Search results for: strength resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6260

Search results for: strength resistance

5990 The Effect of Surface Modifiers on the Mechanical and Morphological Properties of Waste Silicon Carbide Filled High-Density Polyethylene

Authors: R. Dangtungee, A. Rattanapan, S. Siengchin

Abstract:

Waste silicon carbide (waste SiC) filled high-density polyethylene (HDPE) with and without surface modifiers were studied. Two types of surface modifiers namely; high-density polyethylene-grafted-maleic anhydride (HDPE-g-MA) and 3-aminopropyltriethoxysilane have been used in this study. The composites were produced using a two roll mill, extruder and shaped in a hydraulic compression molding machine. The mechanical properties of polymer composites such as flexural strength and modulus, impact strength, tensile strength, stiffness and hardness were investigated over a range of compositions. It was found that, flexural strength and modulus, tensile modulus and hardness increased, whereas impact strength and tensile strength decreased with the increasing in filler contents, compared to the neat HDPE. At similar filler content, the effect of both surface modifiers increased flexural modulus, impact strength, tensile strength and stiffness but reduced the flexural strength. Morphological investigation using SEM revealed that the improvement in mechanical properties was due to enhancement of the interfacial adhesion between waste SiC and HDPE.

Keywords: high-density polyethylene, HDPE-g-MA, mechanical properties, morphological properties, silicon carbide, waste silicon carbide

Procedia PDF Downloads 329
5989 Study on the Non-Contact Sheet Resistance Measuring of Silver Nanowire Coated Film Using Terahertz Wave

Authors: Dong-Hyun Kim, Wan-Ho Chung, Hak-Sung Kim

Abstract:

In this work, non-destructive evaluation was conducted to measure the sheet resistance of silver nanowire coated film and find a damage of that film using terahertz (THz) wave. Pulse type THz instrument was used, and the measurement was performed under transmission and pitch-catch reflection modes with 30 degree of incidence angle. In the transmission mode, the intensity of the THz wave was gradually increased as the conductivity decreased. Meanwhile, the intensity of THz wave was decreased as the conductivity decreased in the pitch-catch reflection mode. To confirm the conductivity of the film, sheet resistance was measured by 4-point probe station. Interaction formula was drawn from a relation between the intensity and the sheet resistance. Through substituting sheet resistance to the formula and comparing the resultant value with measured maximum THz wave intensity, measurement of sheet resistance using THz wave was more suitable than that using 4-point probe station. In addition, the damage on the silver nanowire coated film was detected by applying the THz image system. Therefore, the reliability of the entire film can be also be ensured. In conclusion, real-time monitoring using the THz wave can be applied in the transparent electrodes with detecting the damaged area as well as measuring the sheet resistance.

Keywords: terahertz wave, sheet resistance, non-destructive evaluation, silver nanowire

Procedia PDF Downloads 464
5988 High Performance Concrete Using “BAUT” (Metal Aggregates) the Gateway to New Concrete Technology for Mega Structures

Authors: Arjun, Gautam, Sanjeev Naval

Abstract:

Concrete technology has been changing rapidly and constantly since its discovery. Concrete is the most widely used man-made construction material, versatility of making concrete is the 2nd largest consumed material on earth. In this paper an effort has been made to use metal aggregates in concrete has been discussed, the metal aggregates has been named as “BAUT” which had outstandingly qualities to resist shear, tension and compression forces. In this paper, COARSE BAUT AGGREGATES (C.B.A.) 10mm & 20mm and FINE BAUT AGGREGATES (F.B.A.) 3mm were divided and used for making high performance concrete (H.P.C). This “BAUT” had cutting edge technology through draft and design by the use of Auto CAD, ANSYS software can be used effectively In this research paper we study high performance concrete (H.P.C) with “BAUT” and consider the grade of M65 and finally we achieved the result of 90-95 Mpa (high compressive strength) for mega structures and irregular structures where center of gravity (CG) is not balanced. High Performance BAUT Concrete is the extraordinary qualities like long-term performance, no sorptivity by BAUT AGGREGATES, better rheological, mechanical and durability proportion that conventional concrete. This high strength BAUT concrete using “BAUT” is applied in the construction of mega structure like skyscrapers, dam, marine/offshore structures, nuclear power plants, bridges, blats and impact resistance structures. High Performance BAUT Concrete which is a controlled concrete possesses invariable high strength, reasonable workability and negligibly permeability as compare to conventional concrete by the mix of Super Plasticizers (SMF), silica fume and fly ash.

Keywords: BAUT, High Strength Concrete, High Performance Concrete, Fine BAUT Aggregate, Coarse BAUT Aggregate, metal aggregates, cutting edge technology

Procedia PDF Downloads 477
5987 Characteristic on Compressive Strength of Blast Slag and Fly Ash Hybrid Geopolymer Mortar

Authors: G. S. Ryu, K. T. Koh, H. Y. Kim, G. H. An, D. W. Seo

Abstract:

Geopolymer mortar is produced by alkaline activation of pozzolanic materials such as fly ground granulated blast-furnace slag (GGBFS) and fly ash (FA). Its unique reaction pathway facilitates rapid strength development in comparison with hydration of ordinary Portland cement (OPC). Geopolymer can be fabricated using various types and dosages of alkali-activator, which effectively gives a wider control over the performance of the final product. The present study investigates the effect of types of precursors and curing conditions on the fresh state and strength development characteristics of geopolymers, thereby comparatively exploring the effect of precursors from various sources of origin. The obtained result showed that the setting time and strength development of the specimens with the identical mix proportion but different precursors displayed significant variations.

