Search results for: swelling study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 48276

Search results for: swelling study

48216 Physico-Mechanical Properties of Chemically Modified Sisal Fibre Reinforced Unsaturated Polyester Composites

Authors: A. A. Salisu, M. Y. Yakasai, K. M. Aujara

Abstract:

Sisal leaves were subjected to enzymatic retting method to extract the sisal fibre. A portion of the fibre was pretreated with alkali (NaOH), and further treated with benzoyl chloride and silane treatment reagents. Both the treated and untreated Sisal fibre composites were used to fabricate the composite by hand lay-up technique using unsaturated polyester resin. Tensile, flexural, water absorption, density, thickness swelling and chemical resistant tests were conducted and evaluated on the composites. Results obtained for all the parameters showed an increase in the treated fibre compared to untreated fibre. FT-IR spectra results ascertained the inclusion of benzoyl and silane groups on the fibre surface. Scanning electron microscopy (SEM) result obtained showed variation in the morphology of the treated and untreated fibre. Chemical modification was found to improve adhesion of the fibre to the matrix, as well as physico-mechanical properties of the composites.

Keywords: chemical resistance, density test, polymer matrix sisal fibre, thickness swelling

Procedia PDF Downloads 404
48215 Wetting-Drying Cycles Effect on Piles Embedded in a Very High Expansive Soil

Authors: Bushra Suhail, Laith Kadim

Abstract:

The behavior of model piles embedded in a very high expansive soil was investigated, a specially manufactured saturation-drying tank was used to apply three cycles of wetting and drying to the expansive soil surrounding the model straight shaft and under reamed piles, the relative movement of the piles with respect to the soil surface was recorded with time, also the exerted uplift pressure of the piles due to soil swelling was recorded. The behavior of unloaded straight shaft and under reamed piles was investigated. Two design charts were presented for straight shaft and under reamed piles one for the required pile depth for zero upward movement due to soil swelling, the other for the required pile depth to exert zero uplift pressure when the soil swells. Under reamed piles showed a decrease in upward movement of 20% to 40%, and an uplift pressure decrease of 10% to 30%.

Keywords: expansive soil, piles, under reamed, structural and geotechnical engineering

Procedia PDF Downloads 290
48214 The Effectiveness of Kinesio Taping in Enhancing Early Post-Operative Outcomes Inpatients after Total Knee Replacement or Anterior Cruciate Ligament Reconstruction

Authors: B. A. Alwahaby

Abstract:

Background: The number of Total Knee Replacement (TKR) and Anterior Cruciate Ligament Reconstruction (ACLR) performed every year is increasing. The main aim of physiotherapy early recovery rehabilitation after these surgeries is to control pain and edema and regain Range of Motion (ROM) and physical activity. All of these outcomes need to be managed by safe and effective modalities. Kinesiotaping (KT) is an elastic non-invasive therapeutic tape that has become recognised in different physiotherapy situation as injury prevention, rehabilitation, and performance enhancement and been used with different conditions. However, there is still clinical doubt regarding the effectiveness of KT due to inconclusive supporting evidence. The aim of this systematic review is to collate all the available evidence on the effectiveness of KT in the early rehabilitation of ACLR and TKR patients and analyse whether the use of KT combined with standard rehabilitation would facilitate recovery of postoperative outcome than standard rehabilitation alone. Methodology: A systematic review was conducted. Medline, EMBASE, Scopus, AMED PEDro, CINAHL, and Web of Science databases were searched. Each study was assessed for inclusion and methodological quality appraisal was undertaken by two reviewers using the JBI critical appraisal tools. The studies were then synthesised qualitatively due to heterogeneity between studies. Results: Five moderate to low quality RCTs were located. All five studies demonstrated statistically significant improvements in pain, swelling, ROM, and functional outcomes (p < 0.05). Between group comparison, KT combined with standardised rehabilitation were shown to be significantly more effective than standardised rehabilitation alone for pain and swelling (p < 0.05). However, there were inconstant findings for ROM, and no statistically significant differences reported between groups for functional outcomes (p > 0.05). Conclusion: Research in the area is generally low quality; however, there is consistent evidence to support the use of KT combined with standardised post-operative rehabilitation for reducing pain and swelling. There is also some evidence that KT may be effective in combination with standardised rehabilitation to regain knee extension ROM faster than standardised rehabilitation alone, but further primary research is required to confirm this.

Keywords: anterior cruciate ligament reconstruction, ACLR, kinesio taping, KT, postoperative, total knee replacement, TKR

Procedia PDF Downloads 89
48213 The Effect of Soil Binder and Gypsum to the Changes of the Expansive Soil Shear Strength Parameters

Authors: Yulia Hastuti, Ratna Dewi, Muhammad Sandi

Abstract:

Many methods of soil stabilization that can be done such as by mixing chemicals. In this research, stabilization by mixing the soil using two types of chemical admixture, those are gypsum with a variation of 5%, 10%, and 15% and Soil binder with a concentration of 20 gr / lot of water, 25 gr / lot of water, and 30 gr / lot of water aimed to determine the effect on the soil plasticity index values and comparing the value of shear strength parameters of the mixture with the original soil conditions using a Triaxial UU test. Based on research done shows that with increasing variations in the mix, then the value of plasticity index decreased, which was originally 42% (very high degree of swelling) becomes worth 11.24% (lower Swelling degree) when a mixture of gypsum 15% and 30 gr / Lt water soil binder. As for the value shear, strength parameters increased in all variations of mixture. Admixture with the highest shear strength parameter's value is at 15% the mixture of gypsum and 20 gr / litre of water of soil binder with the 14 day treatment period, which has enhanced the cohesion value of 559.01%, the friction angle by 1157.14%. And a shear strength value of 568.49%. It can be concluded that the admixture of gypsum and soil binder correctly, can increase the value of shear strength parameters significantly and decrease the value of plasticity index of the soil.

