Search results for: technology complexity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8825

Search results for: technology complexity

8765 Hybrid Precoder Design Based on Iterative Hard Thresholding Algorithm for Millimeter Wave Multiple-Input-Multiple-Output Systems

Authors: Ameni Mejri, Moufida Hajjaj, Salem Hasnaoui, Ridha Bouallegue

Abstract:

The technology advances have most lately made the millimeter wave (mmWave) communication possible. Due to the huge amount of spectrum that is available in MmWave frequency bands, this promising candidate is considered as a key technology for the deployment of 5G cellular networks. In order to enhance system capacity and achieve spectral efficiency, very large antenna arrays are employed at mmWave systems by exploiting array gain. However, it has been shown that conventional beamforming strategies are not suitable for mmWave hardware implementation. Therefore, new features are required for mmWave cellular applications. Unlike traditional multiple-input-multiple-output (MIMO) systems for which only digital precoders are essential to accomplish precoding, MIMO technology seems to be different at mmWave because of digital precoding limitations. Moreover, precoding implements a greater number of radio frequency (RF) chains supporting more signal mixers and analog-to-digital converters. As RF chain cost and power consumption is increasing, we need to resort to another alternative. Although the hybrid precoding architecture has been regarded as the best solution based on a combination between a baseband precoder and an RF precoder, we still do not get the optimal design of hybrid precoders. According to the mapping strategies from RF chains to the different antenna elements, there are two main categories of hybrid precoding architecture. Given as a hybrid precoding sub-array architecture, the partially-connected structure reduces hardware complexity by using a less number of phase shifters, whereas it sacrifices some beamforming gain. In this paper, we treat the hybrid precoder design in mmWave MIMO systems as a problem of matrix factorization. Thus, we adopt the alternating minimization principle in order to solve the design problem. Further, we present our proposed algorithm for the partially-connected structure, which is based on the iterative hard thresholding method. Through simulation results, we show that our hybrid precoding algorithm provides significant performance gains over existing algorithms. We also show that the proposed approach reduces significantly the computational complexity. Furthermore, valuable design insights are provided when we use the proposed algorithm to make simulation comparisons between the hybrid precoding partially-connected structure and the fully-connected structure.

Keywords: alternating minimization, hybrid precoding, iterative hard thresholding, low-complexity, millimeter wave communication, partially-connected structure

Procedia PDF Downloads 293
8764 The Importance of Science and Technology Education in Skill Acquisition for Self Dependence

Authors: Olaje Monday Olaje

Abstract:

Science and technology has been prove to be the back bone for economic development of any country, and for Nigeria, it has more critical role to play. This paper examines the importance of science and technology education for national development and self dependence for Nigerian citizens. A historical overview of the interconnectivity of science and technology and self dependence is heighted. The current situation and challenges facing science and technology education are also highlighted to bring out the theoretical importance of science and technology education for self dependence which actually has not been practically achieved. Recommendations are also made at the of the study so as to skill acquisition through science and technology for self dependence.

Keywords: acquisition, education, self-dependence, science, technology

Procedia PDF Downloads 461
8763 Show Products or Show Endorsers: Immersive Visual Experience in Fashion Advertisements on Instagram

Authors: H. Haryati, A. Nor Azura

Abstract:

Over the turn of the century, the advertising landscape has evolved significantly, from print media to digital media. In line with the shift to the advanced science and technology dramatically shake the framework of societies Fifth Industrial Revolution (IR5.0), technological endeavors have increased exponentially, which influenced user interaction more inspiring through online advertising that intentionally leads to buying behavior. Users are more accustomed to interactive content that responds to their actions. Thus, immersive experience has transformed into a new engagement experience To centennials. The purpose of this paper is to investigate pleasure and arousal as the fundamental elements of consumer emotions and affective responses to marketing stimuli. A quasi-experiment procedure will be adopted in the research involving 40 undergraduate students in Nilai, Malaysia. This study employed a 2 (celebrity endorser vs. Social media influencer) X 2 (high and low visual complexity) factorial between-subjects design. Participants will be exposed to a printed version depicting a fashion product endorsed by a celebrity and social media influencers, presented in high and low levels of visual complexity. While the questionnaire will be Distributing during the lab test session is used to control their honesty, real feedback, and responses through the latest Instagram design and engagement. Therefore, the research aims to define the immersive experience on Instagram and the interaction between pleasure and arousal. An advertisement that evokes pleasure and arousal will be likely getting more attention from the target audience. This is one of the few studies comparing the endorses in Instagram advertising. Also, this research extends the existing knowledge about the immersive visual complexity in the context of social media advertising.

