outcome on the scheming of absorbed dose and effective dose (ED) told to the adult ORNL hermaphroditic phantom quantified. This comprises practical models (TASMIP and MASMIP), semi-practical models (X-rayb&m, X-raytbc, XCOMP, IPEM, Tucker et al., and Blough et al.), and Monte Carlo modeling (EGS4, ITS3.0, and MCNP4C). Images got consuming synchrotron radiation (SR) and both screen-film and the CR system were related with images of the similar trials attained with digital mammography equipment. In sight of the worthy feature of the effects gained, the CR system was used in two mammographic inspections with SR. For separately mammography unit, the capability acquiesced bilateral mediolateral oblique (MLO) and craniocaudal(CC) mammograms attained in a woman with fatty breasts and a woman with dense breasts. Referees planned the common groups and definite absences that managed to a choice to miscarry the part that formed the scientific imaginings.

Keywords: mammography, monte carlo, effective dose, radiology

Procedia PDF Downloads 101
898 Multi-Band Frequency Conversion Scheme with Multi-Phase Shift Based on Optical Frequency Comb

Authors: Tao Lin, Shanghong Zhao, Yufu Yin, Zihang Zhu, Wei Jiang, Xuan Li, Qiurong Zheng

Abstract:

A simple operated, stable and compact multi-band frequency conversion and multi-phase shift is proposed to satisfy the demands of multi-band communication and radar phase array system. The dual polarization quadrature phase shift keying (DP-QPSK) modulator is employed to support the LO sideband and the optical frequency comb simultaneously. Meanwhile, the fiber is also used to introduce different phase shifts to different sidebands. The simulation result shows that by controlling the DC bias voltages and a C band microwave signal with frequency of 4.5 GHz can be simultaneously converted into other signals that cover from C band to K band with multiple phases. It also verifies that the multi-band and multi-phase frequency conversion system can be stably performed based on current manufacturing art and can well cope with the DC drifting. It should be noted that the phase shift of the converted signal also partly depends of the length of the optical fiber.

Keywords: microwave photonics, multi-band frequency conversion, multi-phase shift, conversion efficiency

Procedia PDF Downloads 223
897 Mechanical Simulation with Electrical and Dimensional Tests for AISHa Containment Chamber

Authors: F. Noto, G. Costa, L. Celona, F. Chines, G. Ciavola, G. Cuttone, S. Gammino, O. Leonardi, S. Marletta, G. Torrisi

Abstract:

At Istituto Nazionale di Fisica Nucleare – Laboratorio Nazionale del Sud (INFN-LNS), a broad experience in the design, construction and commissioning of ECR and microwave ion sources is available. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations, which should be fast and easy. It is intended to be a multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. It should provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. The source is potentially interesting for any hadron therapy facility using heavy ions. In this paper, we analyzed the dimensional test and electrical test about an innovative solution for the containment chamber that allows us to solve our isolation and structural problems.

Keywords: FEM analysis, electron cyclotron resonance ion source, dielectrical measurement, hadron therapy

Procedia PDF Downloads 265
896 Green Synthesis of Zinc Oxide Nano Particles Using Tomato (Lycopersicon esculentum) Extract and Its Application for Solar Cell

Authors: Prasanta Sutradhar, Mitali Saha

Abstract:

With an increasing awareness of green and clean energy, zinc oxide based solar cells were found to be suitable candidates for cost-effective and environmentally friendly energy conversion devices. In this work, we have reported the green synthesis of zinc oxide nanoparticles (ZnO) by thermal method and under microwave irradiation using the aqueous extract of tomatoes as non-toxic and ecofriendly reducing material. The synthesized ZnO nanoparticles were characterised by UV-Visible spectroscopy (UV-Vis), infra-red spectroscopy (IR), particle size analyser (DLS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X- ray diffraction study (XRD). A series of ZnO nanocomposites with titanium dioxide nanoparticles (TiO2) and graphene oxide (GO) were prepared for photovoltaic application. Structural and morphological studies of these nanocomposites were carried out using UV-vis, SEM, XRD, and AFM. The current-voltage measurements of the nanocomposites demonstrated enhanced power conversion efficiency of 6.18% in case of ZnO/GO/TiO2 nanocomposite.

Keywords: ZnO, green synthesis, microwave, nanocomposites, I-V characteristics

Procedia PDF Downloads 371
895 Catalyst Assisted Microwave Plasma for NOx Formation

Authors: Babak Sadeghi, Rony Snyders, Marie-Paule.Delplancke-Ogletree

Abstract:

Nitrogen fixation (NF) is one of the crucial industrial processes. Many attempts have been made in order to artificially fix nitrogen, and among them, the Haber-Bosch’s (H-B) process is widely used. However, it presents two major drawbacks: huge fossil feedstock consumption and noticeable greenhouse gases emission. It is, therefore, necessary to develop alternatives. Plasma technology, as an inherent “green” technology, is considered to have a great potential for reducing the environmental impacts and improving the energy efficiency of the NF process. In this work, we have studied the catalyst assisted microwave plasma for NF application. Heterogeneous catalysts of MoO₃, with various loads 0, 5, 10, 20, and 30 wt%, supported on γ-alumina were prepared by conventional wet impregnation. Crystallinity, surface area, pore size, and microstructure were obtained by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption isotherm, Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The XRD patterns of calcined alumina confirm the γ- phase. Characteristic picks of MoO₃ could not be observed for low loads (< 20 wt%), likely indicating a high dispersion of metal oxide over the support. The specific surface area along with pores size are decreasing with increasing calcination temperature and MoO₃ loading. The MoO₃ loading does not modify the microstructure. TEM and SEM results for loading inferior to 20 wt% are coherent with a monolayer of MoO₃ on the support as proposed elsewhere. For loading of 20 wt% and more, TEM and Electron diffraction (ED) show nanocrystalline ₃-D MoO₃ particles. The catalytic performances of these catalysts were investigated in the post-discharge of a microwave plasma for NOx formation from N₂/O₂ mixtures. The plasma is sustained by a surface wave launched in a quartz tube via a surfaguide supplied by a 2.45 GHz microwave generator in pulse mode. In-situ identification and quantification of the products were carried out by Fourier-transform infrared spectroscopy (FTIR) in the post-discharge region. FTIR analysis of the exhausted gas reveal NO and NO₂ bands in presence of catalyst while only NO band were assigned without catalyst. On the other hand, in presence of catalyst, a 10% increase of NOₓ formation and of 20% increase in energy efficiency are observed.

Keywords: γ-Al2O₃-MoO₃, µ-waveplasma, N2 fixation, Plasma-catalysis, Plasma diagnostic

Procedia PDF Downloads 149
894 Investigation of Dry-Blanching and Freezing Methods of Fruits

Authors: Epameinondas Xanthakis, Erik Kaunisto, Alain Le-Bail, Lilia Ahrné

Abstract:

Fruits and vegetables are characterized as perishable food matrices due to their short shelf life as several deterioration mechanisms are being involved. Prior to the common preservation methods like freezing or canning, fruits and vegetables are being blanched in order to inactivate deteriorative enzymes. Both conventional blanching pretreatments and conventional freezing methods hide drawbacks behind their beneficial impacts on the preservation of those matrices. Conventional blanching methods may require longer processing times, leaching of minerals and nutrients due to the contact with the warm water which in turn leads to effluent production with large BOD. An important issue of freezing technologies is the size of the formed ice crystals which is also critical for the final quality of the frozen food as it can cause irreversible damage to the cellular structure and subsequently to degrade the texture and the colour of the product. Herein, the developed microwave blanching methodology and the results regarding quality aspects and enzyme inactivation will be presented. Moreover, heat transfer phenomena, mass balance, temperature distribution, and enzyme inactivation (such as Pectin Methyl Esterase and Ascorbic Acid Oxidase) of our microwave blanching approach will be evaluated based on measurements and computer modelling. The present work is part of the COLDμWAVE project which aims to the development of an innovative environmentally sustainable process for blanching and freezing of fruits and vegetables with improved textural and nutritional quality. In this context, COLDµWAVE will develop tailored equipment for MW blanching of vegetables that has very high energy efficiency and no water consumption. Furthermore, the next steps of this project regarding the development of innovative pathways in MW assisted freezing to improve the quality of frozen vegetables, by exploring in depth previous results acquired by the authors, will be presented. The application of MW assisted freezing process on fruits and vegetables it is expected to lead to improved quality characteristics compared to the conventional freezing. Acknowledgments: COLDμWAVE has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grand agreement No 660067.

Keywords: blanching, freezing, fruits, microwave blanching, microwave

Procedia PDF Downloads 234
893 Calibration of Site Effect Parameters in the GMPM BSSA 14 for the Region of Spain

Authors: Gonzalez Carlos, Martinez Fransisco

Abstract:

The creation of a seismic prediction model that considers all the regional variations and perfectly adjusts its results to the response spectra is very complicated. To achieve statistically acceptable results, it is necessary to process a sufficiently robust data set, and even if high efficiencies are achieved, this model will only work properly in this region. However, when using it in other regions, differences are found due to different parameters that have not been calibrated to other regions, such as the site effect. The fact that impedance contrasts, as well as other factors belonging to the site, have a great influence on the local response is well known, which is why this work, using the residual method, is intended to establish a regional calibration of the corresponding parameters site effect for the Spain region in the global GMPM BSSA 14.

Keywords: GMPM, seismic prediction equations, residual method, response spectra, impedance contrast

Procedia PDF Downloads 62
892 Microwave Accelerated Simultaneous Distillation –Extraction: Preparative Recovery of Volatiles from Food Products

Authors: Ferhat Mohamed, Boukhatem Mohamed Nadjib, Chemat Farid

Abstract:

Simultaneous distillation–extraction (SDE) is routinely used by analysts for sample preparation prior to gas chromatography analysis. In this work, a new process design and operation for microwave assisted simultaneous distillation – solvent extraction (MW-SDE) of volatile compounds was developed. Using the proposed method, isolation, extraction and concentration of volatile compounds can be carried out in a single step. To demonstrate its feasibility, MW-SDE was compared with the conventional technique, Simultaneous distillation–extraction (SDE), for gas chromatography-mass spectrometry (GC-MS) analysis of volatile compounds in a fresh orange juice and a dry spice “carvi seeds”. SDE method required long time (3 h) to isolate the volatile compounds, and large amount of organic solvent (200 mL of hexane) for further extraction, while MW-SDE needed little time (only 30 min) to prepare sample, and less amount of organic solvent (10 mL of hexane). These results show that MW-SDE–GC-MS is a simple, rapid and solvent-less method for determination of volatile compounds from aromatic plants.