Keywords: expansive soil, gypsum, soil binder, shear strength

Procedia PDF Downloads 438
48212 Cimifugin Inhibited Th2-Type Allergic Contact Dermatitis

Authors: Xiaoyan Jiang, Huizhu Wang, Lili Gui, Dandan Shen, Xiao Wei, Xi Yu, Hailiang Liu, Min Hong

Abstract:

Objective: Applicate FITC to establish Th2-type allergic contact dermatitis model, and study the effect and mechanism of Cimifugin on Th2-type allergic contact dermatitis. Methods: The Balb/c mice were sensitized with painting 80 ul of 1.5% FITC onto the shaved abdomen skin at DAY1 and DAY2. The animals were challenged on their right ears with 20 ul of 0.6% FITC, and the left ears were painted with solvent alone at day 6, mice were administered cimifugin for 7 days. 24h later, ear swelling was noted, and the infiltration of eosinophils was investigated by hematoxylin and eosin (H&E) staining. while part of the ear tissue homogenates prepared for detecting interleukin-4 levels by ELISA .Mice were administered cimifugin In the initial stage of the above model for 5 days(-1DAY—DAY3), ear tissue were homogenized to detect IL-33 levels by ELISA. Results: Cimifugin 25mg/kg, 50mg/kg inhibited mouse ear swelling, ear histopathology showed that mice given Cimifugin has significantly reduced levels of local tissue fluid exudation, congestion, infiltration of lymphocytes, and other inflammatory conditions compared with the model group. At the same time, it has significantly reduce of Th2 cytokines IL-4 in the mouse ear tissue homogenate. Data of the initial stage shows that 12.5mg/kg, 50mg/kg Cimifugin significantly inhibited IL-33 levels. Conclusion: Cimifugin inhibit FITC-induced Th2-type allergic contact dermatitis, and its mechanism may be related to inhibition of IL-33.

Keywords: cimifugin, allergic contact dermatitis, Th1/Th2, IL-33

Procedia PDF Downloads 442
48211 Case Report: Mandibular Area Abscesses in Calves

Authors: Dovilė Bačėninaitė, Karina Džermeikaitė, Justinas Kirvela, Ramūnas Antanaitis

Abstract:

Bacteria are often present in the mouth of cattle. Some of them can cause abscesses. Starting with severe swelling of the mouth, muscle spasm, or locked jaw, it can lead to inability to open its mouth, move the neck, cause pain while eating. While the calf is unable to eat properly, it becomes more susceptible to infectious diseases, lower weight gain can be observed. Abscesses can be considered as a continuum of oral disease, whereby early stages of the lumpy jaw could proceed from gingivitis to periodontal disease. In the event of tissue damage, bacteria can enter the bloodstream, even cause sepsis. The most common lesions occur when animals eat sharp grass, coarse fodder, sharp, piercing foreign bodies (this is especially common for calves when they are trying to eat inedible objects). A crossbred Holstein calf presented with a history of proliferative outgrowth in the mandibular region. On clinical examination, needle aspiration, mandibular swelling revealed sticky, white curd-like fluid containing. Pus bacteriology revealed gram-negative cocci. They were sensitive to amoxicillin, cephalexin, enrofloxacin, ceftiofur. Blood morphology was in physiological ranges. The calf was treated surgically. The growth was excised, the puss drained and the wound was flushed with potassium permanganate solution (0,01%). A week after clinical surgery examination was performed. The swelling was decreased. Superficial bacterial infections are often associated with poor hygiene, which should be improved before treatment is commenced. Clipping away dirty hair and gently washing affected areas of skin daily with solutions such as povidone-iodine, potassium permanganate is effective. Appropriate antibiotic therapy, based on sensitivity testing, may be used where there is evidence of systemic illness.

Keywords: calf, abscess, lumpy jaw, pus, Streptococcus, Staphylococcus, Actinobacillus, infection

Procedia PDF Downloads 223
48210 Property of Fermented Sweet Potato Flour and Its Suitability for Composite Noodle

Authors: Neti Yuliana, Srisetyani, Siti Nurdjanah, Dewi Sartika, Yoan Martiansari, Putri Nabila

Abstract:

Naturally sweet potato flour usually requires a modification process to improve its inherent property for expanding its application in food system. The study was aimed to modify sweet potato flour (SPF), to increase its utilization for composite noodle production, trough fermentation of sweet potato slices before its flouring process. Fermentation were prepared with five different starters: pickle brine, Lactobacillus plantarum, Leuconostoc mesenteroides, mixed of Lactobacillus plantarum, Leuconostoc mesenteroides , and mixed of Lactobacillus plantarum, Leuconostoc mesenteroides, and Sacharomyces cerevisiae. Samples were withdrawn every 0, 24, 48, 72 and 96 hours. The fermented flours were characterized for swelling power, solubility, paste transmittance, pH, sensory properties (acidic aroma and whiteness), and the amount of broken composite noodle strips. The results indicated that there was no significant effect of different starters on fermented SPF characteristic and on the amount of broken noodle strip, while length of fermentation significantly affected. Longer fermentation, reaching 48-72 h, increased swelling power, pH, acidic aroma and whiteness of flour and reduced solubility, paste transmittance, and the amount of broken noodle strip. The results suggested that fermentation within 48-72 h period of time could provide great composite SPF for noodle.

Keywords: starters, fermented flour, sweet potato, composite noodle

Procedia PDF Downloads 348
48209 Bacterial Cellulose: A New Generation Antimicrobial Wound Dressing Biomaterial

Authors: Bhavana V. Mohite, Satish V. Patil

Abstract:

Bacterial cellulose (BC) is an alternative for plant cellulose (PC) that prevents global warming leads to preservation of nature. Although PC and BC have the same chemical structure, BC is superior with its properties like its size, purity, porosity, degree of polymerization, crystallinity and water holding capacity, thermal stability etc. On this background the present study focus production and applications of BC as antimicrobial wound dressing material. BC was produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and statistically enhanced upto 7.2 g/l from 3.0 g/l. BC was analyzed for its physico mechanical, structural and thermal characteristics. BC produced at shaking condition exhibits more suitable properties in support to its high performance applications. The potential of nano silver impregnated BC was determined for sustained release modern antimicrobial wound dressing material by swelling ratio, mechanical properties and antimicrobial activity against Staphylococcus aureus. BC in nanocomposite form with other synthetic polymer like PVA shows improvement in its properties such as swelling ratio (757% to 979%) and sustainable release of antibacterial agent. The high drug loading and release potential of BC was evidenced in support to its nature as antimicrobial wound dressing material. The nontoxic biocompatible nature of BC was confirmed by MTT assay on human epidermal cells with 90% cell viability that allows its application as a regenerative biomaterial. Thus, BC as a promising new generation antimicrobial wound dressing material was projected.

