Search results for: surfactants adsorption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1039

Search results for: surfactants adsorption

979 The Use of Thermally Modified Diatomite to Remove Lead Ions

Authors: Hilary Limo Rutto

Abstract:

To better understand the application of diatomite as an adsorbent for the removal of Pb2+ from heavy metal-contaminated water, in this paper, diatomite was used to adsorb Pb2+ from aqueous solution under various conditions. The intrinsic exchange properties were further improved by heating the raw diatomite with fluxing agent at different temperatures and modification with manganese oxides. It is evident that the mass of the adsorbed Pb2+ generally increases after thermal treatment and modification with manganese oxides. The adsorption characteristics of lead on diatomite were studied at pH range of 2.5–12. The favourable pH range was found to be 7.5-8.5. The thermodynamic parameters (i.e.,∆H° ∆G° ∆S°) were evaluated from the temperature dependent adsorption isotherms. The results indicated that the adsorption process of Pb2+ on diatomite was spontaneous, endothermic and physical in nature. The equilibrium data have been analyzed using Langmuir and freundlich isotherm. The Langmuir isotherm was demonstrated to provide the best correlation for the adsorption of lead onto diatomite. The kinetics was studied using Pseudo- first and second-order model on the adsorption of lead onto diatomite. The results give best fit in second-order studies and it can be concluded that the adsorption of lead onto diatomite is second order reaction.

Keywords: thermally modified, diatomite, adsorption, lead

Procedia PDF Downloads 202
978 Activated Carbons Prepared from Date Pits for Hydrogen Storage

Authors: M. Belhachemi, M. Monteiro de Castro, M. Casco, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso

Abstract:

In this study, activated carbons were prepared from Algerian date pits using thermal activation with CO2 or steam. The prepared activated carbons were doped by vanadium oxide in order to increase the H2 adsorption capacity. The adsorbents were characterized by N2 and CO2 adsorption at 77 K and 273K, respectively. The hydrogen adsorption experiments were carried at 298K in the 0–100 bar pressure range using a volumetric equipment. The results show that the H2 adsorption capacity is influenced by the size and volume of micropores in the activated carbon adsorbent. Furthermore, vanadium doping of activated carbons has a slight positive effect on H2 storage.

Keywords: hydrogen storage, activated carbon, vanadium doping, adsorption

Procedia PDF Downloads 533
977 Improvement in Ni (II) Adsorption Capacity by Using Fe-Nano Zeolite

Authors: Pham-Thi Huong, Byeong-Kyu Lee, Jitae Kim, Chi-Hyeon Lee

Abstract:

Fe-nano zeolite adsorbent was used for removal of Ni (II) ions from aqueous solution. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the surface area Brunauer–Emmett–Teller (BET) using for analysis of functional groups, morphology and surface area. Bath adsorption experiments were analyzed on the effect of pH, time, adsorbent doses and initial Ni (II) concentration. The optimum pH for Ni (II) removal using Fe-nano zeolite was found at 5.0 and 90 min of reaction time. The maximum adsorption capacity of Ni (II) was 231.68 mg/g based on the Langmuir isotherm. The kinetics data for the adsorption process was fitted with the pseudo-second-order model. The desorption of Ni (II) from Ni-loaded Fe-nano zeolite was analyzed and even after 10 cycles 72 % desorption was achieved. These finding supported that Fe-nano zeolite with high adsorption capacity, high reuse ability would be utilized for Ni (II) removal from water.

Keywords: Fe-nano zeolite, adsorption, Ni (II) removal, regeneration

Procedia PDF Downloads 199
976 Emergency Treatment of Methanol Poisoning: A Mathematical Approach

Authors: Priyanka Ghosh, Priti Kumar Roy

Abstract:

Every year a considerable number of people die due to methyl alcohol poisoning, in which most of them die even before proper treatment. This work gives a simple and cheap first aid to those affected individuals by the administration of activated charcoal. In this article, we emphasise on the adsorption capability of activated charcoal for the treatment of poisoning and use an impulsive differential equation to study the effect of activated charcoal during adsorption. We also investigate the effects of various parameters on the adsorption which are incorporated in the model system.

Keywords: activated charcoal, adsorption, impulsive differential equation, methanol poisoning

Procedia PDF Downloads 274
975 C4H6 Adsorption on the Surface of A BN Nanotube: A DFT Studies

Authors: Maziar Noei

Abstract:

Adsorption of a boron nitride nanotube (BNNT) was examined toward ethylacetylene (C4H6) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of ethylacetylene the pristine nanotubes is about -1.60kcal/mol. But when nanotube have been doped with Si and Al atomes, the adsorption energy of ethylacetylene molecule was increased. Calculation showed that when the nanotube is doping by Al, the adsorption energy is about -24.19kcal/mol and also the amount of HOMO/LUMO energy gap (Eg) will reduce significantly. Boron nitride nanotube is a suitable adsorbent for ethylacetylene and can be used in separation processes ethylacetylene. It is seem that nanotube (BNNT) is a suitable semiconductor after doping, and the doped BNNT in the presence of ethylacetylene an electrical signal is generating directly and therefore can potentially be used for ethylacetylene sensors.