Keywords: immersive visual experience, instagram, pleasure, arousal

Procedia PDF Downloads 147
8762 Technology Futures in Global Militaries: A Forecasting Method Using Abstraction Hierarchies

Authors: Mark Andrew

Abstract:

Geopolitical tensions are at a thirty-year high, and the pace of technological innovation is driving asymmetry in force capabilities between nation states and between non-state actors. Technology futures are a vital component of defence capability growth, and investments in technology futures need to be informed by accurate and reliable forecasts of the options for ‘systems of systems’ innovation, development, and deployment. This paper describes a method for forecasting technology futures developed through an analysis of four key systems’ development stages, namely: technology domain categorisation, scanning results examining novel systems’ signals and signs, potential system-of systems’ implications in warfare theatres, and political ramifications in terms of funding and development priorities. The method has been applied to several technology domains, including physical systems (e.g., nano weapons, loitering munitions, inflight charging, and hypersonic missiles), biological systems (e.g., molecular virus weaponry, genetic engineering, brain-computer interfaces, and trans-human augmentation), and information systems (e.g., sensor technologies supporting situation awareness, cyber-driven social attacks, and goal-specification challenges to proliferation and alliance testing). Although the current application of the method has been team-centred using paper-based rapid prototyping and iteration, the application of autonomous language models (such as GPT-3) is anticipated as a next-stage operating platform. The importance of forecasting accuracy and reliability is considered a vital element in guiding technology development to afford stronger contingencies as ideological changes are forecast to expand threats to ecology and earth systems, possibly eclipsing the traditional vulnerabilities of nation states. The early results from the method will be subjected to ground truthing using longitudinal investigation.

Keywords: forecasting, technology futures, uncertainty, complexity

Procedia PDF Downloads 83
8761 Improving Decision-Making in Multi-Project Environments within Organizational Information Systems Using Blockchain Technology

Authors: Seyed Hossein Iranmanesh, Hassan Nouri, Seyed Reza Iranmanesh

Abstract:

In the dynamic and complex landscape of today’s business, organizations often face challenges in impactful decision-making across multi-project settings. To efficiently allocate resources, coordinate tasks, and optimize project outcomes, establishing robust decision-making processes is essential. Furthermore, the increasing importance of information systems and their integration within organizational workflows introduces an additional layer of complexity. This research proposes the use of blockchain technology as a suitable solution to enhance decision-making in multi-project environments, particularly within the realm of information systems. The conceptual framework in this study comprises four independent variables and one dependent variable. The identified independent variables for the targeted research include: Blockchain Layer in Integrated Systems, Quality of Generated Information ,User Satisfaction with Integrated Systems and Utilization of Integrated Systems. The project’s performance, considered as the dependent variable and moderated by organizational policies and procedures, reflects the impact of blockchain technology adoption on organizational effectiveness1. The results highlight the significant influence of blockchain implementation on organizational performance.

Keywords: multi-project environments, decision support systems, information systems, blockchain technology, decentralized systems.

Procedia PDF Downloads 16
8760 Automated Manual Handling Risk Assessments: Practitioner Experienced Determinants of Automated Risk Analysis and Reporting Being a Benefit or Distraction

Authors: S. Cowley, M. Lawrance, D. Bick, R. McCord

Abstract:

Technology that automates manual handling (musculoskeletal disorder or MSD) risk assessments is increasingly available to ergonomists, engineers, generalist health and safety practitioners alike. The risk assessment process is generally based on the use of wearable motion sensors that capture information about worker movements for real-time or for posthoc analysis. Traditionally, MSD risk assessment is undertaken with the assistance of a checklist such as that from the SafeWork Australia code of practice, the expert assessor observing the task and ideally engaging with the worker in a discussion about the detail. Automation enables the non-expert to complete assessments and does not always require the assessor to be there. This clearly has cost and time benefits for the practitioner but is it an improvement on the assessment by the human. Human risk assessments draw on the knowledge and expertise of the assessor but, like all risk assessments, are highly subjective. The complexity of the checklists and models used in the process can be off-putting and sometimes will lead to the assessment becoming the focus and the end rather than a means to an end; the focus on risk control is lost. Automated risk assessment handles the complexity of the assessment for the assessor and delivers a simple risk score that enables decision-making regarding risk control. Being machine-based, they are objective and will deliver the same each time they assess an identical task. However, the WHS professional needs to know that this emergent technology asks the right questions and delivers the right answers. Whether it improves the risk assessment process and results or simply distances the professional from the task and the worker. They need clarity as to whether automation of manual task risk analysis and reporting leads to risk control or to a focus on the worker. Critically, they need evidence as to whether automation in this area of hazard management leads to better risk control or just a bigger collection of assessments. Practitioner experienced determinants of this automated manual task risk analysis and reporting being a benefit or distraction will address an understanding of emergent risk assessment technology, its use and things to consider when making decisions about adopting and applying these technologies.

Keywords: automated, manual-handling, risk-assessment, machine-based

Procedia PDF Downloads 92
8759 Exploitation of Technology by the Tshwane Residence for Tourism Development Purposes

Authors: P. P. S. Sifolo, P. Tladi, J. Maimela

Abstract:

This article investigates technology used by Tshwane residents intended for tourism purposes. The aim is to contribute information to the Tshwane interested parties for planning and management concerning technology within the tourism sector. This study identified the types of tourist related technologies used by the Tshwane residents, be it for business purposes or personal use. The study connected the exploitation of technology for tourism purposes through unpacking the tourism sector as it utilizes technology. Quantitative research methodology was used whereby self-completed questionnaires were chosen as research instruments. The research study carried out a search for knowledge on technology for tourism and the Tshwane residents; however the study revealed that technology has certainly imprinted tourism massively because of its effectiveness and efficiency. Technology has assisted tourism businesses stay abreast of competition with ICT and because of that, SA is on the map as one the economically performing countries in Africa. Moreover, technology and tourism make a meaningful impact on job creation and Gross Domestic Product (GDP).

Keywords: tourism, information and communication technology, Tshwane residents, technology for tourism

Procedia PDF Downloads 358
8758 Configuring Systems to Be Viable in a Crisis: The Role of Intuitive Decision-Making

Authors: Ayham Fattoum, Simos Chari, Duncan Shaw

Abstract:

Volatile, uncertain, complex, and ambiguous (VUCA) conditions threaten systems viability with emerging and novel events requiring immediate and localized responses. Such responsiveness is only possible through devolved freedom and emancipated decision-making. The Viable System Model (VSM) recognizes the need and suggests maximizing autonomy to localize decision-making and minimize residual complexity. However, exercising delegated autonomy in VUCA requires confidence and knowledge to use intuition and guidance to maintain systemic coherence. This paper explores the role of intuition as an enabler of emancipated decision-making and autonomy under VUCA. Intuition allows decision-makers to use their knowledge and experience to respond rapidly to novel events. This paper offers three contributions to VSM. First, it designs a system model that illustrates the role of intuitive decision-making in managing complexity and maintaining viability. Second, it takes a black-box approach to theory development in VSM to model the role of autonomy and intuition. Third, the study uses a multi-stage discovery-oriented approach (DOA) to develop theory, with each stage combining literature, data analysis, and model/theory development and identifying further questions for the subsequent stage. We synthesize literature (e.g., VSM, complexity management) with seven months of field-based insights (interviews, workshops, and observation of a live disaster exercise) to develop a framework of intuitive complexity management framework and VSM models. The results have practical implications for enhancing the resilience of organizations and communities.

