Search results for: rounded corners
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 126

Search results for: rounded corners

66 Investigating the Effect of the Shape of the Side Supports of the Gates of the Gotvand Reservoir Dam (from the Peak Overflows) on the Narrowing Coefficients

Authors: M. Abbasi

Abstract:

A spillway structure is used to pass excess water and floods from upstream or upstream to downstream or tributary. The spillway is considered one of the most key members of the dam, and the failure of many dams is attributed to the inefficiency of their spillway. Weirs should be selected as strong, reliable and high-performance structures, and weirs should be ready for use in all conditions and able to drain the flood so that we do not witness many casualties and financial losses when a flood occurs. The purpose of this study is to simulate the flow pattern passing over the peak spillway in order to optimize and adjust the height of the spillway walls. In this research, the effect of the shape of the side wings on the flow pattern over the peak spillways of the Gotvand reservoir dam was simulated and modelled using Flow3D software. In this research, side wings with rounded walls with six different approach angles were used. In addition, the different value of H/Hd was used to check the effect of the tank head. The results showed that with the constant H/Hd ratio and the increase of the approach angle of the side wing, the flow depth first decreases and then increases. These changes were the opposite regarding the depth average speed of the flow and the depth average concentration of the air entering the flow. At the same time, with the constant angle of approach of the side wing and with the increase of H/Hd ratio, the flow depth increases. In general, a correct understanding of the operation of overflows and a correct design can significantly reduce construction costs and solve flooding problems.

Keywords: effect of the shape, gotvand reservoir dam, narrowing coefficients, supports of the gates

Procedia PDF Downloads 35
65 Cleaning Performance of High-Frequency, High-Intensity 360 kHz Frequency Operating in Thickness Mode Transducers

Authors: R. Vetrimurugan, Terry Lim, M. J. Goodson, R. Nagarajan

Abstract:

This study investigates the cleaning performance of high intensity 360 kHz frequency on the removal of nano-dimensional and sub-micron particles from various surfaces, uniformity of the cleaning tank and run to run variation of cleaning process. The uniformity of the cleaning tank was measured by two different methods i.e 1. ppbTM meter and 2. Liquid Particle Counting (LPC) technique. In the second method, aluminium metal spacer components was placed at various locations of the cleaning tank (such as centre, top left corner, bottom left corner, top right corner, bottom right corner) and the resultant particles removed by 360 kHz frequency was measured. The result indicates that the energy was distributed more uniformly throughout the entire cleaning vessel even at the corners and edges of the tank when megasonic sweeping technology is applied. The result also shows that rinsing the parts with 360 kHz frequency at final rinse gives lower particle counts, hence higher cleaning efficiency as compared to other frequencies. When megasonic sweeping technology is applied each piezoelectric transducers will operate at their optimum resonant frequency and generates stronger acoustic cavitational force and higher acoustic streaming velocity. These combined forces are helping to enhance the particle removal and at the same time improve the overall cleaning performance. The multiple extractions study was also carried out for various frequencies to measure the cleaning potential and asymptote value.

Keywords: power distribution, megasonic sweeping, cavitation intensity, particle removal, laser particle counting, nano, submicron

Procedia PDF Downloads 393
64 Cytotoxic and Biocompatible Evaluation of Silica Coated Silver Nanoparticle Against Nih-3t3 Cells

Authors: Chen-En Lin, Lih-Rou Rau, Jiunn-Woei Liaw, Shiao-Wen Tsai

Abstract:

The unique optical properties of plasmon resonance metallic particles have attracted considerable applications in the fields of physics, chemistry and biology. Metal-Enhanced Fluorescence (MEF) effect is one of the useful applications. MEF effect stated that fluorescence intensity can be quenched or be enhanced depending on the distance between fluorophores and the metal nanoparticles. Silver nanoparticles have used widely in antibacterial studies. However, the major limitation for silver nanoparticles (AgNPs) in biomedical application is well-known cytotoxicity on cells. There were numerous literatures have been devoted to overcome the disadvantage. The aim of the study is to evaluate the cytotoxicity and biocompatibility of silica coated AgNPs against NIH-3T3 cells. The results were shown that NIH-3T3 cells started to detach, shrink, become rounded and finally be irregular in shape after 24 h of exposure at 10 µg/ml AgNPs. Besides, compared with untreated cells, the cell viability significantly decreased to 60% and 40% which were exposed to 10 µg/ml and 20 µg/ml AgNPs respectively. The result was consistent with previously reported findings that AgNPs induced cytotoxicity was concentration dependent. However, the morphology and cell viability of cells appeared similar to the control group when exposed to 20 µg/ml of silica coated AgNPs. We further utilized the dark-field hyperspectral imaging system to analysis the optical properties of the intracellular nanoparticles. The image displayed that the red shift of the surface plasmonic resonances band of the enclosed AgNPs further confirms the agglomerate of the AgNPs rather than their distribution in cytoplasm. In conclusion, the study demonstrated the silica coated of AgNPs showed well biocompatibility and significant lower cytotoxicity compared with bare AgNPs.

Keywords: silver nanoparticles, silica, cell viability, morphology

Procedia PDF Downloads 367
63 Nanoparticulated (U,Gd)O2 Characterization

Authors: A. Fernandez Zuvich, I. Gana Watkins, H. Zolotucho, H. Troiani, A. Caneiro, M. Prado, A. L. Soldati

Abstract:

The study of actinide nanoparticles (NPs) has attracted the attention of the scientific community not only because the lack of information about their ecotoxicological effects but also because the use of NPs could open a new way in the production of nuclear energy. Indeed, it was recently demonstrated that UO2 NPs sintered pellets exhibit closed porosity with improved fission gas retention and radiation-tolerance , ameliorated mechanical properties, and less detriment of the thermal conductivity upon use, making them an interesting option for new nuclear fuels. In this work, we used a combination of diffraction and microscopy tools to characterize the morphology, the crystalline structure and the composition of UO2 nanoparticles doped with 10%wt Gd2O3. The particles were synthesized by a modified sol-gel method at low temperatures. X-ray Diffraction (XRD) studies determined the presence of a unique phase with the cubic structure and Fm3m spatial group, supporting that Gd atoms substitute U atoms in the fluorite structure of UO2. In addition, Field Emission Gun Scanning (FEG-SEM) and Transmission (FEG-TEM) Electron Microscopy images revealed the presence of micrometric agglomerates of nanoparticles, with rounded morphology and an average crystallite size < 50 nm. Energy Dispersive Spectroscopy (EDS) coupled to TEM determined the presence of Gd in all the analyzed crystallites. Besides, FEG-SEM-EDS showed a homogeneous concentration distribution at the micrometer scale indicating that the small size of the crystallites compensates the variation in composition by averaging a large number of crystallites. These techniques, as combined tools resulted thus essential to find out details of morphology and composition distribution at the sub-micrometer scale, and set a standard for developing and analyzing nanoparticulated nuclear fuels.

Keywords: actinide nanoparticles, burnable poison, nuclear fuel, sol-gel

Procedia PDF Downloads 308
62 A Three-Dimensional (3D) Numerical Study of Roofs Shape Impact on Air Quality in Urban Street Canyons with Tree Planting

Authors: Bouabdellah Abed, Mohamed Bouzit, Lakhdar Bouarbi

Abstract:

The objective of this study is to investigate numerically the effect of roof shaped on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, Pvol = 96%. A three-dimensional computational fluid dynamics (CFD) model for evaluating air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier–Stokes (RANS) equations and the k-Epsilon EARSM turbulence model as close of the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against the wind tunnel experiment. Having established this, the wind flow and pollutant dispersion in urban street canyons of six roof shapes are simulated. The numerical simulation agrees reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated, this complexity is increased with presence of tree and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped. The results also indicated that the corners eddies provide additional ventilation and lead to lower traffic pollutant concentrations at the street canyon ends.