Keywords: alkali-activated material, blast furnace slag, fly ash, flowability, strength development

Procedia PDF Downloads 217
5986 Effect of Iron Ore Tailings on the Properties of Fly-ash Cement Concrete

Authors: Sikiru F. Oritola, Abd Latif Saleh, Abd Rahman Mohd Sam, Rozana Zakaria, Mushairry Mustaffar

Abstract:

The strength of concrete varies with the types of material used; the material used within concrete can also result in different strength due to improper selection of the component. Each material brings a different aspect to the concrete. This work studied the effect of using Iron ore Tailings (IOTs) as partial replacement for sand on some properties of concrete using Fly ash Cement as the binder. The sieve analysis and some other basic properties of the materials used in producing concrete samples were first determined. Two brands of Fly ash Cement were studied. For each brand of Fly ash Cement, five different types of concrete samples denoted as HCT0, HCT10, HCT20, HCT30 and HCT40, for the first brand and PCT0, PCT10, PCT20, PCT30 and PCT40, for the second brand were produced. The percentage of Tailings as partial replacement for sand in the sample was varied from 0% to 40% at 10% interval. For each concrete sample, the average of three cubes, three cylinders and three prism specimen results was used for the determination of the compressive strength, splitting tensile strength and the flexural strength respectively. Water/cement ratio of 0.54 with fly-ash cement content of 463 Kg/m3 was used in preparing the fresh concrete. The slump values for the HCT brand concrete ranges from 152mm – 75mm while that of PCT brand ranges from 149mm to 70mm. The concrete sample PCT30 recorded the highest 28 days compressive strength of 28.12 N/mm2, the highest splitting tensile strength of 2.99 N/mm2 as well as the highest flexural strength of 4.99 N/mm2. The texture of the iron-ore tailings is rough and angular and was therefore able to improve the strength of the fly ash cement concrete. Also, due to the fineness of the IOTs more void in the concrete can be filled, but this reaches the optimum at 30% replacement level, hence the drop in strength at 40% replacement

Keywords: concrete strength, fine aggregate, fly ash cement, iron ore tailings

Procedia PDF Downloads 639
5985 Immediate and Long-Term Effect of the Sawdust Usage on Shear Strength of the Clayey Silt Soil

Authors: Dogan Cetin, Omar Hamdi Jasim

Abstract:

Using some additives is very common method to improve the soil properties such as shear strength, bearing capacity; and to reduce the settlement and lateral deformation. Soil reinforcement with natural materials is an attractive method to improve the soil properties because of their low cost. However, the studies conducted by using natural additive are very limited. This paper presents the results of an investigation on the immediate and long-term effects of the sawdust on the shear strength behavior of a clayey silt soil obtained in Arnavutkoy in Istanbul with sawdust. Firstly, compaction tests were conducted to be able to optimum moisture content for every percentage of sawdust. The samples were obtained from compacted soil at optimum moisture content. UU Triaxial Tests were conducted to evaluate the response of randomly distributed sawdust on the strength of low plasticity clayey silt soil. The specimens were tested with 1%, 2% and 3% content of sawdust. It was found that the undrained shear strength of clay soil with 1%, 2% and 3% sawdust were increased respectively 4.65%, 27.9% and 39.5% higher than the soil without additive. At 5%, shear strength of clay soil decreased by 3.8%. After 90 days cure period, the shear strength of the soil with 1%, 2%, 3% and %5 increased respectively 251%, 302%, 260% and 153%. It can be said that the effect of the sawdust usage has a remarkable effect on the undrained shear strength of the soil. Besides the increasing undrained shear strength, it was also found that the sawdust decreases the liquid limit, plastic limit and plasticity index by 5.5%, 2.9 and 10.9% respectively.

Keywords: compaction test, sawdust, shear strength, UU Triaxial Test

Procedia PDF Downloads 324
5984 Lateral Torsional Buckling of Steel Thin-Walled Beams with Lateral Restraints

Authors: Ivan Balázs, Jindřich Melcher

Abstract:

Metal thin-walled members have been widely used in building industry. Usually they are utilized as purlins, girts or ceiling beams. Due to slenderness of thin-walled cross-sections these structural members are prone to stability problems (e.g. flexural buckling, lateral torsional buckling). If buckling is not constructionally prevented their resistance is limited by buckling strength. In practice planar members of roof or wall cladding can be attached to thin-walled members. These elements reduce displacement of thin-walled members and therefore increase their buckling strength. If this effect is taken into static assessment more economical sections of thin-walled members might be utilized and certain savings of material might be achieved. This paper focuses on problem of determination of critical load of steel thin-walled beams with lateral continuous restraint which is crucial for lateral torsional buckling assessment.