Keywords: agitated culture, biopolymer, gluconoacetobacter hansenii, nanocomposite

Procedia PDF Downloads 282
48208 Lignin Pyrolysis to Value-Added Chemicals: A Mechanistic Approach

Authors: Binod Shrestha, Sandrine Hoppe, Thierry Ghislain, Phillipe Marchal, Nicolas Brosse, Anthony Dufour

Abstract:

The thermochemical conversion of lignin has received an increasing interest in the frame of different biorefinery concepts for the production of chemicals or energy. It is needed to better understand the physical and chemical conversion of lignin for feeder and reactor designs. In-situ rheology reveals the viscoelastic behaviour of lignin upon thermal conversion. The softening, re-solidification (char formation), swelling and shrinking behaviours are quantified during pyrolysis in real-time [1]. The in-situ rheology of an alkali lignin (Protobind 1000) was conducted in high torque controlled strain rheometer from 35°C to 400°C with a heating rate of 5°C.min-1. The swelling, through glass phase transition overlapped with depolymerization, and solidification (crosslinking and “char” formation) are two main phenomena observed during lignin pyrolysis. The onset of temperatures for softening and solidification for this lignin has been found to be 141°C and 248°C respectively. An ex-situ characterization of lignin/char residues obtained at different temperatures after quenching in the rheometer gives a clear understanding of the pathway of lignin degradation. The lignin residues were sampled from the mid-point temperatures of the softening range and solidification range to study the chemical transformations undergoing. Elemental analysis, FTIR and solid state NMR were conducted after quenching the solid residues (lignin/char). The quenched solid was also extracted by suitable solvent and followed by acetylation and GPC-UV analysis. The combination of 13C NMR and GPC-UV reveals the depolymerization followed by crosslinking of lignin/char. NMR and FTIR provide the evolution of functional moieties upon temperature. Physical and chemical mechanisms occurring during lignin pyrolysis are accounted in this study. Thanks to all these complementary methods.

Keywords: pyrolysis, bio-chemicals, valorization, mechanism, softening, solidification, cross linking, rheology, spectroscopic methods

Procedia PDF Downloads 396
48207 Physical Property Characterization of Adult Dairy Nutritional Products for Powder Reconstitution

Authors: Wei Wang, Martin Chen

Abstract:

The reconstitution behaviours of nutritional products could impact user experience. Reconstitution issues such as lump formation and white flecks sticking to bottles surfaces could be very unappealing for the consumers in milk preparation. The controlling steps in dissolving instant milk powders include wetting, swelling, sinking, dispersing, and dissolution as in the literature. Each stage happens simultaneously with the others during milk preparation, and it is challenging to isolate and measure each step individually. This study characterized three adult nutritional products for different properties including particle size, density, dispersibility, stickiness, and capillary wetting to understand the relationship between powder physical properties and their reconstitution behaviours. From the results, the formation of clumps can be caused by different factors limiting the critical steps of powder reconstitution. It can be caused by small particle size distribution, light particle density limiting powder wetting, or the rapid swelling and dissolving of particle surface materials to impede water penetration in the capillary channels formed by powder agglomerates. For the grain or white flecks formation in milk preparation, it was believed to be controlled by dissolution speed of the particles after dispersion into water. By understanding those relationship between fundamental powder structure and their user experience in reconstitution, this information provides us new and multiple perspectives on how to improve the powder characteristics in the commercial manufacturing.

Keywords: characterization, dairy nutritional powder, physical property, reconstitution

Procedia PDF Downloads 79
48206 The Effect of Low Power Laser on CK and Some of Markers Delayed Onset Muscle Soreness (DOMS)

Authors: Bahareh Yazdanparast Chaharmahali

Abstract:

The study showed effect of low power laser therapy on knee range of motion (flexion and extension), resting angle of knee joint, knee circumference and rating of delayed onset muscle soreness induced pain, 24 and 48 hours after eccentric training of knee flexor muscle (hamstring muscle). We investigate the effects of pulsed ultrasound on swelling, relaxed, flexion and extension knee angle and pain. 20 volunteers among girl students of college voluntary participated in this research. After eccentric training, subjects were randomly divided into two groups, control and laser therapy. In day 1 and in order to induce delayed onset muscle soreness, subjects eccentrically trained their knee flexor muscles. In day 2, subjects were randomly divided into two groups: control and low power laser therapy. 24 and 48 hours after eccentric training. Variables (knee flexion and extension, srang of motion, resting knee joint angle and knee circumferences) were measured and analyzed. Data are reported as means ± standard error (SE) and repeated measured was used to assess differences within groups. Methods of treatment (low power laser therapy) have significant effects on delayed onset muscle soreness markers. 24 and 48 hours after training a significant difference was observed between mean pains of 2 groups. This difference was significant between low power laser therapy and C groups. The Bonferroni post hock is significant. Low power laser therapy trophy as used in this study did significantly diminish the effects of delayed – onset muscle soreness on swelling, relaxed – knee extension and flexion angle.

Keywords: creatine kinase, DOMS, eccentric training, low power laser

Procedia PDF Downloads 216
48205 Multi-Template Molecularly Imprinted Polymer: Synthesis, Characterization and Removal of Selected Acidic Pharmaceuticals from Wastewater

Authors: Lawrence Mzukisi Madikizela, Luke Chimuka

Abstract:

Removal of organics from wastewater offers a better water quality, therefore, the purpose of this work was to investigate the use of molecularly imprinted polymer (MIP) for the elimination of selected organics from water. A multi-template MIP for the adsorption of naproxen, ibuprofen and diclofenac was synthesized using a bulk polymerization method. A MIP was synthesized at 70°C by employing 2-vinylpyridine, ethylene glycol dimethacrylate, toluene and 1,1’-azobis-(cyclohexanecarbonitrile) as functional monomer, cross-linker, porogen and initiator, respectively. Thermogravimetric characterization indicated that the polymer backbone collapses at 250°C and scanning electron microscopy revealed the porous and roughness nature of the MIP after elution of templates. The performance of the MIP in aqueous solutions was evaluated by optimizing several adsorption parameters. The optimized adsorption conditions were 50 mg of MIP, extraction time of 10 min, a sample pH of 4.6 and the initial concentration of 30 mg/L. The imprinting factors obtained for naproxen, ibuprofen and diclofenac were 1.25, 1.42, and 2.01, respectively. The order of selectivity for the MIP was; diclofenac > ibuprofen > naproxen. MIP showed great swelling in water with an initial swelling rate of 2.62 g/(g min). The synthesized MIP proved to be able to adsorb naproxen, ibuprofen and diclofenac from contaminated deionized water, wastewater influent and effluent.

Keywords: adsorption, molecularly imprinted polymer, multi template, pharmaceuticals

Procedia PDF Downloads 266
48204 Superficial Temporal Artery Pseudoaneurysm Post Blepharoplasty: Case Report

Authors: Asaad Alhabsi, Alyaqdan Algafri

Abstract:

Aim: Reporting 83 years old man with history of left upper eyelid swelling post 4-lids blepharoplasty diagnosed based on clinical presentation and Radiological imaging with pseudoaneurysm of frontal branch of Superficial Temporal Artery post blepharoplasty. METHODS: 83 years old who presented to a Tertiary ophthalmic center with painless left upper eyelids swelling for 2 months post 4-lids blepharoplasty. Left subcutaneous, sub-brow lesion, in the supertemporal pre-septal area, large mass found and excised surgically. Then he developed recurrent larger mass twice first time treated with aspiration of blood, second time diagnosed with superficial temporal artery (STA) pseudoaneurysm of frontal branch treated with endovascular embolization. RESULTS: Pseudoaneurysm of superficial temporal artery (STA) is a rare, presenting usual post head or face trauma .literature reported few cases of such conditions post operatively, and no reported cases post blepharoplasty. CONCLUSIONS: Surgical intervention is the gold standard of treatment either directly by dissecting the aneurysmal sac and ligate both ends, or endovascular method of injecting thrombin or embolization which was done in this patient by interventional radiologist.