Keywords: Intuition, complexity management, decision-making, viable system model

Procedia PDF Downloads 46
8757 Efficacy of Technology for Successful Learning Experience; Technology Supported Model for Distance Learning: Case Study of Botho University, Botswana

Authors: Ivy Rose Mathew

Abstract:

The purpose of this study is to outline the efficacy of technology and the opportunities it can bring to implement a successful delivery model in Distance Learning. Distance Learning has proliferated over the past few years across the world. Some of the current challenges faced by current students of distance education include lack of motivation, a sense of isolation and a need for greater and improved communication. Hence the author proposes a creative technology supported model for distance learning exactly mirrored on the traditional face to face learning that can be adopted by distance learning providers. This model suggests the usage of a range of technologies and social networking facilities, with the aim of creating a more engaging and sustaining learning environment to help overcome the isolation often noted by distance learners. While discussing the possibilities, the author also highlights the complexity and practical challenges of implementing such a model. Design/methodology/approach: Theoretical issues from previous research related to successful models for distance learning providers will be considered. And also the analysis of a case study from one of the largest private tertiary institution in Botswana, Botho University will be included. This case study illustrates important aspects of the distance learning delivery model and provides insights on how curriculum development is planned, quality assurance is done, and learner support is assured for successful distance learning experience. Research limitations/implications: While some of the aspects of this study may not be applicable to other contexts, a number of new providers of distance learning can adapt the key principles of this delivery model.

Keywords: distance learning, efficacy, learning experience, technology supported model

Procedia PDF Downloads 210
8756 The Impact of Information and Communication Technology on the Performance of Office Technology Managers

Authors: Sunusi Tijjani

Abstract:

Information and communication technology is an indispensable tool in the performance of office technology managers. Today's offices are automated and equipped with modern office machines that enhances and improve the work of office managers. However, today's office technology managers can process, evaluate, manage and communicate all forms of information using technological devices. Information and Communication Technology is viewed as the process of processing, storing ad dissemination information while office technology managers are trained professional who can effectively operate modern office machines, perform administrative duties and attend meetings to take dawn minute of meetings. This paper examines the importance of information and communication technology toward enhancing the work of office managers. It also stresses the importance of information and communication technology toward proper and accurate record management.

Keywords: communication, information, technology, managers

Procedia PDF Downloads 452
8755 Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems

Authors: Nermin Sökmen

Abstract:

An effort estimation model is needed for software-intensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.

Keywords: functional complexity, functional decomposition, development effort, technical difficulty, design team capability, regression analysis

Procedia PDF Downloads 260
8754 Reliability of Self-Reported Language Proficiency Measures in l1 Attrition Research: A Closer Look at the Can-Do-Scales.

Authors: Anastasia Sorokina

Abstract:

Self-reported language proficiency measures have been widely used by researchers and have been proven to be an accurate tool to assess actual language proficiency. L1 attrition researchers also rely on self-reported measures. More specifically, can-do-scales has gained popularity in the discipline of L1 attrition research. The can-do-scales usually contain statements about language (e.g., “I can write e-mails”); participants are asked to rate each statement on a scale from 1 (I cannot do it at all) to 5 (I can do it without any difficulties). Despite its popularity, no studies have examined can-do-scales’ reliability at measuring the actual level of L1 attrition. Do can-do-scales positively correlate with lexical diversity, syntactic complexity, and fluency? The present study analyzed speech samples of 35 Russian-English attriters to examine whether their self-reported proficiency correlates with their actual L1 proficiency. The results of Pearson correlation demonstrated that can-do-scales correlated with lexical diversity, syntactic complexity, and fluency. These findings provide a valuable contribution to the L1 attrition research by demonstrating that can-do-scales can be used as a reliable tool to measure L1 attrition.

