Search results for: single bolt joint
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5443

Search results for: single bolt joint

5233 Study on the Work-Life Balance of Selected Working Single Mothers in the Coastal Community of La Huerta, Paranaque

Authors: Idette Sheirina Biyo, Rhodora Lynn C. Lintag

Abstract:

This paper explores how the work-life balance of selected working single mothers situated in a coastal community is affecting their well-being. Working single mothers carry the responsibility of earning for their family while simultaneously exercising their motherhood. This study utilized a purposeful qualitative research through semi-structured interviews among ten working single mothers living in the coastal community of La Huerta, Parañaque in order to identify the following: a) experiences of the working single mothers, b) problems usually encountered, and c) how these problems are affecting their well-being. Dorothy Smith’s Feminist Standpoint theory is used as a theoretical lens in order to explain their work-life balance. Results have shown that despite their dual roles as the main income earners and heads of the households, they are not neglecting to care for their well-being. They consider getting sufficient rest, eating well, and going to church as forms of caring for their well-being. Other factors that affect their work-life balance include living arrangements, work hours, type of work, and income.

Keywords: coastal community, well-being, work-life balance, Working single mother

Procedia PDF Downloads 172
5232 Characterization of the Groundwater Aquifers at El Sadat City by Joint Inversion of VES and TEM Data

Authors: Usama Massoud, Abeer A. Kenawy, El-Said A. Ragab, Abbas M. Abbas, Heba M. El-Kosery

Abstract:

Vertical Electrical Sounding (VES) and Transient Electro Magnetic (TEM) survey have been applied for characterizing the groundwater aquifers at El Sadat industrial area. El-Sadat city is one of the most important industrial cities in Egypt. It has been constructed more than three decades ago at about 80 km northwest of Cairo along the Cairo–Alexandria desert road. Groundwater is the main source of water supplies required for domestic, municipal, and industrial activities in this area due to the lack of surface water sources. So, it is important to maintain this vital resource in order to sustain the development plans of this city. In this study, VES and TEM data were identically measured at 24 stations along three profiles trending NE–SW with the elongation of the study area. The measuring points were arranged in a grid like pattern with both inter-station spacing and line–line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geo-electrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.

Keywords: El Sadat city, joint inversion, VES, TEM

Procedia PDF Downloads 342
5231 Experimental and Analytical Investigation of Seismic Behavior of Concrete Beam-Column Joints Strengthened by Fiber-Reinforced Polymers Jacketing

Authors: Ebrahim Zamani Beydokhti, Hashem Shariatmadar

Abstract:

This paper presents an experimental and analytical investigation on the behavior of retrofitted beam-column joints subjected to reversed cyclic loading. The experimental program comprises 8 external beam–column joint connection subassemblages tested in 2 phases; one was the damaging phase and second was the repairing phase. The beam-column joints were no seismically designed, i.e. the joint, beam and column critical zones had no special transverse stirrups. The joins were tested under cyclic loading in previous research. The experiment had two phases named damage phase and retrofit phase. Then the experimental results compared with analytical results achieved from modeling in OpenSees software. The presence of lateral slab and the axial load amount were analytically investigated. The results showed that increasing the axial load and presence of lateral slab increased the joint capacity. The presence of lateral slab increased the dissipated energy, while the axial load had no significant effect on it.

Keywords: concrete beam-column joints, CFRP sheets, lateral slab, axial load

Procedia PDF Downloads 118
5230 Accessing Single Parenting and Disabled Children: A Case Study of Ghana

Authors: Edwina Owusu Panin

Abstract:

Families may face significant obstacles as a result of single parenting and disabilities. The amenities and support those single parents need to give their children with disabilities the care they need are frequently out of their reach. These can include financial hardship, limited access to health and education, and social isolation. In addition, cultural attitudes toward disability can worsen these challenges, making it difficult for families to get the support and resources they need. Despite these challenges, many single parents have shown resilience and strength to overcome these difficulties and defend the rights of their children; some, too, have failed in taking care of their disabled children in Ghana. The study traces the developmental process of how single parents cope with disabled children. There is a discouraging fact that single father’s face a much more dreadful task in taking care of their disabled children in Ghana, which is later highlighted in the article. Additional research and support are needed to address the unique needs of families facing these challenges. This case study explores the experiences of single parents raising children with disabilities in Ghana. Using a qualitative approach, the study examines the challenges facing lone parents in caring for children, including access to healthcare, education and social support. In addition, the study examines the impact of cultural disability attitudes on the experiences of single parents and their children and what causes it in Ghana. Findings indicate that single parents in Ghana face significant challenges in accessing resources and support for their children and that cultural attitudes toward disability may aggravate these challenges. However, the study recommends the tenacity and strengths of how to create awareness, protect the welfare and also by encouraging single parents to face these challenges and protect the rights of their children, swaying away influences of bad cultural attitudes.