Keywords: superficial temporal artery, pseudoaneurysm, blepharoplasty, Oculoplasty

Procedia PDF Downloads 46
48203 Effects of the Tomato Pomace Oil Extract on Physical and Antioxidant Properties of Gelatin Films

Authors: N. Jirukkakul, J. Sodtipinta

Abstract:

Tomatoes are widely consumed as fresh and processed products through the manufacturing industry. Therefore, tomato pomace is generated as a by-product accounting for about 5-13% of the whole tomato. Antioxidants still remain in tomato pomace and extraction of tomato oil may useful in edible film production. The edible film solution was prepared by mixing gelatin (2, 4 and 6%) with the distilled water and heating at 40oC for 30 min. Effect of tomato pomace oil was evaluated at 0, 0.5 and 1%. Film solution was poured in plate and dried overnight at 40oC before determining the physical properties, which are tensile strength, moisture content, color, solubility, and swelling power. The results showed that an increase gelatin concentration caused increasing of tensile strength, moisture content, solubility and swelling power. The edible film with tomato pomace oil extract appeared as the rough film with oil droplet dispersion. The addition of tomato pomace oil extract caused an increase in lightness, redness and yellowness, while tensile strength, moisture content, and solubility were decreased. Film with tomato pomace oil extract at 0.5 and 1% exhibited antioxidant properties but those properties were not significantly different (p<0.05) between film incorporated with tomato pomace oil extract 0.5 and 1%. The suitable condition for film production in this study, 4% of gelatin and 0.5% of tomato pomace oil extract, was selected for protecting oxidation of palm oil. At 15 days of the storage period, the palm oil which covered by gelatin film with tomato pomace oil extract had 22.45 milliequivalents/kg of peroxide value (PV), while, the palm oil which covered by polypropylene film and control had 24.79 and 26.67 milliequivalents/kg, respectively. Therefore, incorporation of tomato pomace oil extract in gelatin film was able to protect the oxidation of food products with high fat content.

Keywords: antioxidant, gelatin films, physical properties, tomato oil extract

Procedia PDF Downloads 248
48202 Hilotherapy in Orthognathic Surgery

Authors: N. Gharooni-Dowrani, B. Gharooni-Dowrani

Abstract:

The benefits of hilotherapy following orthogonathic surgery have been explored in recent years, demonstrating reduction in patient pain and swelling post-operatively. However, hilotherapy is not always widely accessible to all patients following orthognathic surgery. In this study, 50 patients were examined at Luton and Dunstable Hospital, half (25) of which used hilotherm masks post operatively and half of which opted for traditional ice packs in order to aid recovery. This study demonstrated that the use of hilotherapy reduced patient pain when analgesia need and use were analysed, as well as shortening inpatient stay. Although no current hilotherm masks are available without rental services in our trust, this study demonstrated the positive outcomes that they may bring, which may be worth future investment for our department.

Keywords: orthognathic surgery, orthodontics, hilotherapy, OMFS

Procedia PDF Downloads 46
48201 Molecular Dynamics Simulation Study of the Influence of Potassium Salts on the Adsorption and Surface Hydration Inhibition Performance of Hexane, 1,6 - Diamine Clay Mineral Inhibitor onto Sodium Montmorillonite

Authors: Justine Kiiza, Xu Jiafang

Abstract:

The world’s demand for energy is increasing rapidly due to population growth and a reduction in shallow conventional oil and gas reservoirs, resorting to deeper and mostly unconventional reserves like shale oil and gas. Most shale formations contain a large amount of expansive sodium montmorillonite (Na-Mnt), due to high water adsorption, hydration, and when the drilling fluid filtrate enters the formation with high Mnt content, the wellbore wall can be unstable due to hydration and swelling, resulting to shrinkage, sticking, balling, time wasting etc., and well collapse in extreme cases causing complex downhole accidents and high well costs. Recently, polyamines like 1, 6 – hexane diamine (HEDA) have been used as typical drilling fluid shale inhibitors to minimize and/or cab clay mineral swelling and maintain the wellbore stability. However, their application is limited to shallow drilling due to their sensitivity to elevated temperature and pressure. Inorganic potassium salts i.e., KCl, have long been applied for restriction of shale formation hydration expansion in deep wells, but their use is limited due to toxicity. Understanding the adsorption behaviour of HEDA on Na-Mnt surfaces in present of organo-salts, organic K-salts e.g., HCO₂K - main component of organo-salt drilling fluid, is of great significance in explaining the inhibitory performance of polyamine inhibitors. Molecular dynamic simulations (MD) were applied to investigate the influence of HCO₂K and KCl on the adsorption mechanism of HEDA on the Na-Mnt surface. Simulation results showed that adsorption configurations of HEDA are mainly by terminal amine groups with a flat-lying alkyl hydrophobic chain. Its interaction with the clay surface decreased the H-bond number between H₂O-clay and neutralized the negative charge of the Mnt surface, thus weakening the surface hydration ability of Na-Mnt. The introduction of HCO₂K greatly improved inhibition ability, coordination of interlayer ions with H₂O as they were replaced by K+, and H₂O-HCOO- coordination reduced H₂O-Mnt interactions, mobility and transport capability of H₂O molecules were more decreased. While KCl showed little ability and also caused more hydration with time, HCO₂K can be used as an alternative for offshore drilling instead of toxic KCl, with a maximum concentration noted in this study as 1.65 wt%. This study provides a theoretical elucidation for the inhibition mechanism and adsorption characteristics of HEDA inhibitor on Na-Mnt surfaces in the presence of K+-salts and may provide more insight into the evaluation, selection, and molecular design of new clay-swelling high-performance WBDF systems used in oil and gas complex offshore drilling well sections.