Keywords: L1 attrition, can-do-scales, lexical diversity, syntactic complexity

Procedia PDF Downloads 202
8753 Nonlinear Analysis in Investigating the Complexity of Neurophysiological Data during Reflex Behavior

Authors: Juliana A. Knocikova

Abstract:

Methods of nonlinear signal analysis are based on finding that random behavior can arise in deterministic nonlinear systems with a few degrees of freedom. Considering the dynamical systems, entropy is usually understood as a rate of information production. Changes in temporal dynamics of physiological data are indicating evolving of system in time, thus a level of new signal pattern generation. During last decades, many algorithms were introduced to assess some patterns of physiological responses to external stimulus. However, the reflex responses are usually characterized by short periods of time. This characteristic represents a great limitation for usual methods of nonlinear analysis. To solve the problems of short recordings, parameter of approximate entropy has been introduced as a measure of system complexity. Low value of this parameter is reflecting regularity and predictability in analyzed time series. On the other side, increasing of this parameter means unpredictability and a random behavior, hence a higher system complexity. Reduced neurophysiological data complexity has been observed repeatedly when analyzing electroneurogram and electromyogram activities during defence reflex responses. Quantitative phrenic neurogram changes are also obvious during severe hypoxia, as well as during airway reflex episodes. Concluding, the approximate entropy parameter serves as a convenient tool for analysis of reflex behavior characterized by short lasting time series.

Keywords: approximate entropy, neurophysiological data, nonlinear dynamics, reflex

Procedia PDF Downloads 278
8752 University-Industry Technology Transfer and Technology Transfer Offices in Emerging Economies

Authors: José Carlos Rodríguez, Mario Gómez

Abstract:

The aim of this paper is to get insight on the nature of university-industry technology transfer (UITT) and technology transfer offices (TTOs) activity at universities in the case of emerging economies. In relation to the process of transferring knowledge/technology in the case of emerging economies, knowledge/technology transfer in these economies are more reactive than in developed economies due to differences in maturity of technologies. It is assumed in this paper that knowledge/technology transfer is a complex phenomenon, and thus the paper contributes to get insight on the nature of UITT and TTOs creation in the case of emerging economies by using a system dynamics model of knowledge/technology transfer in these countries. The paper recognizes the differences between industrialized countries and emerging economies on these phenomena.

Keywords: university-industry technology transfer, technology transfer offices, technology transfer models, emerging economies

Procedia PDF Downloads 216
8751 Improving Student Programming Skills in Introductory Computer and Data Science Courses Using Generative AI

Authors: Genady Grabarnik, Serge Yaskolko

Abstract:

Generative Artificial Intelligence (AI) has significantly expanded its applicability with the incorporation of Large Language Models (LLMs) and become a technology with promise to automate some areas that were very difficult to automate before. The paper describes the introduction of generative Artificial Intelligence into Introductory Computer and Data Science courses and analysis of effect of such introduction. The generative Artificial Intelligence is incorporated in the educational process two-fold: For the instructors, we create templates of prompts for generation of tasks, and grading of the students work, including feedback on the submitted assignments. For the students, we introduce them to basic prompt engineering, which in turn will be used for generation of test cases based on description of the problems, generating code snippets for the single block complexity programming, and partitioning into such blocks of an average size complexity programming. The above-mentioned classes are run using Large Language Models, and feedback from instructors and students and courses’ outcomes are collected. The analysis shows statistically significant positive effect and preference of both stakeholders.

Keywords: introductory computer and data science education, generative AI, large language models, application of LLMS to computer and data science education

Procedia PDF Downloads 31
8750 Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken.

Keywords: Lagrange interpolation, linear complexity, monomial matrix, Newton interpolation

Procedia PDF Downloads 198
8749 A Less Complexity Deep Learning Method for Drones Detection

Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar

Abstract:

Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.

Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet

Procedia PDF Downloads 145
8748 Classifying the Role of Technology in Technology Development

Authors: Hyun Joung No, Chul Lee

Abstract:

Even though technology evolves and develops through interaction with each other, not all technologies contribute to the development of technology equally. While some technologies play a central role in developing technology, others play a secondary role. The role of the technological components can be classified as core or non-core (peripheral) technology. The core technologies have a considerable knowledge interaction with other technological components while the non-core technologies barely interact with others within the system. This study introduces the concept that classifies the technological components into core or peripheral technology according to their role and importance in the technology field. The study adapted the social network analysis to examine the relationship between technological components. Using a continuous core-periphery analysis, it identifies the technological network structure and classifies the core and peripheral nodes. Based on their knowledge inflow/outflow direction and their dependence/influence on core technologies, the technological clusters are classified into four categories: (1) high dependence and high influence on core technology, (2) high dependence and low influence on core technology, (3) low dependence and high influence on core technology, and (4) low dependence and low influence on core technology.