Keywords: street canyon, pollutant dispersion, trees, building configuration, numerical simulation, k-Epsilon EARSM

Procedia PDF Downloads 326
61 Outdoor Physical Play as Critical to Early Childhood Development: Findings from Saudi Arabia

Authors: Rana S. Alghamdi

Abstract:

Play in early childhood education has been stifled across the world due to an overemphasis on academic achievement and a reduced focus on physical play and motor development. In Saudi Arabia, teachers reticent to allocate more time to play for fear of retribution from parents and administrators that children are losing academic seat time. This practice has proven to be detrimental to the social, emotional, physical, and cognitive development of children. Teachers are pressured to prioritize Arabic, math, and science while providing minimal time for physical activities. Administrators tend to push for an ever-increasing emphasis on academia in order to achieve higher test scores. However, young children often find it difficult to concentrate if they are not able to get out energy through physical play. Furthermore, many youth educators are not qualified to oversee physical activities, and many facilities are unprepared for safe, outdoor play. This results in children getting little to no outdoor activity. They are stuck in a strict academic regimen that may dampen the creativity and imagination easily fostered through cooperative play. For a stronger educational system and more well-rounded students, Saudi schools should enact policies that extend the number of required hours dedicated to outdoor and physical play. They should also offer training for unqualified teachers. This training should focus on the benefits of physical play and instruct them on how to facilitate these activities safely and effectively. School administrators must focus on providing adequate equipment and safe environments for the purpose of outdoor play and education. In doing so, they will be setting their students up for a successful future and improving their abilities in all aspects of education.

Keywords: early childhood education, play, outdoor, Saudi Arabia

Procedia PDF Downloads 119
60 A Systematic Review on the Effect of Climate Change on Rice Farming in Nepal

Authors: Tulsi Ram Bhusal

Abstract:

Global climate change is known to have a huge impact on agriculture due to changing in rainfall pattern and elevated air temperature that lead to drought and/or flooding. This systematic study has focused on agriculture in Nepal. The study has shown that the trend of current climatic change is affecting rice production, while the farmers with technological access have tried to adapt to the changing conditions at their level. There is insufficient intervention from the government side in terms of policies and schemes. The lack of sufficient funds is one of the significant reasons in terms of governance. The climatic trends and the way it is affecting the annual riceyieldinNepal has been discussed in this study thoroughly. This study has reviewed published studies and ferred important points regarding the Nepal’s status on rice production. Mainly due to the increasing graph of average temperature and other physical conditions needed for the proper cultivation of ricearechanging due to which there is significant dropofannual rice production. Although from corners of the country, many farmers have attempted to adapt the methods of cultivation to the changing climatic conditions, lack of access to technologies, and fund allocation from the governmental level, it is difficult for the mtobringchanges in rice production by the crown without any institutional help. This systematic study effectively presents the magnitude of the impact on rice cultivation due to climatic changes inrecenttimesinNepal. This review aims to bring the current scenarioofNepal’sricefarming, and it impacts due to changing climate, which can subsequently contribute in devising plans for proper governance, formulating policies, and allocation of funds for the betterment.

Keywords: rice, climate change, rice production, nepal, agriculture

Procedia PDF Downloads 73
59 Exploring the Underlying Factors of Student Dropout in Makawanpur Multiple Campus: A Comprehensive Analysis

Authors: Uttam Aryal, Shekhar Thapaliya

Abstract:

This research paper presents a comprehensive analysis of the factors contributing to student dropout at Makawanpur Multiple Campus, utilizing primary data collected directly from dropped out as well as regular students and academic staff. Employing a mixed-method approach, combining qualitative and quantitative methods, this study examines into the complicated issue of student dropout. Data collection methods included surveys, interviews, and a thorough examination of academic records covering multiple academic years. The study focused on students who left their programs prematurely, as well as current students and academic staff, providing a well-rounded perspective on the issue. The analysis reveals a shaded understanding of the factors influencing student dropout, encompassing both academic and non-academic dimensions. These factors include academic challenges, personal choices, socioeconomic barriers, peer influences, and institutional-related issues. Importantly, the study highlights the most influential factors for dropout, such as the pursuit of education abroad, financial restrictions, and employment opportunities, shedding light on the complex web of circumstances that lead students to discontinue their education. The insights derived from this study offer actionable recommendations for campus administrators, policymakers, and educators to develop targeted interventions aimed at reducing dropout rates and improving student retention. The study underscores the importance of addressing the diverse needs and challenges faced by students, with the ultimate goal of fostering a supportive academic environment that encourages student success and program completion.

Keywords: drop out, students, factors, opportunities, challenges

Procedia PDF Downloads 30
58 Aggregation of Electric Vehicles for Emergency Frequency Regulation of Two-Area Interconnected Grid

Authors: S. Agheb, G. Ledwich, G.Walker, Z.Tong

Abstract:

Frequency control has become more of concern for reliable operation of interconnected power systems due to the integration of low inertia renewable energy sources to the grid and their volatility. Also, in case of a sudden fault, the system has less time to recover before widespread blackouts. Electric Vehicles (EV)s have the potential to cooperate in the Emergency Frequency Regulation (EFR) by a nonlinear control of the power system in case of large disturbances. The time is not adequate to communicate with each individual EV on emergency cases, and thus, an aggregate model is necessary for a quick response to prevent from much frequency deviation and the occurrence of any blackout. In this work, an aggregate of EVs is modelled as a big virtual battery in each area considering various aspects of uncertainty such as the number of connected EVs and their initial State of Charge (SOC) as stochastic variables. A control law was proposed and applied to the aggregate model using Lyapunov energy function to maximize the rate of reduction of total kinetic energy in a two-area network after the occurrence of a fault. The control methods are primarily based on the charging/ discharging control of available EVs as shunt capacity in the distribution system. Three different cases were studied considering the locational aspect of the model with the virtual EV either in the center of the two areas or in the corners. The simulation results showed that EVs could help the generator lose its kinetic energy in a short time after a contingency. Earlier estimation of possible contributions of EVs can help the supervisory control level to transmit a prompt control signal to the subsystems such as the aggregator agents and the grid. Thus, the percentage of EVs contribution for EFR will be characterized in the future as the goal of this study.

Keywords: emergency frequency regulation, electric vehicle, EV, aggregation, Lyapunov energy function

Procedia PDF Downloads 73
57 Effects of Duct Geometry, Thickness and Types of Liners on Transmission Loss for Absorptive Silencers

Authors: M. Kashfi, K. Jahani

Abstract:

Sound attenuation in absorptive silencers has been analyzed in this paper. The structure of such devices is as follows. When the rigid duct of an expansion chamber has been lined by a packed absorptive material under a perforated membrane, incident sound waves will be dissipated by the absorptive liners. This kind of silencer, usually are applicable for medium to high frequency ranges. Several conditions for different absorptive materials, variety in their thicknesses, and different shapes of the expansion chambers have been studied in this paper. Also, graphs of sound attenuation have been compared between empty expansion chamber and duct of silencer with applying liner. Plane waves have been assumed in inlet and outlet regions of the silencer. Presented results that have been achieved by applying finite element method (FEM), have shown the dependence of the sound attenuation spectrum to flow resistivity and the thicknesses of the absorptive materials, and geometries of the cross section (configuration of the silencer). As flow resistivity and thickness of absorptive materials increase, sound attenuation improves. In this paper, diagrams of the transmission loss (TL) for absorptive silencers in five different cross sections (rectangle, circle, ellipse, square, and rounded rectangle as the main geometry) have been presented. Also, TL graphs for silencers using different absorptive material (glass wool, wood fiber, and kind of spongy materials) as liner with three different thicknesses of 5 mm, 15 mm, and 30 mm for glass wool liner have been exhibited. At first, the effect of substances of the absorptive materials with the specific flow resistivity and densities on the TL spectrum, then the effect of the thicknesses of the glass wool, and at last the efficacy of the shape of the cross section of the silencer have been investigated.