Keywords: shale, hydration, inhibition, polyamines, organo-salts, simulation

Procedia PDF Downloads 6
48200 Modeling the Performance of Natural Sand-Bentonite Barriers after Infiltration with Polar and Non-Polar Hydrocarbon Leachates

Authors: Altayeb Qasem, Mousa Bani Baker, Amani Nawafleh

Abstract:

The complexity of the sand-bentonite liner barrier system calls for an adequate model that reflects the conditions depending on the barrier materials and the characteristics of the permeates which lead to hydraulic conductivity changes when liners infiltrated with polar, no-polar, miscible and immiscible liquids. This paper is dedicated to developing a model for evaluating the hydraulic conductivity in the form of a simple indicator for the compatibility of the liner versus leachate. Based on two liner compositions (95% sand: 5% bentonite; and 90% sand: 10% bentonite), two pressures (40 kPa and 100 kPa), and three leachates: water, ethanol and biofuel. Two characteristics of the leacahtes were used: viscosity of permeate and its octanol-water partitioning coefficient (Kow). Three characteristics of the liners mixtures were evaluated which had impact on the hydraulic conductivity of the liner system: the initial content of bentonite (%), the free swelling index, and the shrinkage limit of the initial liner’s mixture. Engineers can use this modest tool to predict a potential liner failure in sand-bentonite barriers.

Keywords: liner performance, sand-bentonite barriers, viscosity, free swelling index, shrinkage limit, octanol-water partitioning coefficient, hydraulic conductivity, theoretical modeling

Procedia PDF Downloads 382
48199 Unlocking the Potential of Neglected Cereal Resources Waste: Exploring Functional Properties of Algerian Pearl Millet Starch via Wet Milling and Ultrasound Techniques

Authors: Sarra Bouhallel, Sara Legbedj, Rima Messaoud, Sofia Saffarbatti

Abstract:

In the context of global waste management and sustainable resource utilization, millets emerge as a vital yet underutilized cereal resource. Despite their exceptional nutritional profile and resilience to harsh environmental conditions, their potential remains largely untapped. This study aims to contribute to the valorization of seven Algerian pearl millet landraces (Pennisetum glaucum (L.) R. Br) from the southern region by focusing on the characterization of their starches. Utilizing both conventional wet milling, incorporating sodium azide as a microbial growth inhibitor, and a novel green technology—Ultrasound-assisted isolation, we explore avenues for enhancing the functional properties of these starches. Analysis of key functional properties such as swelling power and water solubility index reveals significant enhancements, particularly during heat treatment near the gelatinization temperature [70 - 80 °C]. Furthermore, our investigation into the influence of pre-treatment methods on isolated starches highlights the potential of Ultrasound-assisted isolation in reducing absorbency and water solubility compared to conventional methods. Through rigorous data analysis using SPSS software (Version 23), we ascertain the efficiency of Ultrasound-assisted isolation, underscoring its promising role in the valorization of pearl millet waste. This research not only sheds light on the functional properties of pearl millet starch but also underscores the imperative of sustainable waste management in harnessing the full potential of underutilized cereal resources.

Keywords: isolation, solubility, starch, swelling, ultrasound

Procedia PDF Downloads 13
48198 Collagen Hydrogels Cross-Linked by Squaric Acid

Authors: Joanna Skopinska-Wisniewska, Anna Bajek, Marta Ziegler-Borowska, Alina Sionkowska

Abstract:

Hydrogels are a class of materials widely used in medicine for many years. Proteins, such as collagen, due to the presence of a large number of functional groups are easily wettable by polar solvents and can create hydrogels. The supramolecular network capable to swelling is created by cross-linking of the biopolymers using various reagents. Many cross-linking agents has been tested for last years, however, researchers still are looking for a new, more secure reactants. Squaric acid, 3,4-dihydroxy 3-cyclobutene 1,2- dione, is a very strong acid, which possess flat and rigid structure. Due to the presence of two carboxyl groups the squaric acid willingly reacts with amino groups of collagen. The main purpose of this study was to investigate the influence of addition of squaric acid on the chemical, physical and biological properties of collagen materials. The collagen type I was extracted from rat tail tendons and 1% solution in 0.1M acetic acid was prepared. The samples were cross-linked by the addition of 5%, 10% and 20% of squaric acid. The mixtures of all reagents were incubated 30 min on magnetic stirrer and then dialyzed against deionized water. The FTIR spectra show that the collagen structure is not changed by cross-linking by squaric acid. Although the mechanical properties of the collagen material deteriorate, the temperature of thermal denaturation of collagen increases after cross-linking, what indicates that the protein network was created. The lyophilized collagen gels exhibit porous structure and the pore size decreases with the higher addition of squaric acid. Also the swelling ability is lower after the cross-linking. The in vitro study demonstrates that the materials are attractive for 3T3 cells. The addition of squaric acid causes formation of cross-ling bonds in the collagen materials and the transparent, stiff hydrogels are obtained. The changes of physicochemical properties of the material are typical for cross-linking process, except mechanical properties – it requires further experiments. However, the results let us to conclude that squaric acid is a suitable cross-linker for protein materials for medicine and tissue engineering.

Keywords: collagen, squaric acid, cross-linking, hydrogel

Procedia PDF Downloads 358
48197 Absorption Kinetic and Tensile Mechanical Properties of Swollen Elastomer/Carbon Black Nanocomposites using Typical Solvents

Authors: F. Elhaouzi, H. Lahlali, M. Zaghrioui, I. El Aboudi A. BelfKira, A. Mdarhri

Abstract:

The effect of physico chemical properties of solvents on the transport process and mechanical properties in elastomeric nano composite materials is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate polymer filled with hard spherical carbon black (CB) nano particles. The swelling behavior was studied by immersion the dried samples in selected solvents at room temperature during 2 days. For this purpose, two chemical compounds methyl derivatives of aromatic hydrocarbons of benzene, i.e. toluene and xylene, are used to search for the mass and molar volume dependence on the absorption kinetics. Mass gain relative to the mass of dry material at specific times was recorded to probe the absorption kinetics. The transport of solvent molecules in these filled elastomeric composites is following a Fickian diffusion mechanism. Additionally, the swelling ratio and diffusivity coefficient deduced from the Fickian law are found to decrease with the CB concentration. These results indicate that the CB nano particles increase the effective path length for diffusion and consequently limit the absorption of the solvent by occupation free volumes in the material. According to physico chemical properties of the two used solvents, it is found that the diffusion is more important for the toluene molecules solvent due to their low values of the molecular weight and volume molar compared to those for the xylene. Differential Scanning Calorimetry (DSC) and X-ray photo electron (XPS) were also used to probe the eventual change in the chemical composition for the swollen samples. Mechanically speaking, the stress-strain curves of uniaxial tensile tests pre- and post- swelling highlight a remarkably decrease of the strength and elongation at break of the swollen samples. This behavior can be attributed to the decrease of the load transfer density between the matrix and the CB in the presence of the solvent. We believe that the results reported in this experimental investigation can be useful for some demanding applications e.g. tires, sealing rubber.