Keywords: disability, single parenting, case study, assessing

Procedia PDF Downloads 57
5229 Use of PET Fibers for Enhancing the Ductility of Exterior RC Beam-Column Connections Subjected to Reversed Cyclic Loading

Authors: Comingstarful Marthong, Shembiang Marthong

Abstract:

Application of Polyethylene terephthalate (PET) fiber for enhancing the seismic performance of exterior RC beam-column connections in substitution of steel fibers is experimentally investigated. The study involves the addition of Polyethylene terephthalate (PET) fiber-reinforced concrete, i.e., PFRC at the joint region of the connection. The PET fiber of 0.5% volume fraction used in the PFRC mix is obtained by hand cutting of post-consumer PET bottles. Specimens design as per relevant codes was casted and tested to reverse cyclic loading. PFRC specimen was also casted and subjected to similar loading sequence. Test results established that addition of PET fibers in the joint region is effective in enhancing the displacement ductility and energy dissipation capacity. The improvement of damage indices and principal tensile stresses of PFRC specimens gave experimental evidence of the suitability of PET fibers as a discrete reinforcement in the substitution of steel fiber for structural use.

Keywords: beam-column connections, polyethylene terephthalate fibers reinforced concrete, joint region, ductility, seismic capacity

Procedia PDF Downloads 259
5228 Age Determination from Epiphyseal Union of Bones at Shoulder Joint in Girls of Central India

Authors: B. Tirpude, V. Surwade, P. Murkey, P. Wankhade, S. Meena

Abstract:

There is no statistical data to establish variation in epiphyseal fusion in girls in central India population. This significant oversight can lead to exclusion of persons of interest in a forensic investigation. Epiphyseal fusion of proximal end of humerus in eighty females were analyzed on radiological basis to assess the range of variation of epiphyseal fusion at each age. In the study, the X ray films of the subjects were divided into three groups on the basis of degree of fusion. Firstly, those which were showing No Epiphyseal Fusion (N), secondly those showing Partial Union (PC), and thirdly those showing Complete Fusion (C). Observations made were compared with the previous studies.

Keywords: epiphyseal union, shoulder joint, proximal end of humerus

Procedia PDF Downloads 463
5227 Pushover Analysis of Reinforced Concrete Beam-Column Joint Strengthening with Ultra High Performance Concrete

Authors: Abdulsamee Halahla, Emad Allout

Abstract:

The purpose of this research is to study the behavior of exterior beam-column joints (BCJs) strengthened with ultra-high performance concrete (UHPC), in terms of the shear strength and maximum displacement using pushover analysis at the tip of the beam. A finite element (F.E) analysis was performed to study three main parameters – the level of the axial load in the column (N), the beam shear reinforcement (Av/s)B, and the effect of using UHPC. The normal concrete at the studied joint region was replaced by UHPC. The model was verified by using experimental results taken from the literature. The results showed that the UHPC contributed to the transference of the plastic hinge from the joint to the beam-column interface. In addition, the strength of the UHPC-strengthened joints was enhanced dramatically from 8% to 38% for the joints subjected to 12.8MPa and zero axial loads, respectively. Moreover, the UHPC contributed in improving the maximum deflection. This improvement amounted to 1% and 176% for the joints subjected to zero and 12.8MPa axial load, respectively.

Keywords: ultra high performance concrete, ductility, reinforced concrete joints, finite element modeling, nonlinear behavior; pushover analysis

Procedia PDF Downloads 108
5226 High-Dose-Rate Brachytherapy for Cervical Cancer: The Effect of Total Reference Air Kerma on the Results of Single-Channel and Tri-Channel Applicators

Authors: Hossain A., Miah S., Ray P. K.