Keywords: core technology, periphery technology, technological components, technological role

Procedia PDF Downloads 503
8747 Towards a Simulation Model to Ensure the Availability of Machines in Maintenance Activities

Authors: Maryam Gallab, Hafida Bouloiz, Youness Chater, Mohamed Tkiouat

Abstract:

The aim of this paper is to present a model based on multi-agent systems in order to manage the maintenance activities and to ensure the reliability and availability of machines just with the required resources (operators, tools). The interest of the simulation is to solve the complexity of the system and to find results without cost or wasting time. An implementation of the model is carried out on the AnyLogic platform to display the defined performance indicators.

Keywords: maintenance, complexity, simulation, multi-agent systems, AnyLogic platform

Procedia PDF Downloads 276
8746 A Time-Reducible Approach to Compute Determinant |I-X|

Authors: Wang Xingbo

Abstract:

Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.

Keywords: algorithm, determinant, computation, eigenvalue, time complexity

Procedia PDF Downloads 390
8745 The Influence of Grammatical Gender on Socially Constructed Gender in English, Dutch, and German

Authors: Noah Brandon

Abstract:

Grammatical gender can create a restrictive roadblock for the usage of gender-inclusive language. This research describes grammatical gender structures used in English, Dutch, and German and considers how these structures restrict the implementation of gender inclusivity in spoken and written discourse. This restriction is measured by the frequency with which gender-inclusive & generic masculine forms are used and by the morphosyntactic complexity of the gender-inclusive forms available in these languages. These languages form a continuum of grammatical gender structures, with English having the least articulated structures and German having the most. This leads to a comparative analysis intended to establish a correlation between the complexity of gender structure and the difficulty of using gender-inclusive forms. English, on one side of the continuum, maintains only remnants of a formal grammatical gender system and imposes the fewest restrictions on the creation of neo-pronouns and the use of gender-inclusive alternatives to gendered agentive nouns. Next, the Dutch have a functionally two-gender system with less freedom using gender-neutral forms. Lastly, German, on the other end, has a three-gender system requiring a plethora of morphosyntactic and orthographic alternatives to avoid using generic masculine. The paper argues that the complexity of grammatical gender structures correlates with hindered use of gender-inclusive forms. Going forward, efforts will focus on gathering further data on the usage of gender-inclusive and generic masculine forms within these languages. The end goal of this research is to establish a definitive objective correlation between grammatical gender complexity and impediments in expressing socially constructed gender.

Keywords: sociolinguistics, language and gender, gender, Germanic linguistics, grammatical gender, German, Dutch, English

Procedia PDF Downloads 46
8744 The Revenue Management Implementation and Its Complexity in the Airline Industry: An Empirical Study on the Egyptian Airline Industry

Authors: Amr Sultan, Sara Elgazzar, Breksal Elmiligy

Abstract:

The airline industry nowadays is becoming a more growing industry facing a severe competition. It is an influential issue in this context to utilize revenue management (RM) concept and practice in order to develop the pricing strategy. There is an unfathomable necessity for RM to assist the airlines and their associates to disparage the cost and recuperate their revenue, which in turn will boost the airline industry performance. The complexity of RM imposes enormous challenges on the airline industry. Several studies have been proposed on the RM adaptation in airlines industry while there is a limited availability of implementing RM and its complexity in the developing countries such as Egypt. This research represents a research schema about the implementation of the RM to the Egyptian airline industry. The research aims at investigating and demonstrating the complexities face implementing RM in the airline industry, up on which the research provides a comprehensive understanding of how to overcome these complexities while adapting RM in the Egyptian airline industry. An empirical study was conducted on the Egyptian airline sector based on a sample of four airlines (Egyptair, Britishair, KLM, and Lufthansa). The empirical study was conducted using a mix of qualitative and quantitative approaches. First, in-depth interviews were carried out to analyze the Egyptian airline sector status and the main challenges faced by the airlines. Then, a structured survey on the three different parties of airline industry; airlines, airfreight forwarders, and passengers were conducted in order to investigate the main complexity factors from different parties' points of view. Finally, a focus group was conducted to develop a best practice framework to overcome the complexities faced the RM adaptation in the Egyptian airline industry. The research provides an original contribution to knowledge by creating a framework to overcome the complexities and challenges in adapting RM in the airline industry generally and the Egyptian airline industry particularly. The framework can be used as a RM tool to increase the effectiveness and efficiency of the Egyptian airline industry performance.