Keywords: nanocomposite, absorption kinetics, mechanical behavior, diffusion, modelling, XPS, DSC

Procedia PDF Downloads 321
48196 Neuroprotective Effect of Chrysin on Thioacetamide-Induced Hepatic Encephalopathy in Rats: Role of Oxidative Stress and TLR-4/NF-κB Pathway

Authors: S. A. El-Marasy, S. A. El Awdan, R. M. Abd-Elsalam

Abstract:

This study aimed to investigate the possible neuroprotective effect of chrysin on thioacetamide (TAA)-induced hepatic encephalopathy in rats. Also, the effect of chrysin on motor impairment, cognitive deficits, oxidative stress, neuroinflammation, apoptosis and histopathological damage was assessed. Male Wistar rats were randomly allocated into five groups. The first group received the vehicle (distilled water) for 21 days and is considered as normal group. While the second one received intraperitoneal dose of TAA (200 mg/kg) at three alternative days during the third week of the experiment to induce HE and is considered as control group. The other three groups were orally administered chrysin for 21 days (25, 50, 100 mg/kg) and starting from day 17; rats received intraperitoneal dose of TAA (200 mg/kg) at three alternative days. Then behavioral, biochemical, histopathological and immunohistochemical analyses were assessed. Then behavioral, biochemical, histopathological and immunohistochemical analyses were assessed. Chrysin reversed TAA-induced motor coordination in rotarod test, cognitive deficits in object recognition test (ORT) and attenuated serum ammonia, hepatic liver enzymes, reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), reduced nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) brain contents. Chrysin administration also reduced Toll-4 receptor (TLR-4) gene expression, caspase-3 protein expression, hepatic necrosis and astrocyte swelling. This study depicts that chrysin exerted neuroprotective effect in TAA-induced HE rats, evidenced by improvement of cognitive deficits, motor incoordination and histopathological changes such as astrocyte swelling and vacuolization; hallmarks in HE, via reducing hyperammonemia, ameliorating hepatic function, in addition to its anti-oxidant, inactivation of TLR-4/NF-κB inflammatory pathway, and anti-apoptotic effects.

Keywords: chrysin, hepatic encephalopathy, oxidative stress, rats, thioacetamide, TLR4/NF-κB pathway

Procedia PDF Downloads 129
48195 Clay Develop Plasticity With Water

Authors: Boualla Nabila

Abstract:

The problems created by the water in Civil Engineering are sometimes neglected or often badly posed when they are not completely ignored, and yet they are fundamental as regards both the conditions of execution of the worksites and the stability. Several damages were caused by the infiltration of water in the soils, in particular in clay regions which can swell under the effect of an increase in their water content as in the case of the Oued Tlelat clay which is made up of yellow-colored marly clays and red-colored El Maleh area. This study was carried out on soil from a site, located near the city of Oran and the city of Ain Tmouchent (northern Algeria) where we encounter many problems of cracking of buildings and bottom uplift of excavations. The study consists first of all in determining the mechanical and physical characteristics of the clay, namely the parameters of sheer, simple compression, and that of the odometer. Then the study focused on a comparison of the influence of water type on the mechanical and physical properties of swelling clay soil.

Keywords: clay, water, liquidity limit, plastic limit

Procedia PDF Downloads 70
48194 A New Approach for Preparation of Super Absorbent Polymers: In-Situ Surface Cross-Linking

Authors: Reyhan Özdoğan, Mithat Çelebi, Özgür Ceylan, Mehmet Arif Kaya

Abstract:

Super absorbent polymers (SAPs) are defined as materials that can absorb huge amount of water or aqueous solution in comparison to their own mass and retain in their lightly cross-linked structure. SAPs were produced from water soluble monomers via polymerization subsequently controlled crosslinking. SAPs are generally used for water absorbing applications such as baby diapers, patient or elder pads and other hygienic product industries. Crosslinking density (CD) of SAP structure is an essential factor for water absortion capacity (WAC). Low internal CD leads to high WAC values and vice versa. However, SAPs have low CD and high swelling capacities and tend to disintegrate when pressure is applied upon them, so SAPs under load cannot absorb liquids effectively. In order to prevent this undesired situation and to obtain suitable SAP structures having high swelling capacity and ability to work under load, surface crosslinking can be the answer. In industry, these superabsorbent gels are mostly produced via solution polymerization and then they need to be dried, grinded, sized, post polymerized and finally surface croslinked (involves spraying of a crosslinking solution onto dried and grinded SAP particles, and then curing by heat). It can easily be seen that these steps are time consuming and should be handled carefully for the desired final product. If we could synthesize desired final SAPs using less processes it will help reducing time and production costs which are very important for any industries. In this study, synthesis of SAPs were achieved successfully by inverse suspension (Pickering type) polymerization and subsequently in-situ surface cross-linking via using proper surfactants in high boiling point solvents. Our one-pot synthesis of surface cross-linked SAPs invovles only one-step for preparation, thus it can be said that this technique exhibits more preferable characteristic for the industry in comparison to conventional methods due to its one-step easy process. Effects of different surface crosslinking agents onto properties of poly(acrylic acid-co-sodium acrylate) based SAPs are investigated. Surface crosslink degrees are evaluated by swelling under load (SUL) test. It was determined water absorption capacities of obtained SAPs decrease with the increasing surface crosslink density while their mechanic properties are improved.

Keywords: inverse suspension polymerization, polyacrylic acid, super absorbent polymers (SAPs), surface crosslinking, sodium polyacrylate

Procedia PDF Downloads 292
48193 Arothron Stellatus Fish Skin Collagen Based Composite Biosheet Incorporated with Mupirocin as a Potential Dermal Substitute for Skin Tissue Regeneration

Authors: Giriprasath Ramanathan, Sivakumar Singaravelu, M. D. Raja, Uma Tirichurapalli Sivagnanam

Abstract:

Collagen is the abundant protein found in the skin of the animal body that has been designed to provide adequate structural support for the adhesion of cells. The dressing material widely used for tissue engineering and biomedical application has to posses good swelling and biological property for the absorption of exudates and cell proliferation. Acid solubilised collagen from the fish skin of the Arothron stellatus was extracted. The collagen with hydroxypropyl and carboxy methyl cellulose has the better biological property to enhance the healing efficiency. The inter property of collagen with interesting perspectives in the tissue engineering process leads to the development of biomaterial with natural polymer with biologically derived collagen. Keeping this as an objective, the composite biomaterial was fabricated to improve the wound healing and biological properties. In this study the collagen from Arothron stellatus fish skin (ACO) was uniformly blended separately with hydroxypropyl methyl cellulose (HPMC) and carboxyl methyl cellulose (CMC) as biosheets. The casted biosheets were impregnated with mupirocin to get rid of infection from the microbes. Further, the results obtained from differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile studies and biocompatibility of the biosheets were assessed. The swelling, porosity and degradation of the casted biosheets were studied to make the biosheets as a suitable wound dressing material. ACO-HPMC and ACO-CMC biosheets both showed good results, but ACO-HPMC biosheet showed better results than ACO-CMC and hence it can be used as a potential dermal substitute in skin tissue engineering.