Abstract:

Introduction: Single channel and tri-channel applicators are used in the traditional treatment of cervical cancer. Total reference air kerma (TRAK) and treatment outcomes in high-dose-rate brachytherapy for cervical cancer using single-channel and tri-channel applicators were the main objectives of this retrospective study. Material and Methods: Patients in the radiotherapy division who received brachytherapy, chemotherapy, and external radiotherapy (EBRT) using single and tri-channel applicators were the subjects of a retrospective cohort study from 2016 to 2020. All brachytherapy parameters, including TRAK, were calculated in accordance with the international protocol. The Kaplan Meier method was used to analyze survival rates using a log-rank test. Results and Discussions: Based on treatment times of 15.34 (10-20) days and 21.35 (6.5-28) days, the TRAK for the tri-channel applicator was 0.52 cGy.m² and for the single-channel applicator was 0.34 cGy.m². Based on TRAK, the rectum, bladder, and tumor had respective Pearson correlations of 0.082, 0.009, and 0.032. The 1-specificity and sensitivity were 0.70 and 0.30, respectively. At that time, AUC was 0.71. The log-rank test showed that tri-channel applicators had a survival rate of 95% and single-channel applicators had a survival rate of 85% (p=0.565). Conclusions: The relationship between TRAK and treatment duration and Pearson correlation for the tumor, rectum, and bladder suggests that TRAK should be taken into account for the proper operation of single channel and tri-channel applicators.

Keywords: single-channel, tri-channel, high dose rate brachytherapy, cervical cancer

Procedia PDF Downloads 75
5225 New Moment Rotation Model of Single Web Angle Connections

Authors: Zhengyi Kong, Seung-Eock Kim

Abstract:

Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The same geometric and material conditions with Yanglin Gong’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range, simpler and more accurate hyperbolic function models are proposed. The equation for calculating rotation at ultimate moment is first proposed.

Keywords: finite element method, moment and rotation, rotation at ultimate moment, single-web angle connections

Procedia PDF Downloads 400
5224 Tracking Trajectory of a Cable-Driven Robot for Lower Limb Rehabilitation

Authors: Hachmia Faqihi, Maarouf Saad, Khalid Benjelloun, Mohammed Benbrahim, M. Nabil Kabbaj

Abstract:

This paper investigates and presents a cable-driven robot to lower limb rehabilitation use in sagittal plane. The presented rehabilitation robot is used for a trajectory tracking in joint space. The paper covers kinematic and dynamic analysis, which reveals the tensionability of the used cables as being the actuating source to provide a rehabilitation exercises of the human leg. The desired trajectory is generated to be used in the control system design in joint space. The obtained simulation results is showed to be efficient in this kind of application.

Keywords: cable-driven multi-body system, computed-torque controller, lower limb rehabilitation, tracking trajectory

Procedia PDF Downloads 360
5223 Single Cell Sorter Driven by Resonance Vibration of Cell Culture Substrate

Authors: Misa Nakao, Yuta Kurashina, Chikahiro Imashiro, Kenjiro Takemura

Abstract:

The Research Goal: With the growing demand for regenerative medicine, an effective mass cell culture process is required. In a repetitive subculture process for proliferating cells, preparing single cell suspension which does not contain any cell aggregates is highly required because cell aggregates often raise various undesirable phenomena, e.g., apoptosis and decrease of cell proliferation. Since cell aggregates often occur in cell suspension during conventional subculture processes, this study proposes a single cell sorter driven by a resonance vibration of a cell culture substrate. The Method and the Result: The single cell sorter is simply composed of a cell culture substrate and a glass pipe vertically placed against the cell culture substrate with a certain gap corresponding to a cell diameter. The cell culture substrate is made of biocompatible stainless steel with a piezoelectric ceramic disk glued to the bottom side. Applying AC voltage to the piezoelectric ceramic disk, an out-of-plane resonance vibration with a single nodal circle of the cell culture substrate can be excited at 5.5 kHz. By doing so, acoustic radiation force is emitted, and then cell suspension containing only single cells is pumped into the pipe and collected. This single cell sorter is effective to collect single cells selectively in spite of its quite simple structure. We collected C2C12 myoblast cell suspension by the single cell sorter with the vibration amplitude of 12 µmp-p and evaluated the ratio of single cells in number against the entire cells in the suspension. Additionally, we cultured the collected cells for 72 hrs and measured the number of cells after the cultivation in order to evaluate their proliferation. As a control sample, we also collected cell suspension by conventional pipetting, and evaluated the ratio of single cells and the number of cells after the 72-hour cultivation. The ratio of single cells in the cell suspension collected by the single cell sorter was 98.2%. This ratio was 9.6% higher than that collected by conventional pipetting (statistically significant). Moreover, the number of cells cultured for 72 hrs after the collection by the single cell sorter yielded statistically more cells than that collected by pipetting, resulting in a 13.6% increase in proliferated cells. These results suggest that the cell suspension collected by the single cell sorter driven by the resonance vibration hardly contains cell aggregates whose diameter is larger than the gap between the cell culture substrate and the pipe. Consequently, the cell suspension collected by the single cell sorter maintains high cell proliferation. Conclusions: In this study, we developed a single cell sorter capable of sorting and pumping single cells by a resonance vibration of a cell culture substrate. The experimental results show the single cell sorter collects single cell suspension which hardly contains cell aggregates. Furthermore, the collected cells show higher proliferation than that of cells collected by conventional pipetting. This means the resonance vibration of the cell culture substrate can benefit us with the increase in efficiency of mass cell culture process for clinical applications.

Keywords: acoustic radiation force, cell proliferation, regenerative medicine, resonance vibration, single cell sorter

Procedia PDF Downloads 241
5222 Effect of an Interface Defect in a Patch/Layer Joint under Dynamic Time Harmonic Load

Authors: Elisaveta Kirilova, Wilfried Becker, Jordanka Ivanova, Tatyana Petrova

Abstract:

The study is a continuation of the research on the hygrothermal piezoelectric response of a smart patch/layer joint with undesirable interface defect (gap) at dynamic time harmonic mechanical and electrical load and environmental conditions. In order to find the axial displacements, shear stress and interface debond length in a closed analytical form for different positions of the interface gap, the 1D modified shear lag analysis is used. The debond length is represented as a function of many parameters (frequency, magnitude, electric displacement, moisture and temperature, joint geometry, position of the gap along the interface, etc.). Then the Genetic algorithm (GA) is implemented to find this position of the gap along the interface at which a vanishing/minimal debond length is ensured, e.g to find the most harmless position for the safe work of the structure. The illustrative example clearly shows that analytical shear-lag solutions and GA method can be combined successfully to give an effective prognosis of interface shear stress and interface delamination in patch/layer structure at combined loading with existing defects. To show the effect of the position of the interface gap, all obtained results are given in figures and discussed.

Keywords: genetic algorithm, minimal delamination, optimal gap position, shear lag solution

Procedia PDF Downloads 279
5221 Cyclic Response of Reinforced Concrete Beam-Column Joint Strengthening by FRP

Authors: N. Attari, S. Amziane, M. Chemrouk

Abstract:

A large number of old buildings have been identified as having potentially critical detailing to resist earthquakes. The main reinforcement of lap-spliced columns just above the joint region, discontinuous bottom beam reinforcement, and little or no joint transverse reinforcement are the most critical details of interior beam column joints in such buildings. This structural type constitutes a large share of the building stock, both in developed and developing countries, and hence it represents a substantial exposure. Direct observation of damaged structures, following the Algiers 2003 earthquake, has shown that damage occurs usually at the beam-column joints, with failure in bending or shear, depending on geometry and reinforcement distribution and type. While substantial literature exists for the design of concrete frame joints to withstand this type of failure, after the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore; there exists a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressing axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength and mode of failure of the different strengthening solution considered.