Keywords: sensor, nanotube, DFT, ethylacetylene

Procedia PDF Downloads 217
974 Removal of Maxilon Red Dye by Adsorption and Photocatalysis: Optimum Conditions, Equilibrium, and Kinetic Studies

Authors: Aid Asma, Dahdouh Nadjib, Amokrane Samira, Ladjali Samir, Nibou Djamel

Abstract:

The present work has for main objective the elimination of the textile dye Maxilon Red (MR) by two processes, adsorption on activated clay followed by photocatalysis in presence of ZnO as a photocatalyst. The influence of the physical parameters like the initial pH, adsorbent dose of the activated clay, the MR concentration and temperature has been studied. The best adsorption yield occurs at neutral pH ~ 7 within 60 min with an uptake percentage of 97% for a concentration of 25 mg L⁻¹ and a dose of 0.5 g L⁻¹. The adsorption data were suitably fitted by the Langmuir model with a maximum capacity of 176 mg g⁻¹. The MR adsorption is well described by the pseudo second order kinetic. The second part of this work was dedicated to the photocatalytic degradation onto ZnO under solar irradiation of the residual MR concentration, remained after adsorption. The effect of ZnO dose and MR concentration has also been investigated. The parametric study showed that the elimination is very effective by this process, based essentially on the in situ generation of free radicals *OH which are non-selective and very reactive. The photodegradation process follows a first order kinetic model according to the Langmuir-Hinshelwood model.

Keywords: maxilon red, adsorption, photodegradation, ZnO, coupling

Procedia PDF Downloads 155
973 Preparation of Magnetic Hydroxyapatite Composite by Wet Chemical Process for Phycobiliproteins Adsorption

Authors: Shu-Jen Chen, Yi-Chien Wan, Ruey-Chi Wang

Abstract:

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) can be applied to the fabrication of bone replacement materials, the composite of dental filling, and the adsorption of biomolecules and dyes. The integration of HAp and magnetic materials would offer several advantages for bio-separation process because the magnetic adsorbents is capable of recovered by applied magnetic field. C-phycocyanin (C-PC) and Allophycocyanin (APC), isolated from Spirulina platensis, can be used in fluorescent labeling probes, health care foods and clinical diagnostic reagents. Although the purification of C-PC and APC are reported by HAp adsorption, the adsorption of C-PC and APC by magnetic HAp composites was not reported yet. Therefore, the fabrication of HAp with magnetic silica nanoparticles for proteins adsorption was investigated in this work. First, the magnetic silica particles were prepared by covering silica layer on Fe3O4 nanoparticles with a reverse micelle method. Then, the Fe3O4@SiO2 nanoparticles were mixed with calcium carbonate to obtain magnetic silica/calcium carbonate composites (Fe3O4@SiO2/CaCO3). The Fe3O4@SiO2/CaCO3 was further reacted with K2HPO4 for preparing the magnetic silica/hydroxyapatite composites (Fe3O4@SiO2/HAp). The adsorption experiments indicated that the adsorption capacity of Fe3O4@SiO2/HAp toward C-PC and APC were highest at pH 6. The adsorption of C-PC and APC by Fe3O4@SiO2/HAp could be correlated by the pseudo-second-order model, indicating chemical adsorption dominating the adsorption process. Furthermore, the adsorption data showed that the adsorption of Fe3O4@SiO2/HAp toward C-PC and APC followed the Langmuir isotherm. The isoelectric points of C-PC and APC were around 5.0. Additionally, the zeta potential data showed the Fe3O4@SiO2/HAp composite was negative charged at pH 6. Accordingly, the adsorption mechanism of Fe3O4@SiO2/HAp toward C-PC and APC should be governed by hydrogen bonding rather than electrostatic interaction. On the other hand, as compared to C-PC, the Fe3O4@SiO2/HAp shows higher adsorption affinity toward APC. Although the Fe3O4@SiO2/HAp cannot recover C-PC and APC from Spirulina platensis homogenate, the Fe3O4@SiO2/HAp can be applied to separate C-PC and APC.