Keywords: revenue management, airline industry, revenue management complexity, Egyptian airline industry

Procedia PDF Downloads 361
8743 Energy Absorption Capacity of Aluminium Foam Manufactured by Kelvin Model Loaded Under Different Biaxial Combined Compression-Torsion Conditions

Authors: H. Solomon, A. Abdul-Latif, R. Baleh, I. Deiab, K. Khanafer

Abstract:

Aluminum foams were developed and tested due to their high energy absorption abilities for multifunctional applications. The aim of this research work was to investigate experimentally the effect of quasi-static biaxial loading complexity (combined compression-torsion) on the energy absorption capacity of highly uniform architecture open-cell aluminum foam manufactured by kelvin cell model. The two generated aluminum foams have 80% and 85% porosities, spherical-shaped pores having 11mm in diameter. These foams were tested by means of several square-section specimens. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e., 0°, 37° and 53°). The main mechanical responses of the aluminum foams were studied under simple, intermediate and severe loading conditions. In fact, the key responses to be examined were stress plateau and energy absorption capacity of the two foams with respect to loading complexity. It was concluded that the higher the loading complexity and the higher the relative density, the greater the energy absorption capacity of the foam. The highest energy absorption was thus recorded under the most complicated loading path (i.e., biaxial-53°) for the denser foam (i.e., 80% porosity).

Keywords: open-cell aluminum foams, biaxial loading complexity, foams porosity, energy absorption capacity, characterization

Procedia PDF Downloads 86
8742 Analysis of Cardiac Health Using Chaotic Theory

Authors: Chandra Mukherjee

Abstract:

The prevalent knowledge of the biological systems is based on the standard scientific perception of natural equilibrium, determination and predictability. Recently, a rethinking of concepts was presented and a new scientific perspective emerged that involves complexity theory with deterministic chaos theory, nonlinear dynamics and theory of fractals. The unpredictability of the chaotic processes probably would change our understanding of diseases and their management. The mathematical definition of chaos is defined by deterministic behavior with irregular patterns that obey mathematical equations which are critically dependent on initial conditions. The chaos theory is the branch of sciences with an interest in nonlinear dynamics, fractals, bifurcations, periodic oscillations and complexity. Recently, the biomedical interest for this scientific field made these mathematical concepts available to medical researchers and practitioners. Any biological network system is considered to have a nominal state, which is recognized as a homeostatic state. In reality, the different physiological systems are not under normal conditions in a stable state of homeostatic balance, but they are in a dynamically stable state with a chaotic behavior and complexity. Biological systems like heart rhythm and brain electrical activity are dynamical systems that can be classified as chaotic systems with sensitive dependence on initial conditions. In biological systems, the state of a disease is characterized by a loss of the complexity and chaotic behavior, and by the presence of pathological periodicity and regulatory behavior. The failure or the collapse of nonlinear dynamics is an indication of disease rather than a characteristic of health.

Keywords: HRV, HRVI, LF, HF, DII

Procedia PDF Downloads 391
8741 A Gradient Orientation Based Efficient Linear Interpolation Method

Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar

Abstract:

This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.

Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing

Procedia PDF Downloads 232
8740 Focusing of Technology Monitoring Activities Using Indicators

Authors: Günther Schuh, Christina König, Toni Drescher

Abstract:

One of the key factors for the competitiveness and market success of technology-driven companies is the timely provision of information about emerging technologies, changes in existing technologies, as well as relevant related changes in the market's structures and participants. Therefore, many companies conduct technology intelligence (TI) activities to ensure an early identification of appropriate technologies and other (weak) signals. One base activity of TI is technology monitoring, which is defined as the systematic tracking of developments within a specified topic of interest as well as related trends over a long period of time. Due to the very large number of dynamically changing parameters within the technological and the market environment of a company as well as their possible interdependencies, it is necessary to focus technology monitoring on specific indicators or other criteria, which are able to point out technological developments and market changes. In addition to the execution of a literature review on existing approaches, which mainly propose patent-based indicators, it is examined in this paper whether indicator systems from other branches such as risk management or economic research could be transferred to technology monitoring in order to enable an efficient and focused technology monitoring for companies.