Keywords: beam, buckling, numerical analysis, stability, steel

Procedia PDF Downloads 302
5983 In silico Analysis of Isoniazid Resistance in Mycobacterium tuberculosis

Authors: A. Nusrath Unissa, Sameer Hassan, Luke Elizabeth Hanna

Abstract:

Altered drug binding may be an important factor in isoniazid (INH) resistance, rather than major changes in the enzyme’s activity as a catalase or peroxidase (KatG). The identification of structural or functional defects in the mutant KatGs responsible for INH resistance remains as an area to be explored. In this connection, the differences in the binding affinity between wild-type (WT) and mutants of KatG were investigated, through the generation of three mutants of KatG, Ser315Thr [S315T], Ser315Asn [S315N], Ser315Arg [S315R] and a WT [S315]) with the help of software-MODELLER. The mutants were docked with INH using the software-GOLD. The affinity is lower for WT than mutant, suggesting the tight binding of INH with the mutant protein compared to WT type. These models provide the in silico evidence for the binding interaction of KatG with INH and implicate the basis for rationalization of INH resistance in naturally occurring KatG mutant strains of Mycobacterium tuberculosis.

Keywords: Mycobacterium tuberculosis, KatG, INH resistance, mutants, modelling, docking

Procedia PDF Downloads 278
5982 High Temperature Deformation Behavior of Al0.2CoCrFeNiMo0.5 High Entropy alloy

Authors: Yasam Palguna, Rajesh Korla

Abstract:

The efficiency of thermally operated systems can be improved by increasing the operating temperature, thereby decreasing the fuel consumption and carbon footprint. Hence, there is a continuous need for replacing the existing materials with new alloys with higher temperature working capabilities. During the last decade, multi principal element alloys, commonly known as high entropy alloys are getting more attention because of their superior high temperature strength along with good high temperature corrosion and oxidation resistance, The present work focused on the microstructure and high temperature tensile behavior of Al0.2CoCrFeNiMo0.5 high entropy alloy (HEA). Wrought Al0.2CoCrFeNiMo0.5 high entropy alloy, produced by vacuum induction melting followed by thermomechanical processing, is tested in the temperature range of 200 to 900oC. It is exhibiting very good resistance to softening with increasing temperature up to 700oC, and thereafter there is a rapid decrease in the strength, especially beyond 800oC, which may be due to simultaneous occurrence of recrystallization and precipitate coarsening. Further, it is exhibiting superplastic kind of behavior with a uniform elongation of ~ 275 % at 900 oC temperature and 1 x 10-3 s-1 strain rate, which may be due to the presence of fine stable equi-axed grains. Strain rate sensitivity of 0.3 was observed, suggesting that solute drag dislocation glide might be the active mechanism during superplastic kind of deformation. Post deformation microstructure suggesting that cavitation at the sigma phase-matrix interface is the failure mechanism during high temperature deformation. Finally, high temperature properties of the present alloy will be compared with the contemporary high temperature materials such as ferritic, austenitic steels, and superalloys.

Keywords: high entropy alloy, high temperature deformation, super plasticity, post-deformation microstructures

Procedia PDF Downloads 132
5981 Identification of the Best Blend Composition of Natural Rubber-High Density Polyethylene Blends for Roofing Applications

Authors: W. V. W. H. Wickramaarachchi, S. Walpalage, S. M. Egodage

Abstract:

Thermoplastic elastomer (TPE) is a multifunctional polymeric material which possesses a combination of excellent properties of parent materials. Basically, TPE has a rubber phase and a thermoplastic phase which gives processability as thermoplastics. When the rubber phase is partially or fully crosslinked in the thermoplastic matrix, TPE is called as thermoplastic elastomer vulcanizate (TPV). If the rubber phase is non-crosslinked, it is called as thermoplastic elastomer olefin (TPO). Nowadays TPEs are introduced into the commercial market with different products. However, the application of TPE as a roofing material is limited. Out of the commercially available roofing products from different materials, only single ply roofing membranes and plastic roofing sheets are produced from rubbers and plastics. Natural rubber (NR) and high density polyethylene (HDPE) are used in various industrial applications individually with some drawbacks. Therefore, this study was focused to develop both TPO and TPV blends from NR and HDPE at different compositions and then to identify the best blend composition to use as a roofing material. A series of blends by varying NR loading from 10 wt% to 50 wt%, at 10 wt% intervals, were prepared using a twin screw extruder. Dicumyl peroxide was used as a crosslinker for TPV. The standard properties for a roofing material like tensile properties tear strength, hardness, impact strength, water absorption, swell/gel analysis and thermal characteristics of the blends were investigated. Change of tensile strength after exposing to UV radiation was also studied. Tensile strength, hardness, tear strength, melting temperature and gel content of TPVs show higher values compared to TPOs at every loading studied, while water absorption and swelling index show lower values, suggesting TPVs are more suitable than TPOs for roofing applications. Most of the optimum properties were shown at 10/90 (NR/HDPE) composition. However, high impact strength and gel content were shown at 20/80 (NR/HDPE) composition. Impact strength, as being an energy absorbing property, is the most important for a roofing material in order to resist impact loads. Therefore, 20/80 (NR/HDPE) is identified as the best blend composition. UV resistance and other properties required for a roofing material could be achieved by incorporating suitable additives to TPVs.