Keywords: arothron stellatus, biocompatibility, collagen, tensile strenght

Procedia PDF Downloads 287
48192 Identification and Management of Septic Arthritis of the Untouched Glenohumeral Joint

Authors: Sumit Kanwar, Manisha Chand, Gregory Gilot

Abstract:

Background: Septic arthritis of the shoulder has infrequently been discussed. Focus on infection of the untouched shoulder has not heretofore been described. We present four patients with glenohumeral septic arthritis. Methods: Case 1: A 59 year old male with left shoulder pain in the anterior, posterior and superior aspects. Case 2: A 60 year old male with fever, chills, and generalized muscle aches. Case 3: A 70 year old male with right shoulder pain about the anterior and posterior aspects. Case 4: A 55 year old male with global right shoulder pain, swelling, and limited ROM. Results: In case 1, the left shoulder was affected. Physical examination, swelling was notable, there was global tenderness with a painful range of motion (ROM). The lab values indicated an erythrocyte sedimentation rate (ESR) of 96, and a C-reactive protein (CRP) of 304.30. Imaging studies were performed and MRI indicated a high suspicion for an abscess with osteomyelitis of the humeral head. Our second case’s left arm was affected. He had swelling, global tenderness and painful ROM. His ESR was 38, CRP was 14.9. X-ray showed severe arthritis. Case 3 differed with the right arm being affected. Again, global tenderness and painful ROM was observed. His ESR was 94, and CRP was 10.6. X-ray displayed an eroded glenoid space. Our fourth case’s right shoulder was affected. He had global tenderness and painful, limited ROM. ESR was 108 and CRP was 2.4. X-ray was non-significant. Discussion: Monoarticular septic arthritis of the virgin glenohumeral joint is seldom diagnosed in clinical practice. Common denominators include elevated ESR, painful, limited ROM, and involvement of the dominant arm. The male population is more frequently affected with an average age of 57. Septic arthritis is managed with incision and drainage or needle aspiration of synovial fluid supplemented with 3-6 weeks of intravenous antibiotics. Due to better irrigation and joint visualization, arthroscopy is preferred. Open surgical drainage may be indicated if the above methods fail. Conclusion: If a middle-aged male presents with vague anterior or posterior shoulder pain, elevated inflammatory markers and a low grade fever, an x-ray should be performed. If this displays degenerative joint disease, the complete further workup with advanced imaging, such as an MRI, CT scan, or an ultrasound. If these imaging modalities display anterior space joint effusion with soft tissue involvement, we can suspect septic arthritis of the untouched glenohumeral joint and surgery is indicated.

Keywords: glenohumeral joint, identification, infection, septic arthritis, shoulder

Procedia PDF Downloads 395
48191 Effect of Flour Concentration and Retrogradation Treatment on Physical Properties of Instant Sinlek Brown Rice

Authors: Supat Chaiyakul, Direk Sukkasem, Patnachapa Natthapanpaisith

Abstract:

Sinlek rice flour beverage or instant product is a dietary supplement for dysphagia, or difficulty swallowing. It is also consumed by individuals who need to consume supplements to maintain their calorific needs. This product provides protein, fat, iron, and a high concentration of carbohydrate from rice flour. However, the application of native flour is limited due to its high viscosity. Starch modification by controlling starch retrogradation was used in this study. The research studies the effects of rice flour concentration and retrogradation treatment on the physical properties of instant Sinlek brown rice. The native rice flour, gelatinized rice flour, and flour gels retrograded under 4 °C for 3 and 7 days were investigated. From the statistical results, significant differences between native and retrograded flour were observed. The concentration of rice flour was the main factor influencing the swelling power, solubility, and pasting properties. With the increase in rice flour content from 10 to 15%, swelling power, peak viscosity, trough, and final viscosity decreased; but, solubility, pasting temperature, peak time, breakdown, and setback increased. The peak time, pasting temperature, peak viscosity, trough, and final viscosity decreased as the storage period increased from 3 to 7 days. The retrograded rice flour powders had lower pasting temperature, peak viscosity, breakdown, and final viscosity than the gelatinized and native flour powders. Reduction of starch viscosity by gelatinization and controlling starch retrogradation could allow for increased quantities of rice flour in instant rice beverages. Also, the treatment could increase the energy and nutrient densities of rice beverages without affecting the viscosity of this product.

Keywords: instant rice, pasting properties, pregelatinization, retrogradation

Procedia PDF Downloads 212
48190 Impact of Heat Moisture Treatment on the Yield of Resistant Starch and Evaluation of Functional Properties of Modified Mung Bean (Vigna radiate) Starch

Authors: Sreejani Barua, P. P. Srivastav

Abstract:

Formulation of new functional food products for diabetes patients and obsessed people is a challenge for food industries till date. Starch is a certainly happening, ecological, reasonable and profusely obtainable polysaccharide in plant material. In the present scenario, there is a great interest in modifying starch functional properties without destroying its granular structure using different modification techniques. Resistant starch (RS) contains almost zero calories and can control blood glucose level to prevent diabetes. The current study focused on modification of mung bean starch which is a good source of legumes carbohydrate for the production of functional food. Heat moisture treatment (HMT) of mung starch was conducted at moisture content of 10-30%, temperature of 80-120 °C and time of 8-24 h.The content of resistant starch after modification was significantly increased from native starches containing RS 7.6%. The design combinations of HMT had been completed through Central Composite Rotatable Design (CCRD). The effects of HMT process variables on the yield of resistant starch was studied through Rapid Surface Methodology (RSM). The highest increase of resistant starch was found up to 34.39% when treated the native starch with 30% m.c at 120 °C temperature for 24 h.The functional properties of both native and modified mung bean starches showed that there was a reduction in the swelling power and swelling volume of HMT starches. However, the solubility of the HMT starches was higher than that of untreated native starch and also observed change in structural (scanning electron microscopy), X-Ray diffraction (XRD) pattern, blue value and thermal (differential scanning calorimetry) properties. Therefore, replacing native mung bean starch with heat-moisture treated mung bean starch leads to the development of new products with higher resistant starch levels and functional properties.