Keywords: technology forecasting, technology indicator, technology intelligence, technology management, technology monitoring

Procedia PDF Downloads 444
8739 Robust Numerical Scheme for Pricing American Options under Jump Diffusion Models

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. However, most of the option pricing models have no analytical solution. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, we solve the American option under jump diffusion models by using efficient time-dependent numerical methods. several techniques are integrated to reduced the overcome the computational complexity. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). Partial fraction decomposition technique is applied to rational approximation schemes to overcome the complexity of inverting polynomial of matrices. The proposed method is easy to implement on serial or parallel versions. Numerical results are presented to prove the accuracy and efficiency of the proposed method.

Keywords: integral differential equations, jump–diffusion model, American options, rational approximation

Procedia PDF Downloads 90
8738 Using a Design Structure Method to Support Technology Roadmapping for Product-Service Integrated Systems

Authors: Heungwook Son, Sungjoo Lee

Abstract:

Recently, due to intensifying competition in several industries, the importance of meeting customer requirements has increased. The role that service plays in satisfying customer‘s requirements is key area of focus. Thus, the concept of using product development-research in the service system has been actively practiced. As strategic decision making tool, various types of the technology roadmap were suggested in the product-service system (PSS). However, the technology roadmap was configured a top-down form around the technologies of the elements. The limitation is that it hard for it to indicate a variety of interrelations. In response, this paper suggests using the planning support tool of PSS for a DSM for the technology roadmap; it consists of the relationship of product-service-technology as a bottom-up form. Therefore, nine types of the technology roadmap of PSS exist. The first defines the relationship of product-service-technology. The second phase identifies output when of the technology roadmaps are adapted to the DSM process. Finally, the DSM-based forms of each type of technology roadmap are presented through case studies.

Keywords: DSM, technology roadmap, PSS, product-service system, bottom-up

Procedia PDF Downloads 352
8737 Connecting Lives Inside and Outside the Classroom: Why and How to Implement Technology in the Language Learning Classroom

Authors: Geoffrey Sinha

Abstract:

This paper is primarily addressed to teachers who stand on the threshold of bringing technology and new media into their classrooms. Technology and new media, such as smart phones and tablets have changed the face of communication in general and of language teaching more specifically. New media has widespread appeal among young people in particular, so it is in the teacher’s best interests to bring new media into their lessons. It is the author’s firm belief that technology will never replace the teacher, but it is without question that the twenty-first century teacher must employ technology and new media in some form, or run the risk of failure. The level that one chooses to incorporate new media within their class is entirely in their hands.

Keywords: new media, social media, technology, education, language learning

Procedia PDF Downloads 301
8736 Analysis of Diabetes Patients Using Pearson, Cost Optimization, Control Chart Methods

Authors: Devatha Kalyan Kumar, R. Poovarasan

Abstract:

In this paper, we have taken certain important factors and health parameters of diabetes patients especially among children by birth (pediatric congenital) where using the above three metrics methods we are going to assess the importance of each attributes in the dataset and thereby determining the most highly responsible and co-related attribute causing diabetics among young patients. We use cost optimization, control chart and Spearmen methodologies for the real-time application of finding the data efficiency in this diabetes dataset. The Spearmen methodology is the correlation methodologies used in software development process to identify the complexity between the various modules of the software. Identifying the complexity is important because if the complexity is higher, then there is a higher chance of occurrence of the risk in the software. With the use of control; chart mean, variance and standard deviation of data are calculated. With the use of Cost optimization model, we find to optimize the variables. Hence we choose the Spearmen, control chart and cost optimization methods to assess the data efficiency in diabetes datasets.

Keywords: correlation, congenital diabetics, linear relationship, monotonic function, ranking samples, pediatric

Procedia PDF Downloads 231