Keywords: thermoplastic elastomer, natural rubber, high density polyethylene, roofing material

Procedia PDF Downloads 99
5980 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.

Keywords: model tree, CART, logistic regression, soil shear strength

Procedia PDF Downloads 165
5979 Design and Development of Constant Stress Composite Cantilever Beam

Authors: Vinod B. Suryawanshi, Ajit D. Kelkar

Abstract:

Glass fiber reinforced composites materials, due their unique properties such as high mechanical strength to weight ratio, corrosion resistance, and impact resistance have huge potential as structural materials in automotive, construction and transportation applications. However, these properties often come at higher cost owing to complex design methods, difficult manufacturing processes and raw material cost. In this paper, a cost effective design and manufacturing approach for a composite cantilever beam structure is presented. A constant stress (variable cross section) beam concept has been used to design and optimize the shape of composite cantilever beam and thus obtain the reduction in material used. The variable cross section beam was fabricated from the glass epoxy prepregs using cost effective out of autoclave process. The drop ply technique has been successfully used to obtain the variation in the cross section along the span of the beam. In order to test the beam and validate the design, the beam was subjected to different end loads. Strain gauges were mounted along the length of the beam to obtain strains in the beam at different sections and loads. The strain values were used to calculate the flexural strength and bending stresses in the beam. The stresses obtained through strain measurements from the experiment were found to be uniform along the span of the beam, and thus validates the design. Finally, the finite element model for the constant stress beam was developed using commercial finite element simulation software. It was observed that the simulation results agreed very well with the experimental results.

Keywords: beams, composites, constant cross-section, structures

Procedia PDF Downloads 317
5978 Direct Strength Method Approach for Indian Cold Formed Steel Sections with and Without Perforation for Compression Member

Authors: K. Raghu, Altafhusen P. Pinjar

Abstract:

Cold-formed steel section are extensively used in industry and many other non-industry constructions worldwide, it is relatively a new concept in India. Cold-formed steel sections have been developed as more economical building solutions to the alternative heavier hot-rolled sections in the commercial and residential markets. Cold‐formed steel (CFS) structural members are commonly manufactured with perforations to accommodate plumbing, electrical, and heating conduits in the walls and ceilings of buildings. Current design methods available to engineers for predicting the strength of CFS members with perforations are prescriptive and limited to specific perforation locations, spacing, and sizes. The Direct Strength Method (DSM), a relatively new design method for CFS members validated for members with and without perforations, predicts the ultimate strength of general CFS members with the elastic buckling properties of the member cross section. The design compression strength and flexural strength of Indian (IS 811-1987) standard sections is calculated as per North American Specification (AISI-S100 2007) and software CUFSM 4.05.

Keywords: direct strength, cold formed, perforations, CUFSM

Procedia PDF Downloads 358
5977 Evaluation of Limestone as Self-Curing Aggregate for Concretes in the Southeast of Yucatan Peninsula

Authors: D. G. Rejon-Parra, B. Escobar-Morales, Romeli Barbosa, J. C. Cruz

Abstract:

In the southeast of Yucatan Peninsula, sedimentary limestone has different degrees of compaction. Due to its recent geological formation (Quaternary) and weathering effects causing an affordable aggregate for local manufacturers of concrete. It is characterized as lightweight aggregates (average density of 2,50), susceptible to abrasion and varying porosities (water content exceeding 7,50 % of its mass, in saturated condition). In this study, local aggregates with two moisture conditions (saturated and dry), have been examined in order to compare them for optimizing the performance of concrete. It is possible that these aggregates favour a phenomenon of mass transport (self-curing by porous aggregate); influencing the water reactions to form crystalline and gel hydration products. Based on the ACI methodology, a concrete mixture of 250 kg/cm2 was designed, with portland blended cement 30R. The bond between the mortar and the coarse aggregate was characterized as physicochemical based on trials which were carefully observed during time span of 28 days. The BET technique was used to analyse the micro porosity and surface areas of contact of the different crystalline phases of the limestone. Its chemical composition and crystal structures were verified with scanning electron microscopy SEM-EDS. On the third day, the samples with saturated aggregate reached 237 kg/cm2 of resistence, nearly the design strength; while samples with dry aggregate, exceeded the design strength, with a capacity of 308 kg/cm2. Aggregates in dry conditions demand a high quantity of water in the initial mixture, causing high resistance at the early stages. In saturated conditions, the development of resistance is progressive but constant.

Keywords: concrete, internal curing, limestone aggregate, porosity

Procedia PDF Downloads 364
5976 Strength Properties of Concrete Paving Blocks with Fly Ash and Glass Powder

Authors: Joel Santhosh, N. Bhavani Shankar Rao

Abstract:

Problems associated with construction site have been known for many years. Construction industry has to support a world of continuing population growth and economic development. The rising costs of construction materials and the need to adhere to sustainability, alternative construction techniques and materials are being sought. To increase the applications of concrete paving blocks, greater understanding of products produced with locally available materials and indigenously produced mineral admixtures is essential. In the present investigation, concrete paving blocks may be produced with locally available aggregates, cement, fly ash and waste glass powder as the mineral admixture. The ultimate aim of this work is to ascertain the performance of concrete paving blocks containing fly ash and glass powder and compare it with the performance of conventional concrete paving blocks. Mix design is carried out to form M40 grade of concrete by using IS: 10262: 2009 and specification given by IRC: SP: 63: 2004. The paving blocks are tested in accordance to IS: 15658: 2006. It showed that the partial replacement of cement by fly ash and waste glass powder satisfies the minimum requirement as specified by the Indian standard IS: 15658: 2006 for concrete paving blocks to be used in non traffic, light traffic and medium-heavy traffic areas. The study indicated that fly ash and waste glass powder can effectively be used as cement replacement without substantial change in strength.