Keywords: fibre reinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 388
5220 The Gradient Complex Protective Coatings for Single Crystal Nickel Alloys

Authors: Evgeniya Popova, Vladimir Lesnikov, Nikolay Popov

Abstract:

High yield complex coatings have been designed for thermally stressed cooled HP turbine blades from single crystal alloys ZHS32-VI-VI and ZHS36 with crystallographic orientation [001]. These coatings provide long-term protection of single crystal blades during operation. The three-layer coatings were prepared as follows: the diffusion barrier layer formation on the alloy surface, the subsequent deposition of the condensed bilayer coatings consisting of an inner layer based on Ni-Cr-Al-Y systems and an outer layer based on the alloyed β-phase. The structure, phase composition of complex coatings and reaction zone interaction with the single-crystal alloys ZHS32-VI and ZHS36-VI were investigated using scanning electron microscope (SEM). The effect of complex protective coatings on the properties of heat-resistant nickel alloys was studied.

Keywords: single crystal nickel alloys, complex heat-resistant coatings, structure, phase composition, properties

Procedia PDF Downloads 385
5219 Mediating Role of Burnout in Personality and Marital Satisfaction of Single and Dual Career Couples

Authors: Sara Subhan

Abstract:

Married couples tend to experience various bio-psycho-social issues that may eventually impact the quality of their marital relationship and mental wellbeing. This study aimed to find out the comparison between the single and dual-career couples’ personality, burnout and marital satisfaction. For that purpose Big Five Inventory, Couple Satisfaction Inventory, and Maslach Burnout Inventory-General Survey was used to measure the relationship between variables. The main study was carried out on 200 samples of single and dual-earner couples with the age range of 23-52 (mean= 34.58; standard deviation= 6.51) by using a purposive sampling strategy. The results showed that burnout tendencies like exhaustion, cynicism and professional efficacy are playing a mediation role between the personality and marital satisfaction of both single and dual career couples. Also, the results revealed that dual-career couples are more likely to have marital satisfaction as compared to single career couples. The results were further discussed in the light of its implications in its cultural context and counseling areas.

Keywords: dual career couples, marital satisfaction, burnout tendencies, personality

Procedia PDF Downloads 142
5218 Evaluating the Fire Resistance of Offshore Tubular K-Joints Subjected to Balanced Axial Loads

Authors: Neda Azari Dodaran, Hamid Ahmadi

Abstract:

Results of 405 finite element (FE) analyses were used in the present research to study the effect of the joint geometry on the ultimate strength and initial stiffness of tubular K-joints subjected to axial loading at fire-induced elevated temperatures. The FE models were validated against the data available from experimental tests. Structural behavior under different temperatures (200ºC, 400ºC, 500ºC, and 700ºC) was investigated and compared to the behavior at ambient temperature (20ºC). A parametric study was conducted to investigate the effect of dimensionless geometrical parameters (β, γ, θ, and τ) on the ultimate strength and initial stiffness. Afterwards, ultimate strength data extracted from the FE analyses were compared with the values calculated from the equations proposed by available design codes in which the ultimate strength of the joint at elevated temperatures is obtained by replacing the yield stress of the steel at ambient temperature with the corresponding value at elevated temperature. It was indicated that this method may not have acceptable accuracy for K-joints under axial loading. Hence, a design formula was developed, through nonlinear regression analyses, to determine the ultimate strength of K-joints subjected to balanced axial loads at elevated temperatures.

Keywords: axial loading, elevated temperature, parametric equation, static strength, tubular K-joint

Procedia PDF Downloads 127
5217 Adhesive Bonded Joints Characterization and Crack Propagation in Composite Materials under Cyclic Impact Fatigue and Constant Amplitude Fatigue Loadings

Authors: Andres Bautista, Alicia Porras, Juan P. Casas, Maribel Silva

Abstract:

The Colombian aeronautical industry has stimulated research in the mechanical behavior of materials under different loading conditions aircrafts are generally exposed during its operation. The Calima T-90 is the first military aircraft built in the country, used for primary flight training of Colombian Air Force Pilots, therefore, it may be exposed to adverse operating situations such as hard landings which cause impact loads on the aircraft that might produce the impact fatigue phenomenon. The Calima T-90 structure is mainly manufactured by composites materials generating assemblies and subassemblies of different components of it. The main method of bonding these components is by using adhesive joints. Each type of adhesive bond must be studied on its own since its performance depends on the conditions of the manufacturing process and operating characteristics. This study aims to characterize the typical adhesive joints of the aircraft under usual loads. To this purpose, the evaluation of the effect of adhesive thickness on the mechanical performance of the joint under quasi-static loading conditions, constant amplitude fatigue and cyclic impact fatigue using single lap-joint specimens will be performed. Additionally, using a double cantilever beam specimen, the influence of the thickness of the adhesive on the crack growth rate for mode I delamination failure, as a function of the critical energy release rate will be determined. Finally, an analysis of the fracture surface of the test specimens considering the mechanical interaction between the substrate (composite) and the adhesive, provide insights into the magnitude of the damage, the type of failure mechanism that occurs and its correlation with the way crack propagates under the proposed loading conditions.