Keywords: hydroxyapatite, magnetic, C-phycocyanin, allophycocyanin

Procedia PDF Downloads 122
972 Synthesis of NiO and ZnO Nanoparticles and Charactiration for the Eradication of Lead (Pb) from Wastewater

Authors: Sadia Ata, Anila Tabassum, Samina ghafoor, Ijaz ul Mohsin, Azam Muktar

Abstract:

Heavy metal ions such as Pb2+, Cd2+, Zn2+, Ni2+ and Hg2+, in wastewater are considered as the serious environmental problem. Among these heavy metals, Lead or Pb (II) is the most toxic heavy metal. Exposure to lead causes damage of nervous system, mental retardation, renal kidney disease, anemia and cancer in human beings. Adsorption is the most widely used method to remove metal ions based on the physical interaction between metal ions and sorbents. With the development of nanotechnology, nano-sized materials are proved to be effective sorbents for the removal of heavy metal ions from wastewater due to their unique structural properties. The present work mainly focuses on the synthesis of NiO and ZnO nanoparticles for the removal of Lead ions, their preparation, characterization by XRD, FTIR, SEM, and TEM, adsorption characteristics and mechanism, along with adsorption isotherm model and adsorption kinetics to understand the adsorption procedure.

Keywords: heavy metal, adsorption isotherms, nanoparticles, wastewater

Procedia PDF Downloads 554
971 The Role of Long-Chain Ionic Surfactants on Extending Drug Delivery from Contact Lenses

Authors: Cesar Torres, Robert Briber, Nam Sun Wang

Abstract:

Eye drops are the most commonly used treatment for short-term and long-term ophthalmic diseases. However, eye drops could deliver only about 5% of the functional ingredients contained in a burst dosage. To address the limitations of eye drops, the use of therapeutic contact lenses has been introduced. Drug-loaded contact lenses provide drugs a longer residence time in the tear film and hence, decrease the potential risk of side effects. Nevertheless, a major limitation of contact lenses as drug delivery devices is that most of the drug absorbed is released within the first few hours. This fact limits their use for extended release. The present study demonstrates the application of long-alkyl chain ionic surfactants on extending drug release kinetics from commercially available silicone hydrogel contact lenses. In vitro release experiments were carried by immersing drug-containing contact lenses in phosphate buffer saline at physiological pH. The drug concentration as a function of time was monitored using ultraviolet-visible spectroscopy. The results of the study demonstrate that release kinetics is dependent on the ionic surfactant weight percent in the contact lenses, and on the length of the hydrophobic alkyl chain of the ionic surfactants. The use of ionic surfactants in contact lenses can extend the delivery of drugs from a few hours to a few weeks, depending on the physicochemical properties of the drugs. Contact lenses embedded with ionic surfactants could be potential biomaterials to be used for extended drug delivery and in the treatment of ophthalmic diseases. However, ocular irritation and toxicity studies would be needed to evaluate the safety of the approach.

Keywords: contact lenses, drug delivery, controlled release, ionic surfactant

Procedia PDF Downloads 114
970 Loss in Efficacy of Viscoelastic Ionic Liquid Surfactants under High Salinity during Surfactant Flooding

Authors: Shilpa K. Nandwani, Mousumi Chakraborty, Smita Gupta

Abstract:

When selecting surfactants for surfactant flooding during enhanced oil recovery, the most important criteria is that the surfactant system should reduce the interfacial tension between water and oil to ultralow values. In the present study, a mixture of ionic liquid surfactant and commercially available binding agent sodium tosylate has been used as a surfactant mixture. Presence of wormlike micelles indicates the possibility of achieving ultralow interfacial tension. Surface tension measurements of the mixed surfactant system have been studied. The emulsion size distribution of the mixed surfactant system at varying salinities has been studied. It has been found that at high salinities the viscoelastic surfactant system loses their efficacy and degenerate. Hence the given system may find application in low salinity reservoirs, providing good mobility to the flood during tertiary oil recovery process.

Keywords: ionic liquis, interfacial tension, Na-tosylate, viscoelastic surfactants

Procedia PDF Downloads 225
969 Adsorption of a Pharmaceutical Pollutant on Activated Carbon of Orange Peels

Authors: Faroudja Mohellebi, Fayrouz Khalida Kies, Moncef Rezzik El Marhoun, Feriel Yahiat

Abstract:

The purpose of this study is to valorize an agro-food waste (orange peels) by its use as an adsorbent in the treatment of water loaded with pharmaceutical micropollutant present in aquatic environments, oxytetracycline. The tests, carried out in batch mode, made it possible to study the influence on the sorptive capacity of calcined orange peels of several parameters: the contact time, the initial concentration of oxytetracycline, the adsorbent dose, and the initial pH of the solution. The pseudo-second-order model is best adapted to represent the adsorption kinetics. The Langmuir model describes the adsorption isotherm of oxytetracycline. The adsorption is favored in a basic environment.