Keywords: Mung bean starch, heat moisture treatment, functional properties, resistant starch

Procedia PDF Downloads 166
48189 Hydrogels Beads of Alginate/Seaweed Powder for Plants Nutrition

Authors: Brenda O. Mazzola, Adriel Larsen, Romina P. Ollier, Leandro N. Ludueña, Vera A. Alvarez, Jimena S. Gonzalez

Abstract:

Seaweed is a natural renewable resource with great potential that is not being used by the domestic industry. Here, it was used a kind of invasive algae U. Pinnatifida that causes serious ecological damage on the Argentinian coasts. Alginate is one of the most widely used materials for encapsulation, and has the advantage that is a natural polysaccharide derived from a marine plant. It can form thermally stable hydrogel in the presence of calcium cation. In addition, the hydrogel can be easily produced into particulate form by using simple and gentle method. The aim of this work was to obtain and to characterize novel compounds (alginate/seaweed powder) for the soil nutrition. Alginate water solutions were prepared by concentrations of 20, 30, 40 and 50 g/L, in those solutions 10g/L of seaweed powder was added. Then the dispersions were transferred from a beaker to the atomizer by a peristaltic pump (with 0.05 to 0.1 L/h flow). A tank was filled with 1 L of calcium chloride solution (4 g/L), and the solution was agitated with a magnetic stirrer. The beads were analyzed by means TGA, FTIR and swelling determinations. In addition, the improvements in the soil were qualitative measured. It was obtained beads with different diameters depend on the initial concentration and the flow used. A better dispersions of seaweed and optimal diameter for the plant nutrition applications were obtained for 40g/L concentration and 0.1 L/h flow. The beads show thermal stability and high swelling degree. It can be successfully obtained alginate beads with seaweed powder with a novelty application as plant nutrient.

Keywords: biodegradable, characterization, hydrogel, plant nutrition, seaweed

Procedia PDF Downloads 247
48188 Alveolar Ridge Preservation in Post-extraction Sockets Using Concentrated Growth Factors: A Split-Mouth, Randomized, Controlled Clinical Trial

Authors: Sadam Elayah

Abstract:

Background: One of the most critical competencies in advanced dentistry is alveolar ridge preservation after exodontia. The aim of this clinical trial was to assess the impact of autologous concentrated growth factor (CGF) as a socket-filling material and its ridge preservation properties following the lower third molar extraction. Materials and Methods: A total of 60 sides of 30 participants who had completely symmetrical bilateral impacted lower third molars were enrolled. The short-term outcome variables were wound healing, swelling and pain, clinically assessed at different time intervals (1st, 3rd & 7th days). While the long-term outcome variables were bone height & width, bone density and socket surface area in the coronal section. Cone beam computed tomography images were obtained immediately after surgery and three months after surgery as a temporal measure. Randomization was achieved by opaque, sealed envelopes. Follow-up data were compared to baseline using Paired & Unpaired t-tests. Results: The wound healing index was significantly better in the test sides (P =0.001). Regarding the facial swelling, the test sides had significantly fewer values than the control sides, particularly on the 1st (1.01±.57 vs 1.55 ±.56) and 3rd days (1.42±0.8 vs 2.63±1.2) postoperatively. Nonetheless, the swelling disappeared within the 7th day on both sides. The pain scores of the visual analog scale were not a statistically significant difference between both sides on the 1st day; meanwhile, the pain scores were significantly lower on the test sides compared with the control sides, especially on the 3rd (P=0.001) and 7th days (P˂0.001) postoperatively. Regarding long-term outcomes, CGF sites had higher values in height and width when compared to Control sites (Buccal wall 32.9±3.5 vs 29.4±4.3 mm, Lingual wall 25.4±3.5 vs 23.1±4 mm, and Alveolar bone width 21.07±1.55vs19.53±1.90 mm) respectively. Bone density showed significantly higher values in CGF sites than in control sites (Coronal half 200±127.3 vs -84.1±121.3, Apical half 406.5±103 vs 64.2±158.6) respectively. There was a significant difference between both sites in reducing periodontal pockets. Conclusion: CGF application following surgical extraction provides an easy, low-cost, and efficient option for alveolar ridge preservation. Thus, dentists may encourage using CGF during dental extractions, particularly when alveolar ridge preservation is required.

Keywords: platelet, extraction, impacted teeth, alveolar ridge, regeneration, CGF

Procedia PDF Downloads 41
48187 poly(N-Isopropylacrylamide)-Polyvinyl Alcohol Semi-Interpenetrating Network Hydrogel for Wound Dressing

Authors: Zi-Yan Liao, Shan-Yu Zhang, Ya-Xian Lin, Ya-Lun Lee, Shih-Chuan Huang, Hong-Ru Lin

Abstract:

Traditional wound dressings, such as gauze, bandages, etc., are easy to adhere to the tissue fluid exuded from the wound, causing secondary damage to the wound during removal. This study takes this as the idea to develop a hydrogel dressing, to explore that the dressing will not cause secondary damage to the wound when it is torn off, and at the same time, create an environment conducive to wound healing. First, the temperature-sensitive material N-isopropylacrylamide (NIPAAm) was used as the substrate. Due to its low mechanical properties, the hydrogel would break due to pulling during human activities. Polyvinyl alcohol (PVA) interpenetrates into it to enhance the mechanical properties, and a semi-interpenetration (semi-IPN) composed of poly(N-isopropylacrylamide) (PNIPAAm) and polyvinyl alcohol (PVA) was prepared by free radical polymerization. PNIPAAm was cross-linked with N,N'-methylenebisacrylamide (NMBA) in an ice bath in the presence of linear PVA, and tetramethylhexamethylenediamine (TEMED) was added as a promoter to speed up the gel formation. The polymerization stage was carried out at 16°C for 17 hours and washed with distilled water for three days after gel formation, and the water was changed several times in the middle to complete the preparation of semi-IPN hydrogel. Finally, various tests were used to analyze the effects of different ratios of PNIPAAm and PVA on semi-IPN hydrogels. In the swelling test, it was found that the maximum swelling ratio can reach about 50% under the environment of 21°C, and the higher the ratio of PVA, the more water can be absorbed. The saturated moisture content test results show that when more PVA is added, the higher saturated water content. The water vapor transmission rate test results show that the value of the semi-IPN hydrogel is about 57 g/m²/24hr, which is not much related to the proportion of PVA. It is found in the LCST test compared with the PNIPAAm hydrogel; the semi-IPN hydrogel possesses the same critical solution temperature (30-35°C). The semi-IPN hydrogel prepared in this study has a good effect on temperature response and has the characteristics of thermal sensitivity. It is expected that after improvement, it can be used in the treatment of surface wounds, replacing the traditional dressing shortcoming.

Keywords: hydrogel, N-isopropylacrylamide, polyvinyl alcohol, hydrogel wound dressing, semi-interpenetrating polymer network

Procedia PDF Downloads 55