Keywords: adhesive, composites, crack propagation, fatigue

Procedia PDF Downloads 185
5216 Wind Turbine Powered Car Uses 3 Single Big C-Section Blades

Authors: K. Youssef, Ç. Hüseyin

Abstract:

The blades of a wind turbine have the most important job of any wind turbine component; they must capture the wind and convert it into usable mechanical energy. The objective of this work is to determine the mechanical power of single big C-section of vertical wind turbine for wind car in a two-dimensional model. The wind car has a vertical axis with 3 single big C-section blades mounted at an angle of 120°. Moreover, the three single big C-section blades are directly connected to wheels by using various kinds of links. Gears are used to convert the wind energy to mechanical energy to overcome the load exercised on the main shaft under low speed. This work allowed a comparison of drag characteristics and the mechanical power between the single big C-section blades with the previous work on 3 C-section and 3 double C-section blades for wind car. As a result obtained from the flow chart the torque and power curves of each case study are illustrated and compared with each other. In particular, drag force and torque acting on each types of blade was taken at an airflow speed of 4 m/s, and an angular velocity of 13.056 rad/s.

Keywords: blade, vertical wind turbine, drag characteristics, mechanical power

Procedia PDF Downloads 492
5215 Joint Path and Push Planning among Moveable Obstacles

Authors: Victor Emeli, Akansel Cosgun

Abstract:

This paper explores the navigation among movable obstacles (NAMO) problem and proposes joint path and push planning: which path to take and in what direction the obstacles should be pushed at, given a start and goal position. We present a planning algorithm for selecting a path and the obstacles to be pushed, where a rapidly-exploring random tree (RRT)-based heuristic is employed to calculate a minimal collision path. When it is necessary to apply a pushing force to slide an obstacle out of the way, the planners leverage means-end analysis through a dynamic physics simulation to determine the sequence of linear pushes to clear the necessary space. Simulation experiments show that our approach finds solutions in higher clutter percentages (up to 49%) compared to the straight-line push planner (37%) and RRT without pushing (18%).

Keywords: motion planning, path planning, push planning, robot navigation

Procedia PDF Downloads 145
5214 Optoelectronic Hardware Architecture for Recurrent Learning Algorithm in Image Processing

Authors: Abdullah Bal, Sevdenur Bal

Abstract:

This paper purposes a new type of hardware application for training of cellular neural networks (CNN) using optical joint transform correlation (JTC) architecture for image feature extraction. CNNs require much more computation during the training stage compare to test process. Since optoelectronic hardware applications offer possibility of parallel high speed processing capability for 2D data processing applications, CNN training algorithm can be realized using Fourier optics technique. JTC employs lens and CCD cameras with laser beam that realize 2D matrix multiplication and summation in the light speed. Therefore, in the each iteration of training, JTC carries more computation burden inherently and the rest of mathematical computation realized digitally. The bipolar data is encoded by phase and summation of correlation operations is realized using multi-object input joint images. Overlapping properties of JTC are then utilized for summation of two cross-correlations which provide less computation possibility for training stage. Phase-only JTC does not require data rearrangement, electronic pre-calculation and strict system alignment. The proposed system can be incorporated simultaneously with various optical image processing or optical pattern recognition techniques just in the same optical system.