Keywords: adsorption, emerging pollutants, oxytetracycline, water treatment

Procedia PDF Downloads 119
968 Cadmium Adsorption by Modified Magnetic Biochar

Authors: Chompoonut Chaiyaraksa, Chanida Singbubpha, Kliaothong Angkabkingkaew, Thitikorn Boonyasawin

Abstract:

Heavy metal contamination in an environment is an important problem in Thailand that needs to be addressed urgently, particularly contaminated with water. It can spread to other environments faster. This research aims to study the adsorption of cadmium ion by unmodified biochar and sodium dodecyl sulfate modified magnetic biochar derived from Eichhornia Crassipes. The determination of the adsorbent characteristics was by Scanning Electron Microscope, Fourier Transform Infrared Spectrometer, X-ray Diffractometer, and the pH drift method. This study also included the comparison of adsorption efficiency of both types of biochar, adsorption isotherms, and kinetics. The pH value at the point of zero charges of the unmodified biochar and modified magnetic biochar was 7.40 and 3.00, respectively. The maximum value of adsorption reached when using pH 8. The equilibrium adsorption time was 5 hours and 1 hour for unmodified biochar and modified magnetic biochar, respectively. The cadmium adsorption by both adsorbents followed Freundlich, Temkin, and Dubinin – Radushkevich isotherm model and the pseudo-second-order kinetic. The adsorption process was spontaneous at high temperatures and non-spontaneous at low temperatures. It was an endothermic process, physisorption in nature, and can occur naturally.

Keywords: Eichhornia crassipes, magnetic biochar, sodium dodecyl sulfate, water treatment

Procedia PDF Downloads 137
967 Continuous Fixed Bed Reactor Application for Decolourization of Textile Effluent by Adsorption on NaOH Treated Eggshell

Authors: M. Chafi, S. Akazdam, C. Asrir, L. Sebbahi, B. Gourich, N. Barka, M. Essahli

Abstract:

Fixed bed adsorption has become a frequently used industrial application in wastewater treatment processes. Various low cost adsorbents have been studied for their applicability in treatment of different types of effluents. In this work, the intention of the study was to explore the efficacy and feasibility for azo dye, Acid Orange 7 (AO7) adsorption onto fixed bed column of NaOH Treated eggshell (TES). The effect of various parameters like flow rate, initial dye concentration, and bed height were exploited in this study. The studies confirmed that the breakthrough curves were dependent on flow rate, initial dye concentration solution of AO7 and bed depth. The Thomas, Yoon–Nelson, and Adams and Bohart models were analysed to evaluate the column adsorption performance. The adsorption capacity, rate constant and correlation coefficient associated to each model for column adsorption was calculated and mentioned. The column experimental data were fitted well with Thomas model with coefficients of correlation R2 ≥0.93 at different conditions but the Yoon–Nelson, BDST and Bohart–Adams model (R2=0.911), predicted poor performance of fixed-bed column. The (TES) was shown to be suitable adsorbent for adsorption of AO7 using fixed-bed adsorption column.

Keywords: adsorption models, acid orange 7, bed depth, breakthrough, dye adsorption, fixed-bed column, treated eggshell

Procedia PDF Downloads 345
966 Effect of Temperature on Adsorption of Nano Ca-DTPMP Scale Inhibitor

Authors: Radhiyatul Hikmah Binti Abu, Zukhairi Bin Md Rahim, Siti Ujila Binti Masuri, Nur Ismarrubie Binti Zahari, Mohd Zobir Hussein

Abstract:

This paper describes the synthesis of Calcium Diethylenetriamine-penta (Ca-DTPMP) Scale Inhibitor (SI) and the effect of temperature on its adsorption onto the mineral surfaces. Nanosized particles of Ca-DTPMP SI were synthesized and TEM result shows that the sizes of the synthesized particles are ranged from 10 nm to 30 nm. This synthesized nano SI was then used in static adsorption/precipitation test with various temperatures (37°C, 60°C and 100°C) to determine the effect of temperature on its adsorption ability. The performance of the SI was measured by their diffusion capability, which can be inferred by weighing the metal-SI that successfully adsorbed onto the kaolinite (mineral) surface. The kaolinite samples were analyzed using Scanning Electron Microscope (SEM) and the results show the reduction of pores on kaolinite surface as temperature increases. This indicates higher adsorption of the SI particles onto the mineral surface. Furthermore, EDX analysis shows the presence of Phosphorus (P) and Magnesium (Mg2+) on kaolinite particle surface, hence reaffirming the fact that adsorption took place on the kaolinite surface.