Keywords: essential oil, extraction, distillation, carvi seeds

Procedia PDF Downloads 534
891 Experimental Study of Exhaust Muffler System for Direct-Injection Gasoline Engine

Authors: Abdallah F. Abd El-Mohsen, Ahmed A. Abdelsamee, Nouby M. Ghazaly

Abstract:

Engine exhaust noise is considered one of the largest sources of vehicle exterior noise. Further reduction of noise from the vehicle exhaust system will be required, as the vehicle exterior noise regulations become stricter. Therefore, the present study has been carried out to illustrate the role of engine operating parameters and exhaust system construction factors on exhaust noise emitted. The measurements carried out using different exhaust systems, which are mainly used in today’s vehicle. The effect of engine speed on the spectra level of exhaust noise is recorded at engine speeds of 900 rpm, 1800 rpm, 2700, rpm 3600 rpm and 4500 rpm. The results indicate that the increase of engine speed causes a significant increase in the spectrum level of exhaust noise. The increase in the number of the outlet of the expansion chamber also reduces the overall level of exhaust noise.

Keywords: exhaust system, expansion chamber, engine speed, spectra

Procedia PDF Downloads 134
890 Cr³⁺/SiO₄⁴⁻ Codoped Hydroxyapatite Nanorods: Fabrication and Microstructure Analysis

Authors: Ammar Z. Alshemary, Zafer Evis

Abstract:

In this study, nanorods of Cr³⁺/SiO₄⁴⁻ codoped hydroxyapatite (Cr³⁺/SiO₄⁴⁻-HA) were synthesized successfully and rapidly through microwave irradiation technique, using (Ca(NO₃)₂•4H₂O), ((NH₄)₂HPO₄), (SiC₈H₂₀O₄) and (Cr(NO₃)₃.9H₂O) as source materials for Ca²⁺, PO₄³⁻, SiO₄⁴⁻ and Cr³⁺ ions, respectively. The impact of dopants on the phase formation and microstructure of the powders were investigated by means of X-ray diffraction (XRD), Fourier transform infrared spectrum analysis (FT-IR) and Field emission electron microscopy (FESEM) techniques. XRD analysis showed that with an incorporation of Cr³⁺/SiO₄⁴⁻ ions into HA structure resulted in peak broadening and reduced peak height due to the amorphous nature and reduced crystallinity of the resulting HA powder. FTIR spectroscopy revealed the existence of the different vibrational modes matching to phosphates and hydroxyl groups. The FESEM analysis showed a change in the crystal shape from spherical to rod shaped particles upon Cr³⁺ doping into the crystal structure. Acknowledgments: This study was supported by Karabük University (Project no. KBÜBAP-17-YD-144). The authors would like to thank for support.

Keywords: nano-hydroxyapatite, microwave, dopants, characterization, microstructure

Procedia PDF Downloads 196
889 Miniaturized and Compact Monopole Corner Antenna with a Periodic Slot Truncated and T-Inverted Stub-Tuning for Ultra Wideband Applications

Authors: R. Dakir, J. Zbitou, Ahmed Mouhsen, A. Errkik, A. Tajmouati, M. Latrach

Abstract:

The design and analysis of a new compact and miniaturized monopole antenna structure for ultra wideband (UWB) wireless applications are presented and suggested in this paper. The proposed antenna structure is based on corner radiator patch with T-shaped slot and fed by mictostrip feed line with a partial ground plane combined a periodic rectangular slot and inverted T-stub tuning to increase the bandwidth. The design parameters and the performance of the suggested antenna are investigated by using 'CST Microwave Studio' and Advanced Design System. The final prototype of the proposed antenna operates from 3GHZ to 25GHz, corresponding to wide input impedance bandwidth around (157.14%) with a size of 16*24mm2 and can be easily integrated with radio-frequency or microwave circuits with low cost manufacturing. Details of the UWB antenna design and both simulated and measured results are described and discussed.

Keywords: UWB, T-shaped slots, improvement, bandwidth, stub tuning

Procedia PDF Downloads 272
888 Complementary Split Ring Resonator-Loaded Microstrip Patch Antenna Useful for Microwave Communication

Authors: Subal Kar, Madhuja Ghosh, Amitesh Kumar, Arijit Majumder

Abstract:

Complementary split-ring resonator (CSRR) loaded microstrip square patch antenna has been optimally designed with the help of high frequency structure simulator (HFSS). The antenna has been fabricated on the basis of the simulation design data and experimentally tested in anechoic chamber to evaluate its gain, bandwidth, efficiency and polarization characteristics. The CSRR loaded microstrip patch antenna has been found to realize significant size miniaturization (to the extent of 24%) compared to the conventional-type microstrip patch antenna both operating at the same frequency (5.2 GHz). The fabricated antenna could realize a maximum gain of 4.17 dB, 10 dB impedance bandwidth of 34 MHz, efficiency 50.73% and with maximum cross-pol of 10.56 dB down at the operating frequency. This practically designed antenna with its miniaturized size is expected to be useful for airborne and space borne applications at microwave frequency.