Keywords: CNN training, image processing, joint transform correlation, optoelectronic hardware

Procedia PDF Downloads 477
5213 Finite Element Analysis of Layered Composite Plate with Elastic Pin Under Uniaxial Load Using ANSYS

Authors: R. M. Shabbir Ahmed, Mohamed Haneef, A. R. Anwar Khan

Abstract:

Analysis of stresses plays important role in the optimization of structures. Prior stress estimation helps in better design of the products. Composites find wide usage in the industrial and home applications due to its strength to weight ratio. Especially in the air craft industry, the usage of composites is more due to its advantages over the conventional materials. Composites are mainly made of orthotropic materials having unequal strength in the different directions. Composite materials have the drawback of delamination and debonding due to the weaker bond materials compared to the parent materials. So proper analysis should be done to the composite joints before using it in the practical conditions. In the present work, a composite plate with elastic pin is considered for analysis using finite element software Ansys. Basically the geometry is built using Ansys software using top down approach with different Boolean operations. The modelled object is meshed with three dimensional layered element solid46 for composite plate and solid element (Solid45) for pin material. Various combinations are considered to find the strength of the composite joint under uniaxial loading conditions. Due to symmetry of the problem, only quarter geometry is built and results are presented for full model using Ansys expansion options. The results show effect of pin diameter on the joint strength. Here the deflection and load sharing of the pin are increasing and other parameters like overall stress, pin stress and contact pressure are reducing due to lesser load on the plate material. Further material effect shows, higher young modulus material has little deflection, but other parameters are increasing. Interference analysis shows increasing of overall stress, pin stress, contact stress along with pin bearing load. This increase should be understood properly for increasing the load carrying capacity of the joint. Generally every structure is preloaded to increase the compressive stress in the joint to increase the load carrying capacity. But the stress increase should be properly analysed for composite due to its delamination and debonding effects due to failure of the bond materials. When results for an isotropic combination is compared with composite joint, isotropic joint shows uniformity of the results with lesser values for all parameters. This is mainly due to applied layer angle combinations. All the results are represented with necessasary pictorial plots.

Keywords: bearing force, frictional force, finite element analysis, ANSYS

Procedia PDF Downloads 310
5212 Grey Relational Analysis Coupled with Taguchi Method for Process Parameter Optimization of Friction Stir Welding on 6061 AA

Authors: Eyob Messele Sefene, Atinkut Atinafu Yilma

Abstract:

The highest strength-to-weight ratio criterion has fascinated increasing curiosity in virtually all areas where weight reduction is indispensable. One of the recent advances in manufacturing to achieve this intention endears friction stir welding (FSW). The process is widely used for joining similar and dissimilar non-ferrous materials. In FSW, the mechanical properties of the weld joints are impelled by property-selected process parameters. This paper presents verdicts of optimum process parameters in attempting to attain enhanced mechanical properties of the weld joint. The experiment was conducted on a 5 mm 6061 aluminum alloy sheet. A butt joint configuration was employed. Process parameters, rotational speed, traverse speed or feed rate, axial force, dwell time, tool material and tool profiles were utilized. Process parameters were also optimized, making use of a mixed L18 orthogonal array and the Grey relation analysis method with larger is better quality characteristics. The mechanical properties of the weld joint are examined through the tensile test, hardness test and liquid penetrant test at ambient temperature. ANOVA was conducted in order to investigate the significant process parameters. This research shows that dwell time, rotational speed, tool shape, and traverse speed have become significant, with a joint efficiency of about 82.58%. Nine confirmatory tests are conducted, and the results indicate that the average values of the grey relational grade fall within the 99% confidence interval. Hence the experiment is proven reliable.

Keywords: friction stir welding, optimization, 6061 AA, Taguchi

Procedia PDF Downloads 62
5211 A Study on the Establishment of a 4-Joint Based Motion Capture System and Data Acquisition

Authors: Kyeong-Ri Ko, Seong Bong Bae, Jang Sik Choi, Sung Bum Pan

Abstract:

A simple method for testing the posture imbalance of the human body is to check for differences in the bilateral shoulder and pelvic height of the target. In this paper, to check for spinal disorders the authors have studied ways to establish a motion capture system to obtain and express motions of 4-joints, and to acquire data based on this system. The 4 sensors are attached to the both shoulders and pelvis. To verify the established system, the normal and abnormal postures of the targets listening to a lecture were obtained using the established 4-joint based motion capture system. From the results, it was confirmed that the motions taken by the target was identical to the 3-dimensional simulation.