Keywords: transmission loss, absorptive material, flow resistivity, thickness, frequency

Procedia PDF Downloads 220
56 Ferromagnetic Potts Models with Multi Site Interaction

Authors: Nir Schreiber, Reuven Cohen, Simi Haber

Abstract:

The Potts model has been widely explored in the literature for the last few decades. While many analytical and numerical results concern with the traditional two site interaction model in various geometries and dimensions, little is yet known about models where more than two spins simultaneously interact. We consider a ferromagnetic four site interaction Potts model on the square lattice (FFPS), where the four spins reside in the corners of an elementary square. Each spin can take an integer value 1,2,...,q. We write the partition function as a sum over clusters consisting of monochromatic faces. When the number of faces becomes large, tracing out spin configurations is equivalent to enumerating large lattice animals. It is known that the asymptotic number of animals with k faces is governed by λᵏ, with λ ≈ 4.0626. Based on this observation, systems with q < 4 and q > 4 exhibit a second and first order phase transitions, respectively. The transition nature of the q = 4 case is borderline. For any q, a critical giant component (GC) is formed. In the finite order case, GC is simple, while it is fractal when the transition is continuous. Using simple equilibrium arguments, we obtain a (zero order) bound on the transition point. It is claimed that this bound should apply for other lattices as well. Next, taking into account higher order sites contributions, the critical bound becomes tighter. Moreover, for q > 4, if corrections due to contributions from small clusters are negligible in the thermodynamic limit, the improved bound should be exact. The improved bound is used to relate the critical point to the finite correlation length. Our analytical predictions are confirmed by an extensive numerical study of FFPS, using the Wang-Landau method. In particular, the q=4 marginal case is supported by a very ambiguous pseudo-critical finite size behavior.

Keywords: entropic sampling, lattice animals, phase transitions, Potts model

Procedia PDF Downloads 134
55 Numerical and Experimental Investigation of Distance Between Fan and Coil Block in a Fin and Tube Air Cooler Heat Exchanger

Authors: Feyza Şahi̇n, Harun Deni̇zli̇, Mustafa Zabun, Hüseyi̇n OnbaşIoğli

Abstract:

Heat exchangers are devices that are widely used to transfer heat between fluids due to their temperature differences. As a type of heat exchanger, air coolers are heat exchangers that cool the air as it passes through the fins of the heat exchanger by transferring heat to the refrigerant in the coil tubes of the heat exchanger. An assembled fin and tube heat exchanger consists of a coil block and a casing with a fan mounted on it. The term “Fan hood” is used to define the distance between the fan and the coil block. Air coolers play a crucial role in cooling systems, and their heat transfer performance can vary depending on design parameters. These parameters can be related to the air side or the internal fluid side. For airside efficiency, the distance between the fan and the coil block affects the performance by creating dead zones at the corners of the casing and maldistribution of airflow. Therefore, a detailed study of the effect of the fan hood on the evaporator and the optimum fan hood distance is necessary for an efficient air cooler design. This study aims to investigate the value of the fan hood in a fin and tube-type air cooler heat exchanger through computational fluid dynamics (CFD) simulations and experimental investigations. CFD simulations will be used to study the airflow within the fan hood. These simulations will provide valuable insights to optimize the design of the fan hood. In addition, experimental tests will be carried out to validate the CFD results and to measure the performance of the fan hood under real conditions. The results will help us to understand the effect of fan hood design on evaporator efficiency and contribute to the development of more efficient cooling systems. This study will provide essential information for evaporator design and improving the energy efficiency of cooling systems.