Keywords: split ring resonator, metamaterial, CSRR loaded patch antenna, microstrip patch antenna, LC resonator

Procedia PDF Downloads 332
887 High Electrochemical Performance of Electrode Material Based On Mesoporous RGO@(Co,Mn)3O4 Nanocomposites

Authors: Charmaine Lamiel, Van Hoa Nguyen, Deivasigamani Ranjith Kumar, Jae-Jin Shim

Abstract:

The quest for alternative sources of energy storage had led to the exploration on supercapacitors. Hybrid supercapacitors, a combination of carbon-based material and transition metals, had yielded long and improved cycle life as well as high energy and power densities. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an active electrode material. The advantages of this method include the non-use of reducing agents and acidic medium, and no further post-heat treatment. Additionally, it offers shorter reaction time at low temperature and low power requirement, which allows low fabrication and energy cost. The as-prepared electrode material demonstrated a high capacitance of 953 F•g−1 at 1 A•g−1 in a 6 M KOH electrolyte. Furthermore, the electrode exhibited a high energy density of 76.2 Wh•kg−1 (power density of 720 W•kg−1) and a high power density of 7200 W•kg−1 (energy density of 38 Wh•kg−1). The successful synthesis was considered to be efficient and cost-effective, with very promising electrochemical performance that can be used as an active material in supercapacitors.

Keywords: cobalt manganese oxide, electrochemical, graphene, microwave synthesis, supercapacitor

Procedia PDF Downloads 327
886 Sorghum Grains Grading for Food, Feed, and Fuel Using NIR Spectroscopy

Authors: Irsa Ejaz, Siyang He, Wei Li, Naiyue Hu, Chaochen Tang, Songbo Li, Meng Li, Boubacar Diallo, Guanghui Xie, Kang Yu

Abstract:

Background: Near-infrared spectroscopy (NIR) is a non-destructive, fast, and low-cost method to measure the grain quality of different cereals. Previously reported NIR model calibrations using the whole grain spectra had moderate accuracy. Improved predictions are achievable by using the spectra of whole grains, when compared with the use of spectra collected from the flour samples. However, the feasibility for determining the critical biochemicals, related to the classifications for food, feed, and fuel products are not adequately investigated. Objectives: To evaluate the feasibility of using NIRS and the influence of four sample types (whole grains, flours, hulled grain flours, and hull-less grain flours) on the prediction of chemical components to improve the grain sorting efficiency for human food, animal feed, and biofuel. Methods: NIR was applied in this study to determine the eight biochemicals in four types of sorghum samples: hulled grain flours, hull-less grain flours, whole grains, and grain flours. A total of 20 hybrids of sorghum grains were selected from the two locations in China. Followed by NIR spectral and wet-chemically measured biochemical data, partial least squares regression (PLSR) was used to construct the prediction models. Results: The results showed that sorghum grain morphology and sample format affected the prediction of biochemicals. Using NIR data of grain flours generally improved the prediction compared with the use of NIR data of whole grains. In addition, using the spectra of whole grains enabled comparable predictions, which are recommended when a non-destructive and rapid analysis is required. Compared with the hulled grain flours, hull-less grain flours allowed for improved predictions for tannin, cellulose, and hemicellulose using NIR data. Conclusion: The established PLSR models could enable food, feed, and fuel producers to efficiently evaluate a large number of samples by predicting the required biochemical components in sorghum grains without destruction.

Keywords: FT-NIR, sorghum grains, biochemical composition, food, feed, fuel, PLSR

Procedia PDF Downloads 39
885 An Easy-Applicable Method for In situ Silver Nanoparticles Preparation into Wool Fibers

Authors: Salwa Mowafi, Mohamed Rehan, Hany Kafafy

Abstract:

In this study, three different systems including room temperature, conventional water bath heating and microwave irradiation technique will be employed in the fabrication of silver nanoparticle-wool fibers. The silver nanoparticles will be synthesized in-situ incorporated into wool fibers under redox active bio-template of wool protein which facilitates the reduction of Ag+ to nanoparticulate Ag0. Silver NPs incorporated wool fiber will be characterized by scanning electron microscopy, energy dispersive X-ray, FTIR, TGA, silver content and X-ray photoelectron spectroscopy. The mechanism of binding Ag NPs in-situ incorporated wool fibers matrix will be discussed. The effect of silver nanoparticles on the coloration, antimicrobial, UV-protection and catalytic properties of the wool fibers will be evaluated. The overall results of this study indicate that the Ag NPs in-situ incorporated wool fibers will be applied as colorants for wool fibers with improving in its multi-functionality properties. So, this study provides a simple approach for innovative protein fibers design by applying the optical properties of Plasmonic noble metal nanoparticles.

Keywords: microwave irradiation technique, multi-functionality properties, silver nanoparticles, wool fibers

Procedia PDF Downloads 183
884 Effect of Pretreatment and Drying Method on Selected Quality Parameters of Dried Bell Pepper

Authors: Toyosi Yewande Tunde-Akintunde, Grace Oluwatoyin Ogunlakin, Bosede Folake Olanipekun

Abstract:

Peppers are excellent sources of nutrients but its high moisture content makes it susceptible to spoilage. Drying, a common processing method, results in a reduction of these nutrients in the final product. Pre-treatment of pepper before drying can be used to reduce the level of degradation of nutrients. Thus this study investigated the effect of pre-treatment (hot water blanching and soaking in brine-sodium chloride) and drying methods (oven, microwave and sun) on selected quality parameters (proximate composition, capsaicin, reducing sugar and phenolic content, pH, total solid (TS), Titratable acidity (TA), water absorption capacity (WAC) and colour) of pepper. The protein and moisture content value ranged from 9.09 to 10.23% and 5.63 to 8.48% respectively. Sun dried samples had the highest value while oven dried samples had the lowest. Brine treated samples had higher protein but lower moisture content than blanched samples. Capsaicin, reducing sugar and phenolic content values ranged from 0.68 to 0.87 mg/dm3; 3.18 to 3.79 µg/ml; and 40.67 to 84.01 mg GAE/100 g d.m respectively. The sun dried samples had higher values while the lowest values were from microwave dried samples. The brine treated samples had higher values in capsaicin while the blanched samples had higher reducing sugar and phenolic contents. The values of L, a* and b* for the dried pepper varied from 58.76 to 63.13; 7.09 to 7.34; and 11.79 to 12.36 respectively. Oven dried samples had the lowest values for a*, while its L values were the highest. The L and a* values for brine treated samples were higher than blanched samples. The pre-treatment and drying method considered resulted in different values of the quality parameters considered which indicates that drying and pre-treatment has an effect on the quality of the final dried pepper samples.