Keywords: inertial sensor, motion capture, motion data acquisition, posture imbalance

Procedia PDF Downloads 489
5210 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification

Authors: Jianhong Xiang, Rui Sun, Linyu Wang

Abstract:

In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.

Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification

Procedia PDF Downloads 42
5209 Transient Voltage Distribution on the Single Phase Transmission Line under Short Circuit Fault Effect

Authors: A. Kojah, A. Nacaroğlu

Abstract:

Single phase transmission lines are used to transfer data or energy between two users. Transient conditions such as switching operations and short circuit faults cause the generation of the fluctuation on the waveform to be transmitted. Spatial voltage distribution on the single phase transmission line may change owing to the position and duration of the short circuit fault in the system. In this paper, the state space representation of the single phase transmission line for short circuit fault and for various types of terminations is given. Since the transmission line is modeled in time domain using distributed parametric elements, the mathematical representation of the event is given in state space (time domain) differential equation form. It also makes easy to solve the problem because of the time and space dependent characteristics of the voltage variations on the distributed parametrically modeled transmission line.

Keywords: energy transmission, transient effects, transmission line, transient voltage, RLC short circuit, single phase

Procedia PDF Downloads 199
5208 Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case

Authors: Kazuyoshi Mori

Abstract:

In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.

Keywords: factorization approach, discrete-time system, parameterization of stabilizing controllers, system without unit-delay

Procedia PDF Downloads 211
5207 Vibration Measurements of Single-Lap Cantilevered SPR Beams

Authors: Xiaocong He

Abstract:

Self-pierce riveting (SPR) is a new high-speed mechanical fastening technique which is suitable for point joining dissimilar sheet materials, as well as coated and pre-painted sheet materials. Mechanical structures assembled by SPR are expected to possess a high damping capacity. In this study, experimental measurement techniques were proposed for the prediction of vibration behavior of single-lap cantilevered SPR beams. The dynamic test software and the data acquisition hardware were used in the experimental measurement of the dynamic response of the single-lap cantilevered SPR beams. Free and forced vibration behavior of the single-lap cantilevered SPR beams was measured using the LMS CADA-X experimental modal analysis software and the LMS-DIFA Scadas II data acquisition hardware. The frequency response functions of the SPR beams of different rivet number were compared. The main goal of the paper is to provide a basic measuring method for further research on vibration based non-destructive damage detection in single-lap cantilevered SPR beams.

Keywords: self-piercing riveting, dynamic response, experimental measurement, frequency response functions

Procedia PDF Downloads 405
5206 Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach

Authors: Arbnor Pajaziti, Hasan Cana

Abstract:

In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results.

Keywords: robotic arm, neural network, genetic algorithm, optimization

Procedia PDF Downloads 488
5205 Deleterious SNP’s Detection Using Machine Learning

Authors: Hamza Zidoum

Abstract:

This paper investigates the impact of human genetic variation on the function of human proteins using machine-learning algorithms. Single-Nucleotide Polymorphism represents the most common form of human genome variation. We focus on the single amino-acid polymorphism located in the coding region as they can affect the protein function leading to pathologic phenotypic change. We use several supervised Machine Learning methods to identify structural properties correlated with increased risk of the missense mutation being damaging. SVM associated with Principal Component Analysis give the best performance.

Keywords: single-nucleotide polymorphism, machine learning, feature selection, SVM

Procedia PDF Downloads 350
5204 The Impact of the European Single Market on the Austrian Economy

Authors: Reinhard Neck, Guido Schäfer

Abstract:

In this paper, we explore the macroeconomic effects of the European Single Market on Austria by simulating the McKibbin-Sachs Global Model. Global interdependence and the impact of long-run effects on short-run adjustments are taken into account. We study the sensitivity of the results with respect to different assumptions concerning monetary and fiscal policies for the countries and regions of the world economy. The consequences of different assumptions about budgetary policies in Austria are also investigated. The simulation results are contrasted with ex-post evaluations of the actual impact of Austria’s membership in the Single Market. As a result, it can be concluded that the Austrian participation in the European Single Market entails considerable long-run gains for the Austrian economy with nearly no adverse side-effects on any macroeconomic target variable.

Keywords: macroeconomics, European Union, simulation, sensitivity analysis

Procedia PDF Downloads 255