Keywords: adsorption, diffusivity, scale, scale inhibitor

Procedia PDF Downloads 418
965 CO2 Adsorption on the Activated Klaten-Indonesian Natural Zeolite in a Packed Bed Adsorber

Authors: Sang Kompiang Wirawan, Chandra Purnomo

Abstract:

Carbon dioxide (CO2) adsorption on the activated Klaten-Indonesian natural zeolite (AKINZ) in a packed bed adsorber has been studied. Experiment works consisted of acid activation and adsorption experiments. The natural zeolite sample was activated using 0.3 M HCl at the temperature of 353 K. In the adsorption experiments the feed gas concentrations were 40 and 80 % CO2 in helium within various temperatures of 303; 323 and 373 K. The experiments were conducted by using transient step change adsorption and 20 % Ar/He tracer experiment was conducted to measure dispersion and time lag effect of the packed bed system. A mathematical model of CO2 adsorption had been set up by assuming plug flow;isothermal;isobaric and no gas film mass transport resistance. Single site Langmuir physisorption and Maxwell Stefan mass transport in micropore were applied. All the data were then optimized to get the best value of modified fitted parameter. The model was in a good agreement with the experiment data. Diffusivity tended to increase by increasing temperatures.

Keywords: adsorption, Langmuir, Maxwell-Stefan, natural zeolite, surface diffusion

Procedia PDF Downloads 323
964 Powdered Beet Red Roots Using as Adsorbent to Removal of Methylene Blue Dye from Aqueous Solutions

Authors: Abdulali Bashir Ben Saleh

Abstract:

The powdered beet red roots (PBRR) were used as an adsorbent to remove dyes namely methylene blue dye (as a typical cationic or basic dye) from aqueous solutions. The present study shows that used beet red roots powder exhibit adsorption trend for the dye. The adsorption processes were carried out at various conditions of concentrations, processing time and a wide range of pH between 2.5-11. Adsorption isotherm equations such as Freundlich, and Langmuir were applied to calculate the values of respective constants. Adsorption study was found that the currently introduced adsorbent can be used to remove cationic dyes such as methylene blue from aqueous solutions.

Keywords: beet red root, removal of deys, methylene blue, adsorption

Procedia PDF Downloads 301
963 Equilibrium and Kinetic Studies of Lead Adsorption on Activated Carbon Derived from Mangrove Propagule Waste by Phosphoric Acid Activation

Authors: Widi Astuti, Rizki Agus Hermawan, Hariono Mukti, Nurul Retno Sugiyono

Abstract:

The removal of lead ion (Pb2+) from aqueous solution by activated carbon with phosphoric acid activation employing mangrove propagule as precursor was investigated in a batch adsorption system. Batch studies were carried out to address various experimental parameters including pH and contact time. The Langmuir and Freundlich models were able to describe the adsorption equilibrium, while the pseudo first order and pseudo second order models were used to describe kinetic process of Pb2+ adsorption. The results show that the adsorption data are seen in accordance with Langmuir isotherm model and pseudo-second order kinetic model.

Keywords: activated carbon, adsorption, equilibrium, kinetic, lead, mangrove propagule

Procedia PDF Downloads 136
962 Evaluation of the Adsorption Adaptability of Activated Carbon Using Dispersion Force

Authors: Masao Fujisawa, Hirohito Ikeda, Tomonori Ohata, Miho Yukawa, Hatsumi Aki, Takayoshi Kimura

Abstract:

We attempted to predict adsorption coefficients by utilizing dispersion energies. We performed liquid-phase free energy calculations based on gas-phase geometries of organic compounds using the DFT and studied the relationship between the adsorption of organic compounds by activated carbon and dispersion energies of the organic compounds. A linear correlation between absorption coefficients and dispersion energies was observed.

Keywords: activated carbon, adsorption, prediction, dispersion energy

Procedia PDF Downloads 207
961 Adsorption of Chromium Ions from Aqueous Solution by Carbon Adsorbent

Authors: S. Heydari, H. Sharififard, M. Nabavinia, H. Kiani, M. Parvizi

Abstract:

Rapid industrialization has led to increased disposal of heavy metals into the environment. Activated carbon adsorption has proven to be an effective process for the removal of trace metal contaminants from aqueous media. This paper was investigated chromium adsorption efficiency by commercial activated carbon. The sorption studied as a function of activated carbon particle size, dose of activated carbon and initial pH of solution. Adsorption tests for the effects of these factors were designed with Taguchi approach. According to the Taguchi parameter design methodology, L9 orthogonal array was used. Analysis of experimental results showed that the most influential factor was initial pH of solution. The optimum conditions for chromium adsorption by activated carbons were found to be as follows: Initial feed pH 6, adsorbent particle size 0.412 mm and activated carbon dose 6 g/l. Under these conditions, nearly %100 of chromium ions was adsorbed by activated carbon after 2 hours.