Keywords: Bell pepper, microwave drying, oven drying, quality, sun drying

Procedia PDF Downloads 310
883 Study of the Ambiguity of Effective Hamiltonian for the Fundamental Degenerate States V3 of the Molecule 12CD4

Authors: Ouardi Okkacha, Kaarour Abedlkrim, Meskine Mohamed

Abstract:

The effective Hamiltonians are widely used in molecular spectroscopy for the interpretation of the vibration-rotation spectra. Their construction is an ambiguous procedure due to the existence of unitary transformations that change the effective Hamiltonian but do not change its eigenvalues. As a consequence of this ambiguity, it may happen that some parameters of effective Hamiltonians cannot be recovered from experimental data in a unique way. The type of admissible transformations which keeps the operator form of the effective Hamiltonian unaltered and the number of empirically determinable parameters strongly depend on the symmetry type of a molecule (asymmetric top, spherical top, and so on) and on the degeneracy of the vibrational state. In this work, we report the study of the ambiguity of effective Hamiltonian for the fundamental degenerate states v3 of the Molecule 12CD4.

Keywords: 12CD4, high-resolution infrared spectra, tetrahedral tensorial formalism, vibrational states, rovibrational line position analysis, XTDS, SPVIEW

Procedia PDF Downloads 378
882 Synthesis of Brominated Pyrazoline Derived from Chalcone and Its Antimicrobial Activity

Authors: Annisa I. Reza, Jasril Karim

Abstract:

Despite the availability of antimicrobial agents in the market, the urge to study and find other chemical compounds with the better potential of replacing them still tempting the scientists. This experiment is in the aim to explore a novel brominated pyrazoline ring which was made from intermediate chalcone as a candidate to answer the challenge. Using green chemistry approach by microwave irradiation from domestic oven, both known chalcone and 5-(2-bromophenyl)-3-(naphthalen-1-yl)-4,5-dihydro-1H-pyrazole were successfully synthesized. Pyrazoline’s structure was confirmed based on UV, IR, ¹H-NMR, ¹³C-NMR and MS and together with its intermediate were examined against some microorganisms (Bacillus subtilis, Escherichia coli, and Candida albicans) under agar diffusion method. The results collected during experiment revealed that both tested compounds showed weak activity on B.subtilis which was proven by a zone of inhibitions, while there was no zone of inhibitions observed in E. coli and C. albicans. This is suggested because of the bulky structure around pyrazoline could not provide the main ring to interact with microbial’s cell wall. The study shows that the proposed compound had the low capability as a promising antimicrobial agent, yet it still enriches the information about pyrazoline ring.

Keywords: antimicrobial, chalcone, microwave irradiation, pyrazoline

Procedia PDF Downloads 122
881 A Microwave Heating Model for Endothermic Reaction in the Cement Industry

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Microwave technology has been gaining importance in contributing to decarbonization processes in high energy demand industries. Despite the several numerical models presented in the literature, a proper Verification and Validation exercise is still lacking. This is important and required to evaluate the physical process model accuracy and adequacy. Another issue addresses impedance matching, which is an important mechanism used in microwave experiments to increase electromagnetic efficiency. Such mechanism is not available in current computational tools, thus requiring an external numerical procedure. A numerical model was implemented to study the continuous processing of limestone with microwave heating. This process requires the material to be heated until a certain temperature that will prompt a highly endothermic reaction. Both a 2D and 3D model were built in COMSOL Multiphysics to solve the two-way coupling between Maxwell and Energy equations, along with the coupling between both heat transfer phenomena and limestone endothermic reaction. The 2D model was used to study and evaluate the required numerical procedure, being also a benchmark test, allowing other authors to implement impedance matching procedures. To achieve this goal, a controller built in MATLAB was used to continuously matching the cavity impedance and predicting the required energy for the system, thus successfully avoiding energy inefficiencies. The 3D model reproduces realistic results and therefore supports the main conclusions of this work. Limestone was modeled as a continuous flow under the transport of concentrated species, whose material and kinetics properties were taken from literature. Verification and Validation of the coupled model was taken separately from the chemical kinetic model. The chemical kinetic model was found to correctly describe the chosen kinetic equation by comparing numerical results with experimental data. A solution verification was made for the electromagnetic interface, where second order and fourth order accurate schemes were found for linear and quadratic elements, respectively, with numerical uncertainty lower than 0.03%. Regarding the coupled model, it was demonstrated that the numerical error would diverge for the heat transfer interface with the mapped mesh. Results showed numerical stability for the triangular mesh, and the numerical uncertainty was less than 0.1%. This study evaluated limestone velocity, heat transfer, and load influence on thermal decomposition and overall process efficiency. The velocity and heat transfer coefficient were studied with the 2D model, while different loads of material were studied with the 3D model. Both models demonstrated to be highly unstable when solving non-linear temperature distributions. High velocity flows exhibited propensity to thermal runways, and the thermal efficiency showed the tendency to stabilize for the higher velocities and higher filling ratio. Microwave efficiency denoted an optimal velocity for each heat transfer coefficient, pointing out that electromagnetic efficiency is a consequence of energy distribution uniformity. The 3D results indicated the inefficient development of the electric field for low filling ratios. Thermal efficiencies higher than 90% were found for the higher loads and microwave efficiencies up to 75% were accomplished. The 80% fill ratio was demonstrated to be the optimal load with an associated global efficiency of 70%.