Keywords: paving block, fly ash, glass powder, strength, abrasion resistance, durability

Procedia PDF Downloads 271
5975 Influence of Locally Made Effective Microorganisms on the Compressive Strength of Concrete

Authors: Muhammad Nura Isa, Magaji Muhammad Garba, Dauda Dahiru Danwata

Abstract:

A lot of research was carried out to improve the technology of concrete, some of which include the introduction of new admixture in concrete production such as effective microorganisms. Researches carried out in Japan and Malaysia indicated that the Effective Microorganisms improve the strength and durability of concrete. Therefore, the main objective of this research is to assess the effect of the locally made effective microorganisms on the compressive strength of concrete in Nigeria. The effective microorganisms were produced locally. The locally made effective microorganism was added in 3%, 5%, 10% and 15% to replace the mixing water required. The results of the tests indicated that the concrete specimens with 3% content of locally made EM-A possessed the highest compressive strength, this proved the 3% to be the optimum dosage of locally made EM-A in the concrete.

Keywords: locally made effective microorganisms, compressive strength, admixture, fruits and vegetable wastes

Procedia PDF Downloads 311
5974 Properties of Self-Compacting Concrete Mixed with Fly Ash

Authors: Abhinandan Singh Gill, Gurbir Kaur Jawanda

Abstract:

Since the introduction of self-consolidating concrete (SCC) in Japan during the late 1980’s, acceptance and usage of this concrete in the construction industry has been steadily gaining momentum. In the United States, the usage of SCC has been spearheaded by the precast concrete industry. Good SCC must possess the following key fresh properties: filling ability, passing ability, and resistance to segregation. Self-compacting concrete is one of 'the most revolutionary developments' in concrete research; this concrete is able to flow and to fill the most restocked places of the form work without vibration. There are several methods for testing its properties. In the fresh state: the most frequently used are slump flow test, L box and V-funnel. This work presents properties of self-compacting concrete, mixed with fly ash. The test results for acceptance characteristics of self-compacting concrete such as slump flow; V-funnel and L-Box are presented. Further, the compressive strength at the ages of 7, 28 days was also determined and results are included here.

Keywords: compressive strength, fly ash, self-compacting concrete, slump flow test, super plasticizer

Procedia PDF Downloads 379
5973 The Impact of Protein Content on Athletes’ Body Composition

Authors: G. Vici, L. Cesanelli, L. Belli, R. Ceci, V. Polzonetti

Abstract:

Several factors contribute to success in sport and diet is one of them. Evidence-based sport nutrition guidelines underline the importance of macro- and micro-nutrients’ balance and timing in order to improve athlete’s physical status and performance. Nevertheless, a high content of proteins is commonly found in resistance training athletes’ diet with carbohydrate intake that is not enough or not well planned. The aim of the study was to evaluate the impact of different protein and carbohydrate diet contents on body composition and sport performance on a group of resistance training athletes. Subjects were divided as study group (n=16) and control group (n=14). For a period of 4 months, both groups were subjected to the same resistance training fitness program with study group following a specific diet and control group following an ab libitum diet. Body compositions were evaluated trough anthropometric measurement (weight, height, body circumferences and skinfolds) and Bioimpedence Analysis. Physical strength and training status of individuals were evaluated through the One Repetition Maximum test (RM1). Protein intake in studied group was found to be lower than in control group. There was a statistically significant increase of body weight, free fat mass and body mass cell of studied group respect to the control group. Fat mass remains almost constant. Statistically significant changes were observed in quadriceps and biceps circumferences, with an increase in studied group. The MR1 test showed improvement in study group’s strength but no changes in control group. Usually people consume hyper-proteic diet to achieve muscle mass development. Through this study, it was possible to show that protein intake fixed at 1,7 g/kg/d can meet the individual's needs. In parallel, the increased intake of carbohydrates, focusing on quality and timing of assumption, has enabled the obtainment of desired results with a training protocol supporting a hypertrophic strategy. Therefore, the key point seems related to the planning of a structured program both from a nutritional and training point of view.