Keywords: chromium, adsorption, Taguchi method, activated carbon

Procedia PDF Downloads 364
960 Kinetic and Thermodynamic Study of Nitrates Removal by Sorption on Biochar

Authors: Amira Touil, Achouak Arfaoui, Ibtissem Mannaii

Abstract:

The aim of this work is to monitor the process adsorption of nitrates by the biochar via studying the influence of various parameters on the adsorption of this pollutant by biochar in a synthetic aqueous solution. The results which obtained indicate that the 4g/L biochar dose is the most efficient in terms of nitrates removal in aqueous solution. The biochar exhibited a good affinity for nitrates after 1hour of contact. The yield of removal of nitrate by the biochar decreases with the increase of pH of the solution and increases with increasing temperature (60°C>40°C>20°C). The best removal yield is about 80% of the initial concentration introduced (25mg/L) obtained at pH=2, T=60°C, and dose of biochar=4g/L. The second order model fit the nitrate adsorption kinetics of biochar with a high coefficient of determination (R2≥0.997); and a new equation correlating the rate constant of the reaction with temperature and pH was been built. Freundlich isotherms performed well to fit the nitrate adsorption data by biochar (R2>0.96) compared to Langmuir isotherms. The thermodynamic parameters (ΔH°, ΔG°, ΔS°) have been calculated for predicting the nature of adsorption.

Keywords: pollution, biochar, nitrate, adsorption

Procedia PDF Downloads 62
959 Orange Peel Derived Activated Carbon /Chitosan Composite as Highly Effective and Low-Cost Adsorbent for Adsorption of Methylene Blue

Authors: Onur Karaman, Ceren Karaman

Abstract:

In this study, the adsorption of Methylene Blue (MB), a cationic dye, onto Orange Peel Derived Activated Carbon (OPAC) and chitosan(OPAC/Chitosan composite) composite (a low-cost absorbent) was carried out using a batch system. The composite was characterised using IR spectra, XRD, FESEM and Pore size studies. The effects of initial pH, adsorbent dose rate and initial dye concentration on the initial adsorption rate, capacity and dye removal efficiency were investigated. The Langmuir and Freundlich adsorption models were used to define the adsorption equilibrium of dye-adsorbent system mathematically and it was decided that the Langmuir model was more suitable to describe the adsorption equilibrium for the system. In addition, first order, second order and saturation type kinetic models were applied to kinetic data of adsorption and kinetic constants were calculated. It was concluded that the second order and the saturation type kinetic models defined the adsorption data more accurately. Finally, the evaluated thermodynamic parameters of adsorption show a spontaneous and exothermic behavior. Overall, this study indicates OPAC/Chitosan composite as an effective and low-cost adsorbent for the removal of MB dye from aqueous solutions.

Keywords: activated carbon, adsorption, chitosan, methylene blue, orange peel

Procedia PDF Downloads 258
958 Arsenic(III) Removal from Aqueous Solutions by Adsorption onto Fly Ash

Authors: Olushola Ayanda, Simphiwe Nelana, Eliazer Naidoo

Abstract:

In the present study, the kinetics, equilibrium and thermodynamics of the adsorption of As(III) ions from aqueous solution onto fly ash (FA) was investigated in batch adsorption system. Prior to the adsorption studies, the FA was characterized by means of x-ray fluorescence (XRF), x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area determination. The effect of contact time, initial As(III) concentration, FA dosage, stirring speed, solution pH and temperature was examined on the adsorption rate. Experimental results showed a very good compliance with the pseudo-second-order equation, while the equilibrium study showed that the sorption of As(III) ions onto FA fitted the Langmuir and Freundlich isotherms. The adsorption process is endothermic and spontaneous, moreover, the maximum percentage removal of As(III) achieved with approx. 2.5 g FA mixed with 25 mL of 100 mg/L As(III) solution was 65.4 % at pH 10, 60 min contact time, temperature of 353 K and a stirring speed of 120 rpm.

Keywords: arsenic, fly ash, kinetics, isotherm, thermodynamics

Procedia PDF Downloads 211
957 Polymerization: An Alternative Technology for Heavy Metal Removal

Authors: M. S. Mahmoud

Abstract:

In this paper, the adsorption performance of a novel environmental friendly material, calcium alginate gel beads as a non-conventional technique for the successful removal of copper ions from aqueous solution are reported on. Batch equilibrium studies were carried out to evaluate the adsorption capacity and process parameters such as pH, adsorbent dosages, initial metal ion concentrations, stirring rates and contact times. It was observed that the optimum pH for maximum copper ions adsorption was at pH 5.0. For all contact times, an increase in copper ions concentration resulted in decrease in the percent of copper ions removal. Langmuir and Freundlich's isothermal models were used to describe the experimental adsorption. Adsorbent was characterization using Fourier transform-infrared (FT-IR) spectroscopy and Transmission electron microscopy (TEM).