Keywords: multiphysics modeling, microwave heating, verification and validation, endothermic reactions modeling, impedance matching, limestone continuous processing

Procedia PDF Downloads 115
880 Evaluation of Synthesis and Structure Elucidation of Some Benzimidazoles as Antimicrobial Agents

Authors: Ozlem Temiz Arpaci, Meryem Tasci, Hakan Goker

Abstract:

Benzimidazole, a structural isostere of indol and purine nuclei that can interact with biopolymers, can be identified as master key. So that benzimidazole compounds are important fragments in medicinal chemistry because of their wide range of biological activities including antimicrobial activity. We planned to synthesize some benzimidazole compounds for developing new antimicrobial drug candidates. In this study, we put some heterocyclic rings on second position and an amidine group on the fifth position of benzimidazole ring and synthesized them using a multiple step procedure. For the synthesis of the compounds, as the first step, 4-chloro-3-nitrobenzonitrile was reacted with cyclohexylamine in dimethyl formamide. Imidate esters (compound 2) were then prepared with absolute ethanol saturated with dry HCl gas. These imidate esters which were not too stable were converted to compound 3 by passing ammonia gas through ethanol. At the Pd / C catalyst, the nitro group is reduced to the amine group (compound 4). Finally, various aldehyde derivatives were reacted with sodium metabisulfite addition products to give compound 5-20. Melting points were determined on a Buchi B-540 melting point apparatus in open capillary tubes and are uncorrected. Elemental analyses were done a Leco CHNS 932 elemental analyzer. 1H-NMR and 13C-NMR spectra were recorded on a Varian Mercury 400 MHz spectrometer using DMSO-d6. Mass spectra were acquired on a Waters Micromass ZQ using the ESI(+) method. The structures of them were supported by spectral data. The 1H-NMR, 13C NMR and mass spectra and elemental analysis results agree with those of the proposed structures. Antimicrobial activity studies of the synthesized compounds are under the investigation.

Keywords: benzimidazoles, synthesis, structure elucidation, antimicrobial

Procedia PDF Downloads 132
879 Impact of Sericin Treatment on Perfection Dyeing of Polyester Viscose Blend

Authors: Omaima G. Allam, O. A. Hakeim, K. Haggag, N. S. Elshemy

Abstract:

In the midst of the two decades the use of microwave dielectric warming in the field of science has transformed into a powerful methodology to redesign compound procedures. The potential benefit of the application of these modern methods of treatment emphasize so as to reach to optimum treatment conditions and the best results, especially hydrophobicity, moisture content and increase dyeing processing while maintaining the physical and chemical properties of each textile. Moreover, polyester fibres are sometimes spun together with natural fibres to produce a cloth with blended properties. So that at the present task, the polyester/viscose mix fabrics (60 /40) were pretreated with 4 g/l of KOH for 2 min in microwave irradiation with a liquor ratio 1:25. Subsequently fabrics were inundated with different concentrations of sericin (10, 30, 50 g/l). Treated fabrics were coloured with the commercial dyes samples: Reactive Red 84(Dye 1). C. I. Acid Blue 203(Dye 2) and C.I. Reactive violet 5 (Dye 3). Colour value was specified as well as fastness properties. Likewise, the physical properties of untreated and treated fabrics such as moisture content %, tensile strength, elongation % and were evaluated. The untreated and treated fabrics are described by infrared spectroscopy (FTIR) and scanning electron microscopy.

Keywords: polyester viscose blends fabric, sericin, dyes, colour value

Procedia PDF Downloads 211
878 Synthesis, Characterization of Pd Nanoparticle Supported on Amine-Functionalized Graphene and Its Catalytic Activity for Suzuki Coupling Reaction

Authors: Surjyakanta Rana, Sreekantha B. Jonnalagadda

Abstract:

Synthesis of well distributed Pd nanoparticles (3 – 7 nm) on organo amine-functionalized graphene is reported, which demonstrated excellent catalytic activity towards Suzuki coupling reaction. The active material was characterized by X-ray diffraction (XRD), BET surface area, X-ray photoelectron spectra (XPS), Fourier-transfer infrared spectroscopy (FTIR), Raman spectra, Scanning electron microscope (SEM), Transmittance electron microscopy (TEM) analysis and HRTEM. FT-IR revealed that the organic amine functional group was successfully grafted onto the graphene oxide surface. The formation of palladium nanoparticles was confirmed by XPS, TEM and HRTEM techniques. The catalytic activity in the coupling reaction was superb with 100% conversion and 98 % yield and also activity remained almost unaltered up to six cycles. Typically, an extremely high turnover frequency of 185,078 h-1 is observed in the C-C Suzuki coupling reaction using organo di-amine functionalized graphene as catalyst.