Keywords: body composition, diet, exercise, protein

Procedia PDF Downloads 201
5972 Fracture Strength of Carbon Nanotube Reinforced Plasma Sprayed Aluminum Oxide Coating

Authors: Anup Kumar Keshri, Arvind Agarwal

Abstract:

Carbon nanotube (CNT) reinforced aluminum oxide (Al2O3) composite coating was synthesized on the steel substrate using plasma spraying technique. Three different compositions of coating such as Al2O3, Al2O¬3-4 wt. % CNT and Al2O3-8 wt. % CNT were synthesized and the fracture strength was determined using the four point bend test. Uniform dispersion of CNTs over Al2O3 powder particle was successfully achieved. With increasing CNT content, porosity in the coating showed decreasing trend and hence contributed towards enhanced mechanical properties such as hardness (~12% increased) and elastic modulus (~34 % increased). Fracture strength of the coating was found to be increasing with the CNT additions. By reinforcement of 8 wt. % of CNT, fracture strength increased by ~2.5 times. The improvement in fracture strength of Al2O3-CNT coating was attributed to three competitive phenomena viz. (i) lower porosity (ii) higher hardness and elastic modulus (iii) CNT bridging between splats.

Keywords: aluminum oxide, carbon nanotube, fracture strength, plasma spraying

Procedia PDF Downloads 367
5971 Minimum Ratio of Flexural Reinforcement for High Strength Concrete Beams

Authors: Azad A. Mohammed, Dunyazad K. Assi, Alan S. Abdulrahman

Abstract:

Current ACI 318 Code provides two limits for minimum steel ratio for concrete beams. When concrete compressive strength be larger than 31 MPa the limit of √(fc')/4fy usually governs. In this paper shortcomings related to using this limit was fairly discussed and showed that the limit is based on 90% safety factor and was derived based on modulus of rupture equation suitable for concretes of compressive strength lower than 31 MPa. Accordingly, the limit is nor suitable and critical for concretes of higher compressive strength. An alternative equation was proposed for minimum steel ratio of rectangular beams and was found that the proposed limit is accurate for beams of wide range of concrete compressive strength. Shortcomings of the current ACI 318 Code equation and accuracy of the proposed equation were supported by test data obtained from testing six reinforced concrete beams.

Keywords: concrete beam, compressive strength, minimum steel ratio, modulus of rupture

Procedia PDF Downloads 515
5970 Overview Studies of High Strength Self-Consolidating Concrete

Authors: Raya Harkouss, Bilal Hamad

Abstract:

Self-Consolidating Concrete (SCC) is considered as a relatively new technology created as an effective solution to problems associated with low quality consolidation. A SCC mix is defined as successful if it flows freely and cohesively without the intervention of mechanical compaction. The construction industry is showing high tendency to use SCC in many contemporary projects to benefit from the various advantages offered by this technology. At this point, a main question is raised regarding the effect of enhanced fluidity of SCC on the structural behavior of high strength self-consolidating reinforced concrete. A three phase research program was conducted at the American University of Beirut (AUB) to address this concern. The first two phases consisted of comparative studies conducted on concrete and mortar mixes prepared with second generation Sulphonated Naphtalene-based superplasticizer (SNF) or third generation Polycarboxylate Ethers-based superplasticizer (PCE). The third phase of the research program investigates and compares the structural performance of high strength reinforced concrete beam specimens prepared with two different generations of superplasticizers that formed the unique variable between the concrete mixes. The beams were designed to test and exhibit flexure, shear, or bond splitting failure. The outcomes of the experimental work revealed comparable resistance of beam specimens cast using self-compacting concrete and conventional vibrated concrete. The dissimilarities in the experimental values between the SCC and the control VC beams were minimal, leading to a conclusion, that the high consistency of SCC has little effect on the flexural, shear and bond strengths of concrete members.

Keywords: self-consolidating concrete (SCC), high-strength concrete, concrete admixtures, mechanical properties of hardened SCC, structural behavior of reinforced concrete beams

Procedia PDF Downloads 224
5969 Influence of Physical Properties on Estimation of Mechanical Strength of Limestone

Authors: Khaled Benyounes

Abstract:

Determination of the rock mechanical properties such as unconfined compressive strength UCS, Young’s modulus E, and tensile strength by the Brazilian test Rtb is considered to be the most important component in drilling and mining engineering project. Research related to establishing correlation between strength and physical parameters of rocks has always been of interest to mining and reservoir engineering. For this, many rock blocks of limestone were collected from the quarry located in Meftah(Algeria), the cores were crafted in the laboratory using a core drill. This work examines the relationships between mechanical properties and some physical properties of limestone. Many empirical equations are established between UCS and physical properties of limestone (such as dry bulk density, velocity of P-waves, dynamic Young’s modulus, alteration index, and total porosity). Others correlations UCS-tensile strength, dynamic Young’s modulus-static Young’s modulus have been find. Based on the Mohr-Coulomb failure criterion, we were able to establish mathematical relationships that will allow estimating the cohesion and internal friction angle from UCS and indirect tensile strength. Results from this study can be useful for mining industry for resolve range of geomechanical problems such as slope stability.