Keywords: adsorption, alginate polymer, isothermal models, equilibrium

Procedia PDF Downloads 426
956 Synthesis and Characterization of Molecularly Imprinted Polymer as a New Adsorbent for the Removal of Pyridine from Organic Medium

Authors: Opeyemi Elujulo, Aderonke Okoya, Kehinde Awokoya

Abstract:

Molecularly imprinted polymers (MIP) for the adsorption of pyridine (PYD) was obtained from PYD (the template), styrene (the functional monomer), divinyl benzene (the crosslinker), benzoyl peroxide (the initiator), and water (the porogen). When the template was removed by solvent extraction, imprinted binding sites were left in the polymer material that are capable of selectively rebinding the target molecule. The material was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. Batch adsorption experiments were performed to study the adsorption of the material in terms of adsorption kinetics, isotherms, and thermodynamic parameters. The results showed that the imprinted polymer exhibited higher affinity for PYD compared to non-imprinted polymer (NIP).

Keywords: molecularly imprinted polymer, bulk polymerization, environmental pollutant, adsorption

Procedia PDF Downloads 115
955 Development of Nanostructured Materials for the Elimination of Emerging Pollutants in Water through Adsorption Processes

Authors: J. Morillo, Otal E., A. Caballero, R. M. Pereñiguez, J. Usero

Abstract:

The present work shows in the first place, the manufacture of the perovskitic material used as adsorbent, by means of two different methods to obtain two types of perovskites (LaFeO₃ and BiFeO₃). The results of this work show the characteristics of this manufactured material, as well as the synthesis yields obtained, achieving a better result for the self-combustion synthesis. Secondly, from the manufactured perovskites, an adsorption system has been developed, at the laboratory level, for the adsorption of the emerging pollutants Trimethoprim, Ciprofloxacin and Ibuprofen.

Keywords: nanostructured materials, emerging pollutants, water, adsorption processes

Procedia PDF Downloads 122
954 Adsorption Isotherm, Kinetic and Mechanism Studies of Some Substituted Phenols from Aqueous Solution by Jujuba Seeds Activated Carbon

Authors: O. Benturki, A. Benturki

Abstract:

Activated carbon was prepared from Jujube seeds by chemical activation with potassium hydroxide (KOH), followed by pyrolysis at 800°C. Batch studies were conducted for kinetic, thermodynamic and equilibrium studies on the adsorption of phenol (P) and 2-4 dichlorophenol (2-4 DCP) from aqueous solution, than the adsorption capacities followed the order of 2-4 dichlorophenol > phenol. The operating variables studied were initial phenols concentration, contact time, temperature and solution pH. Results show that the pH value of 7 is favorable for the adsorption of phenols. The sorption data have been analyzed using Langmuir and Freundlich isotherms. The isotherm data followed Langmuir Model. The adsorption processes conformed to the pseudo-second-order rate kinetics. Thermodynamic parameters such as enthalpy, entropy and Gibb’s free energy changes were also calculated and it was found that the sorption of phenols by Jujuba seeds activated carbon was a spontaneous process The maximum adsorption efficiency of phenol and 2-4 dichlorophenol was 142.85 mg.g−1 and 250 mg.g−1, respectively.

Keywords: activated carbon, adsorption, isotherms, Jujuba seeds, phenols, langmuir

Procedia PDF Downloads 281
953 The Study of Chitosan beads Adsorption Properties for the Removal of Heavy Metals

Authors: Peter O. Osifo, Hein W. J. P. Neomagus

Abstract:

In this study, a predicted pH model was used to determine adsorption equilibrium properties of copper, lead, zinc and cadmium. Chitosan was prepared from the exoskeleton of Cape rock-lobsters, collected from the surroundings of Cape Town, South Africa. The beads were cross-linked with gluteraldehyde to restore its chemical stability in acid media. The chitosan beads were characterized; the beads water contents and pKa varied in the range of 90-96% and 4.3-6.0 respectively and the degree of crosslinking for the beads was 18%. A pH-model, which described the reversibility of the metal adsorbed onto the beads, was used to predict the equilibrium properties of copper, lead, zinc and cadmium adsorption onto the cross-linked beads. The model accounts for the effect of pH and the important model parameters; the equilibrium adsorption constant (Kads) and to a lesser extent the adsorbent adsorption capacity (qmax). The adsorption equilibrium constant for copper, lead, zinc and cadmium were found to be 2.58×10-3, 2.22×0-3, 9.55×0-3, and 4.79×0-3, respectively. The adsorbent maximum capacity was determined to be 4.2 mmol/g.