Keywords: Di-amine, graphene, Pd nanoparticle, suzuki coupling

Procedia PDF Downloads 347
877 Dy3+ Ions Doped Single and Mixed Alkali Fluoro Tungstunate Tellurite Glasses for Laser and White LED Applications

Authors: Allam Srinivasa Rao, Ch. Annapurna Devi, G. Vijaya Prakash

Abstract:

A new-fangled series of white light emitting 1 mol% of Dy3+ ions doped Single-Alklai and Mixed-Alkai fluoro tungstunate tellurite glasses have been prepared using melt quenching technique and their spectroscopic behaviour was investigated by studying XRD, optical absorption, photoluminescence and lifetime measurements. The bonding parameter studies reveal the ionic nature of the Dy-O bond in the present glasses. From the absorption spectra, the Judd–Ofelt (J-O) intensity parameters have been determined which are used to explore the nature of bonding and symmetry orientation of the Dy–ligand field environment. The evaluated J-O parameters (Ω_4>Ω_2>Ω_6) for all the glasses are following the same trend. The photoluminescence spectra of all the glasses exhibit two intensified peaks in blue and Yellow regions corresponding to the transitions 4F9/2→6H15/2 (483 nm) and 4F9/2→6H13/2 (575 nm) respectively. From the photoluminescence spectra, it is observed that the luminescence intensity is maximum for Dy3+ ion doped potassium combination of fluoro tungstunate tellurite glass (TeWK: 1Dy). The J-O intensity parameters have been used to determine the various radiative properties for the different emission transitions from the 4F9/2 fluorescent level. The highest emission cross-section and branching ratio values observed for the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions suggest the possible laser action in the visible region from these glasses. By using the experimental lifetimes (τ_exp) measured from the decay spectral features and radiative lifetimes (τ_R), the quantum efficiencies (η) for all the glasses have been evaluated. Among all the glasses, the potassium combined fluoro tungstunate tellurite (TeWK:1Dy) glass has the highest quantum efficiency (94.6%). The CIE colour chromaticity coordinates (x, y), (u, v), colour correlated temperature (CCT) and Y/B ratio were also estimated from the photoluminescence spectra for different compositions of glasses. The (x, y) and (u, v) chromaticity colour coordinates fall within the white light region and the white light can be tuned by varying the composition of the glass. From all these studies, we are suggesting that the 1 mol% of Dy3+ ions doped TeWK glass is more suitable for lasing and White-LED applications.

Keywords: dysprosium, Judd-Ofelt parameters, photo luminescence, tellurite glasses

Procedia PDF Downloads 199
876 Anaerobic Fermentation Process for Production of Biohydrogen from Pretreated Fruit Wastes

Authors: A. K. R. Gobinath, He Jianzhong, Kun-Lin Yang

Abstract:

Fruit waste was used as a feedstock to produce biohydrogen in this study. Fruit waste used in this study was collected from several fruit juice stalls in Singapore. Based on our observation, the fruit waste contained 35-40% orange, 10-20% watermelon, 10-15% apple, 10-15% pineapple, 1-5% mango. They were mixed with water (1:1 ratio based on wet biomass) and blended to attain homogenous mixtures. Later, fruit waste was subjected to one of the following pretreatments: autoclave (121 °C for 20min), microwave (20min) or both. After pretreatment, the total sugar concentration in the hydrolysate was high (>12g/l) when both autoclave and microwave were applied. In contrast, samples without pretreatment measured only less than 2g/l of sugar. While using these hydrolysates as carbon sources, Clostridium strain BOH3 produces 2526-3126 ml/l of hydrogen after 72h of anaerobic fermentation. The hydrogen yield was 295-300 ml/g of sugar which is close to the hydrogen yields from glucose (338 ml/gm) and xylose (330 ml/gm). Our HPLC analysis showed that fruit waste hydrolysate contained oligosugars (25-27%), sucrose (18-23%), fructose (25-30%), glucose (10-15%) and mannose (2-5%). Additionally, pretreatment led to the release of free amino acids (160-512 mg/l), calcium (7.8-12.9 ppm), magnesium (4.32-6.55 ppm), potassium (5.4-65.1 ppm) and sodium (0.4-0.5 ppm) into the hydrolysate. These nutrients were able to support strain-BOH3 to grow and produce high level of hydrogen. Notably, unlike other pretreatment methods (with strong acids and bases), these pretreatment techniques did not generate any inhibitors (e.g. furfural and phenolic acids) to suppress the hydrogen production. Interestingly, strain BOH3 can also ferment pretreated fruit waste slurry and produce hydrogen with a high yield (156-343 ml/gm fruit waste). While fermenting pretreated fruit waste slurry, strain-BOH3 excreted several saccharolytic enzymes majorly xylanase (1.84U/ml), amylase (1.10U/ml), pectinase (0.36U/ml) and cellulase (0.43U/ml). Due to expressions of these enzymes, strain BOH3 was able to directly utilize pretreated fruit waste hydrolysate and produces high-level of hydrogen.