Keywords: limestone, mechanical strength, Young’s modulus, porosity

Procedia PDF Downloads 424
5968 The Effect of Soil Binder and Gypsum to the Changes of the Expansive Soil Shear Strength Parameters

Authors: Yulia Hastuti, Ratna Dewi, Muhammad Sandi

Abstract:

Many methods of soil stabilization that can be done such as by mixing chemicals. In this research, stabilization by mixing the soil using two types of chemical admixture, those are gypsum with a variation of 5%, 10%, and 15% and Soil binder with a concentration of 20 gr / lot of water, 25 gr / lot of water, and 30 gr / lot of water aimed to determine the effect on the soil plasticity index values and comparing the value of shear strength parameters of the mixture with the original soil conditions using a Triaxial UU test. Based on research done shows that with increasing variations in the mix, then the value of plasticity index decreased, which was originally 42% (very high degree of swelling) becomes worth 11.24% (lower Swelling degree) when a mixture of gypsum 15% and 30 gr / Lt water soil binder. As for the value shear, strength parameters increased in all variations of mixture. Admixture with the highest shear strength parameter's value is at 15% the mixture of gypsum and 20 gr / litre of water of soil binder with the 14 day treatment period, which has enhanced the cohesion value of 559.01%, the friction angle by 1157.14%. And a shear strength value of 568.49%. It can be concluded that the admixture of gypsum and soil binder correctly, can increase the value of shear strength parameters significantly and decrease the value of plasticity index of the soil.

Keywords: expansive soil, gypsum, soil binder, shear strength

Procedia PDF Downloads 440
5967 Effect of Compaction and Degree of Saturation on the Unconsolidated Undrained Shear Strength of Sandy Clay

Authors: Fatima Mehmood, Khalid Farooq, Rabeea Bakhtawer

Abstract:

For geotechnical engineers, one of the most important properties of soil to consider in various stability analyses is its shear strength which is governed by a number of factors. The objective of this research is to ascertain the effect of compaction and degree of saturation on the shear strength of fine-grained soil. For this purpose, three different dry densities such as in-situ, maximum standard proctor, and maximum modified proctor, were determined for the sandy clay soil. The soil samples were then prepared to keep dry density constant and varying degrees of saturation. These samples were tested for (UU) unconsolidated undrained shear strength in triaxial compression tests. The decrease in shear strength was observed with the decrease in density and increase in the saturation. The values of the angle of internal friction followed the same trend. However, the change in cohesion with the increase in saturation showed a different behavior, analogous to the compaction curve.

Keywords: compaction, degree of saturation, dry density, geotechnical investigation, laboratory testing, shear strength

Procedia PDF Downloads 106
5966 The Effects of Passive and Active Recoveries on Responses of Platelet Indices and Hemodynamic Variables to Resistance Exercise

Authors: Mohammad Soltani, Sajad Ahmadizad, Fatemeh Hoseinzadeh, Atefe Sarvestan

Abstract:

The exercise recovery is an important variable in designing resistance exercise training. This study determined the effects of passive and active recoveries on responses of platelet indices and hemodynamic variables to resistance exercise. Twelve healthy subjects (six men and six women, age, 25.4 ±2.5 yrs) performed two types of resistance exercise protocols (six exercises including upper- and lower-body parts) at two separate sessions with one-week intervening. First resistance protocol included three sets of six repetitions at 80% of 1RM with 2 min passive rest between sets and exercises; while, the second protocol included three sets of six repetitions at 60% of 1RM followed by active recovery included six repetitions of the same exercise at 20% of 1RM. The exercise volume was equalized. Three blood samples were taken before exercise, immediately after exercise and after 1-hour recovery, and analyzed for fibrinogen and platelet indices. Blood pressure (BP), heart rate (HR) and rate pressure product (RPP), were measured before, immediately after exercise and every 5 minutes during recovery. Data analyzes showed a significant increase in SBP (systolic blood pressure), HR, rate of pressure product (RPP) and PLT in response to resistance exercise (P<0.05) and that changes for HR and RPP were significantly different between two protocols (P<0.05). Furthermore, MPV and P_LCR did not change in response to resistance exercise, though significant reductions were observed after 1h recovery compared to before and after exercise (P<0.05). No significant changes in fibrinogen and PDW following two types of resistance exercise protocols were observed (P>0.05). On the other hand, no significant differences in platelet indices were found between the two protocols (P>0.05). Resistance exercise induces changes in platelet indices and hemodynamic variables, and that these changes are not related to the type of recovery and returned to normal levels after 1h recovery.

Keywords: hemodynamic variables, platelet indices, resistance exercise, recovery intensity

Procedia PDF Downloads 104
5965 Effect of Blast Furnace Iron Slag on the Mechanical Performance of Hot Mix Asphalt (HMA)

Authors: Ayman M. Othman, Hassan Y. Ahmed

Abstract:

This paper discusses the effect of using blast furnace iron slag as a part of fine aggregate on the mechanical performance of hot mix asphalt (HMA). The mechanical performance was evaluated based on various mechanical properties that include; Marshall/stiffness, indirect tensile strength and unconfined compressive strength. The effect of iron slag content on the mechanical properties of the mixtures was also investigated. Four HMA with various iron slag contents, namely; 0%, 5%, 10% and 15% by weight of total mixture were studied. Laboratory testing has revealed an enhancement in the compressive strength of HMA when iron slag was used. Within the tested range of iron slag content, a considerable increase in the compressive strength of the mixtures was observed with the increase of slag content. No significant improvement on Marshall/stiffness and indirect tensile strength of the mixtures was observed when slag was used. Even so, blast furnace iron slag can still be used in asphalt paving for environmental advantages.