Keywords: chitosan beads, adsorption, heavy metals, waste water

Procedia PDF Downloads 345
952 Theoretical Investigation of Gas Adsorption on Metal- Graphene Surface

Authors: Fatemeh Safdari, Amirnaser Shamkhali, Gholamabbas Parsafar

Abstract:

Carbon nanostructures are of great importance in academic research and industry, which can be mentioned to chemical sensors, catalytic processes, pharmaceutical and environmental issues. Common point in all of these applications is the occurrence of adsorption of molecules on these structures. Important carbon nanostructures in this case are mainly nanotubes and graphene. To modify pure graphene, recently, many experimental and theoretical studies have carried out to investigate of metal adsorption on graphene. In this work, the adsorption of CO molecules on pure graphene and on metal adatom on graphene surface has been simulated based on density functional theory (DFT). All calculations were performed by PBE functional and Troullier-Martins pseudopotentials. Density of states (DOS) for graphene-CO, graphen and CO around the Fermi energy has been moved and very small mixing occured which implies the physisorption of CO on the bare graphen surface. While, the results have showed that CO adsorption on transition-metal adatom on graphene surface is chemisorption.

Keywords: adsorption, density functional theory, graphene, metal adatom

Procedia PDF Downloads 314
951 Removal of Cr⁶⁺, Co²⁺ and Ni²⁺ Ions from Aqueous Solutions by Algerian Enteromorpha compressa (L.) Biomass

Authors: Asma Aid, Samira Amokrane, Djamel Nibou, Hadj Mekatel

Abstract:

The marine Enteromorpha Compressa (L.) (ECL) biomass was used as a low-cost biological adsorbent for the removal of Cr⁶⁺, Co²⁺ and Ni²⁺ ions from artificially contaminated aqueous solutions. The operating variables pH, the initial concentration C₀, the solid/liquid ratio R and the temperature T were studied. A full factorial experimental design technique enabled us to obtain a mathematical model describing the adsorption of Cr⁶⁺, Co²⁺ and Ni²⁺ ions and to study the main effects and interactions among operational parameters. The equilibrium isotherm has been analyzed by Langmuir, Freundlich, and Dubinin-Radushkevich models; it has been found that the adsorption process follows the Langmuir model for the used ions. Kinetic studies showed that the pseudo-second-order model correlates our experimental data. Thermodynamic parameters showed the endothermic heat of adsorption and the spontaneity of the adsorption process for Cr⁶⁺ ions and exothermic heat of adsorption for Co²⁺ and Ni²⁺ ions.

Keywords: enteromorpha Compressa, adsorption process, Cr⁶⁺, Co²⁺ and Ni²⁺, equilibrium isotherm

Procedia PDF Downloads 166
950 Investigation of the Use of Surface-Modified Waste Orange Pulp for the Adsorption of Remazol Black B

Authors: Ceren Karaman, Onur Karaman

Abstract:

The adsorption of Remazol Black B (RBB), an anionic dye, onto dried orange pulp (DOP) adsorbent prepared by only drying and by treating with cetyltrimetylammonium bromide (CTAB), a cationic surfactant, surface-modified orange pulp (SMOP) was studied in a stirred batch experiments system at 25°C. The adsorption of RBB on each adsorbent as a function of surfactant dosage, initial pH of the solution and initial dye concentration was investigated. The optimum amount of CTAB was found to be 25g/l. For RBB adsorption studies, while working pH value for the DOP adsorbent system was determined as 2.0, it was observed that this value shifted to 8.0 when the 25 g/l CTAB treated-orange pulp (SMOP) adsorbent was used. It was obtained that the adsorption rate and capacity increased to a certain value, and the adsorption efficiency decreased with increasing initial RBB concentration for both DOP and SMOP adsorbents at pH 2.0 and pH 8.0. While the highest adsorption capacity for DOP was determined as 62.4 mg/g at pH 2.0, and as 325.0 mg/g for SMOP at pH 8.0. As a result, it can be said that permanent cationic coating of the adsorbent surface by CTAB surfactant shifted the working pH from 2.0 to 8.0 and it increased the dye adsorption rate and capacity of orange pulp much more significantly at pH 8.0. The equilibrium RBB adsorption data on each adsorbent were best described by the Langmuir isotherm model. The adsorption kinetics of RBB on each adsorbent followed a pseudo-second-order model. Moreover, the intraparticle diffusion model was used to describe the kinetic data. It was found that diffusion is not the only rate controlling step. The adsorbent was characterized by the Brunauer–Emmett–Teller (BET) analysis, Fourier-transform-infrared (FTIR) spectroscopy, and scanning-electron-microscopy (SEM). The mechanism for the adsorption of RBB on the SMOP may include hydrophobic interaction, van der Waals interaction, stacking and electrostatic interaction.

Keywords: adsorption, Cetyltrimethylammonium Bromide (CTAB), orange pulp, Remazol Black B (RBB), surface modification

Procedia PDF Downloads 214