Keywords: autoclave pretreatment, biohydrogen production, clostridial fermentation, fruit waste, and microwave pretreatment

Procedia PDF Downloads 508
875 Identification and Classification of Fiber-Fortified Semolina by Near-Infrared Spectroscopy (NIR)

Authors: Amanda T. Badaró, Douglas F. Barbin, Sofia T. Garcia, Maria Teresa P. S. Clerici, Amanda R. Ferreira

Abstract:

Food fortification is the intentional addition of a nutrient in a food matrix and has been widely used to overcome the lack of nutrients in the diet or increasing the nutritional value of food. Fortified food must meet the demand of the population, taking into account their habits and risks that these foods may cause. Wheat and its by-products, such as semolina, has been strongly indicated to be used as a food vehicle since it is widely consumed and used in the production of other foods. These products have been strategically used to add some nutrients, such as fibers. Methods of analysis and quantification of these kinds of components are destructive and require lengthy sample preparation and analysis. Therefore, the industry has searched for faster and less invasive methods, such as Near-Infrared Spectroscopy (NIR). NIR is a rapid and cost-effective method, however, it is based on indirect measurements, yielding high amount of data. Therefore, NIR spectroscopy requires calibration with mathematical and statistical tools (Chemometrics) to extract analytical information from the corresponding spectra, as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). PCA is well suited for NIR, once it can handle many spectra at a time and be used for non-supervised classification. Advantages of the PCA, which is also a data reduction technique, is that it reduces the data spectra to a smaller number of latent variables for further interpretation. On the other hand, LDA is a supervised method that searches the Canonical Variables (CV) with the maximum separation among different categories. In LDA, the first CV is the direction of maximum ratio between inter and intra-class variances. The present work used a portable infrared spectrometer (NIR) for identification and classification of pure and fiber-fortified semolina samples. The fiber was added to semolina in two different concentrations, and after the spectra acquisition, the data was used for PCA and LDA to identify and discriminate the samples. The results showed that NIR spectroscopy associate to PCA was very effective in identifying pure and fiber-fortified semolina. Additionally, the classification range of the samples using LDA was between 78.3% and 95% for calibration and 75% and 95% for cross-validation. Thus, after the multivariate analysis such as PCA and LDA, it was possible to verify that NIR associated to chemometric methods is able to identify and classify the different samples in a fast and non-destructive way.

Keywords: Chemometrics, fiber, linear discriminant analysis, near-infrared spectroscopy, principal component analysis, semolina

Procedia PDF Downloads 185
874 Dynamic Analysis of Turbo Machinery Foundation for Different Rotating Speed

Authors: Sungyani Tripathy, Atul Desai

Abstract:

Turbo machinery Frame Foundation is very important for power generation, gas, steam, hydro, geothermal and nuclear power plants. The Turbo machinery Foundation system was simulated in SAP: 2000 software and dynamic response of foundation was analysed. In this paper, the detailed study of turbo machinery foundation with different running speed has considered. The different revolution per minute considered in this study is 4000 rpm, 6000 rpm, 8000 rpm, 1000 rpm and 12000 rpm. The above analysis has been carried out considering Winkler spring soil model, solid finite element modelling and dynamic analysis of Turbo machinery foundations. The comparison of frequency and time periods at various mode shapes are addressed in this study. Current work investigates the effect of damping on the response spectra curve at the foundation top deck, considering the dynamic machine load. It has been found that turbo generator foundation with haunches remains more elastic during seismic action for different running speeds.

Keywords: turbo machinery, SAP: 2000, response spectra, running speeds

Procedia PDF Downloads 229
873 Time Domain Dielectric Relaxation Microwave Spectroscopy

Authors: A. C. Kumbharkhane

Abstract:

Time domain dielectric relaxation microwave spectroscopy (TDRMS) is a term used to describe a technique of observing the time dependant response of a sample after application of time dependant electromagnetic field. A TDRMS probes the interaction of a macroscopic sample with a time dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the TDRS technique covers an extensive dynamical process. The corresponding frequencies range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy, which yield information on the motions of individual molecules. Recently, we have developed and established the TDR technique in laboratory that provides information regarding dielectric permittivity in the frequency range 10 MHz to 30 GHz. The TDR method involves the generation of step pulse with rise time of 20 pico-seconds in a coaxial line system and monitoring the change in pulse shape after reflection from the sample placed at the end of the coaxial line. There is a great interest to study the dielectric relaxation behaviour in liquid systems to understand the role of hydrogen bond in liquid system. The intermolecular interaction through hydrogen bonds in molecular liquids results in peculiar dynamical properties. The dynamics of hydrogen-bonded liquids have been studied. The theoretical model to explain the experimental results will be discussed.

Keywords: microwave, time domain reflectometry (TDR), dielectric measurement, relaxation time

Procedia PDF Downloads 314
872 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection

Authors: K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.

Keywords: wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model (HMM).

Procedia PDF Downloads 155
871 Non-Contact Characterization of Standard Liquids Using Waveguide at 12.4 to18 Ghz Frequency Span

Authors: Kasra Khorsand-Kazemi, Bianca Vizcaino, Mandeep Chhajer Jain, Maryam Moradpour

Abstract:

This work presents an approach to characterize a non- contact microwave sensor using waveguides for different standard liquids such as ethanol, methanol and 2-propanol (Isopropyl Alcohol). Wideband waveguides operating between 12.4GHz to 18 GHz form the core of the sensing structure. Waveguides are sensitive to changes in conductivity of the sample under test (SUT), making them an ideal tool to characterize different polar liquids. As conductivity of the sample under test increase, the loss tangent of the material increase, thereby decreasing the S21 (dB) response of the waveguide. Among all the standard liquids measured, methanol exhibits the highest conductivity and 2-Propanol exhibits the lowest. The cutoff frequency measured for ethanol, 2-propanol, and methanol are 10.28 GHz, 10.32 GHz, and 10.38 GHz respectively. The measured results can be correlated with the loss tangent results of the standard liquid measured using the dielectric probe. This conclusively enables us to characterize different liquids using waveguides expanding the potential future applications in domains ranging from water quality management to bio-medical, chemistry and agriculture.

Keywords: Waveguides, , Microwave sensors, , Standard liquids characterization, Non-contact sensing

Procedia PDF Downloads 113