Keywords: blast furnace iron slag, compressive strength, HMA, indirect tensile strength, marshall/stiffness, mechanical performance, mechanical properties

Procedia PDF Downloads 407
5964 The Correlation between Nasal Resistance and Obligatory Oronasal Switching Point in Non-Athletic Non-Smoking Healthy Men

Authors: Amir H. Bayat, Mohammad R. Alipour, Saeed Khamneh

Abstract:

As the respiration via nose is important physiologically, many studies have been done about nasal breathing that switches to oronasal breathing during exercise. The aim of this study was to assess the role of anterior nasal resistance as one of the effective factors on this switching. Twelve young, healthy, non-athletic and non-smoker male volunteers with normal BMI were selected after physical examination and participated in exercise protocol, including measurement of the ventilation, work load and oronasal switching point (OSP) during exercise, and anterior rhinomanometry at rest. The protocol was an incremental exercise with 25 watt increase in work load per minute up to OSP occurrence. There was a significant negative correlation between resting total anterior nasal resistance with OSP, work load and ventilation (p<0.05, r= -0.709). Resting total anterior nasal resistance can be considered as an important factor on OSP occurrence. So, the reducing the resistance of nasal passage may increase nasal respiration tolerance for longer time during exercise.

Keywords: anterior nasal resistance, exercise, OSP, ventilation, work load

Procedia PDF Downloads 375
5963 The Influence of High Temperatures on HVFA Concrete Columns by NDT Methods

Authors: D. Jagath Kumari, K. Srinivasa Rao

Abstract:

Quality assurance of the structures subjected to high temperatures is now enforcing measure for the Structural Engineers. The existing relations between strength and nondestructive measurements have been established under normal conditions are not suitable to concretes that have been exposed to high temperatures. The scope of the work is to investigate the influence of high temperatures of short durations on the residual properties of reinforced HVFA concrete columns that affect the strength by non-destructive tests (NDT). Fly ash concrete is increasingly used in the design of normal strength, high strength and high performance concretes. In this paper, the authors revealed the influence of high temperatures on HVFA concrete columns. These columns are heated from 100oC to 800oC with increments of 100oC and allowed to cool to room temperature by two methods one is air cooling method and the other immediate water quenching method. All the specimens were tested identically, before heating and after heating for compressive strength and material integrity by rebound hammer and ultrasonic pulse velocity (UPV) meter respectively. HVFA concrete retained more residual strength by water quenching method than air-cooling method.

Keywords: HVFA concrete, NDT methods, residual strength, non-destructive tests

Procedia PDF Downloads 431
5962 Prevalence and Antimicrobial Resistance of Salmonella spp. Isolated from Pigs at Slaughterhouses in Northeast of Thailand

Authors: Sunpetch Angkititrakul, Seree Klaengair, Dusadee Phongaran, Arunee Ritthipanun

Abstract:

The objective of this study is to determine the prevalence and antimicrobial resistance pattern of Salmonella spp. isolated from pigs at slaughterhouses in the northeast of Thailand. During 2015-2016, all samples were isolated and identified by ISO 6579:2002. A total of 699 samples of rectal swab were collected and isolated for the presence of Salmonella. Salmonella was detected in 275 of 699 (39.34%) samples. 24 serovars were identified in the 275 isolates. The most prevalent serovars were rissen (36.97%), S. enterica ser.4,5,12:i: (25.35%) and typhimurium (21.33%). In this study, 76.30% of the isolates were resistant to at least one antimicrobial drug and 38.39% were multidrug resistant. The highest resistances were found in ampicillin (69.20%), tetracycline (66.35%), sulfamethoxazole/trimethoprim (35.55%) and chloramphenicol (9.00%) The results showed high prevalence of Salmonella spp. in pigs and high antimicrobial resistance among the isolates, and indicated the need for monitoring program to control Salmonella contamination and reduce the dissemination of antimicrobial resistance in pig supply chain.

Keywords: prevalence, antimicrobial resistance, Salmonella spp., pig

Procedia PDF Downloads 119
5961 Investigation on Strength Properties of Concrete Using Industrial Waste as Supplementary Cementitious Material

Authors: Ravi Prasad Darapureddi

Abstract:

The use of industrial waste in making concrete reduce the consumption of natural resources and pollution of the environment. These materials possess problems of disposal and health hazards. An attempt has been made to use paper and thermal industrial wastes such as lime sludge and flyash. Present investigation is aimed at the utilization of Lime Sludge and Flyash as Supplementary Cementitious Materials (SCM) and influence of these materials on strength properties of concrete. Thermal industry waste fly ash is mixed with lime sludge and used as a replacement to cement at different proportions to obtain the strength properties and compared with ordinary concrete prepared without any additives. Grade of concrete prepared was M₂₅ designed according to Indian standard method. Cement has been replaced by paper industry waste and fly ash in different proportions such as 0% (normal concrete), 10%, 20%, and 30% by weight. Mechanical properties such as compressive strength, splitting tensile strength and flexural strength were assessed. Test results indicated that the use of lime sludge and Fly ash in concrete had improved the properties of concrete. Better results were observed at 20% replacement of cement with these additives.

Keywords: supplementary cementitious materials, lime sludge, fly ash, strength properties

Procedia PDF Downloads 162