Keywords: heat exchanger, fan hood, heat exchanger performance, air flow performance

Procedia PDF Downloads 38
54 Cinematic Liberty vs. Offending Social, Religious Beliefs: With Special Reference to the Controversial Contents in Cinema and Print Media

Authors: Govind Ji Pandey

Abstract:

The divergent opinions in the society are important for its development but with reasonable restrictions. The world recently witnessed one of the most violent protests by a group against the editor and publisher of the magazine ‘Charlie Hebdo’ for publishing cartoon of their religious leader. The supporter of freedom of speech and expression around the world were in shock and termed it the strongest attack against the free speech. People all around the world condemned the killing of the journalists but many soft voices from several corners were also coming for reasonable restrictions on the freedom of speech and expression. Of late, Indian society has witnessed many protests and supports of films with controversial content. It is the beauty of the Indian democracy which gives an opportunity to all for discussion and debate on any issue that challenges established social norms. However, many organizations as well as individuals misuse it for their personal benefits. There have been many film directors who faced protest from several quarters for their controversial themes. This research aims at analyzing the controversial contents published in print media and shown in films. To understand the nature and frequency of such media reports, content analysis technique is used. The research also highlights the perception of the public regarding the controversies. For getting the popular opinion on the coverage of controversial content in cinema and print media, five hundred people from Lucknow, UP, India were randomly selected. The findings of this research are important to understand the response of media and society towards the controversial content presented in cinema and print media. The research highlights that how a handful of people curb free speech in a democratic country like India.

Keywords: cinema, censor board, free speech, liberty, social-religious beliefs

Procedia PDF Downloads 235
53 Advocating for and Implementing the Use of Advance Top Bar (ATB) for a More Than 100% Increase in Honey Yield in Top Bar Hives Owing to Honey Harvesting Without Comb Destruction

Authors: Perry Ayi Mankattah

Abstract:

Introduction: Africa, which should lead the world in honey production, is importing three times the honey it produces even though it has a healthy, industrious and large population of bees. This is due to the mechanism of honey harvesting that destroys the combs and thereby reducing honey production and rate of harvesting. For Africa to take its place in the world of honey production, Africa should adopt a method that enables a higher rate of honey harvesting. The Advance Top Bar is, therefore, a simplified framework that provides that answer. It can be made of wood, plastic and metal that can be fabricated by tin/metal smiths, wielders and carpenters at the village level without any very sophisticated machines. Material and Methods: ATB is a top bar-like hollow framework of dimension 3.2*48 cm that can be made of wood, plastic and metal. It is made up of three parts of a constant hollow top bar, a variable grooved bottom bar with both bars being joined through synchronized holes (that align both the top and bottom bars ) by either metal or plastic rods of length 22cm and diameter of 5 mm with rounded balls at both ends It could be used with foundation combs or without and also other accessories to have about ten (10) function which includes commercial propolis harvesting queen rearing etc. The variable bottom bar length depends on the width of the hive, as most African beehives are somehow not standardized. Results: Foundation combs are placed within the Advance Top Bar for the bees to form their combs over its mesh to prevent comb breakage during honey harvesting. Similarly, honeycombs on top bars will produce natural foundation combs when also placed in the Advance top bar system just as they are re-used in the Langstroth Frames. Discussions and Conclusions: Any modification that will promote non-comb destruction during honey harvesting in Top bars shall cause Africa to increase honey production by over 100% as beekeepers adopt the mechanism. Honey-laden combs from the current normal top bars could be placed in the Advance Top Bar to harvest without comb destruction; hence the same system could be used as a transition to the adoption of the Advance Top Bar with less cost.

Keywords: honey, harvest, increase, production

Procedia PDF Downloads 39
52 Recycling of End of Life Concrete Based on C2CA Method

Authors: Somayeh Lotfi, Manuel Eggimann, Eckhard Wagner, Radosław Mróz, Jan Deja

Abstract:

One of the main environmental challenges in the construction industry is a strong social force to decrease the bulk transport of the building materials in urban environments. Considering this fact, applying more in-situ recycling technologies for Construction and Demolition Waste (CDW) is an urgent need. The European C2CA project develops a novel concrete recycling technology that can be performed purely mechanically and in situ. The technology consists of a combination of smart demolition, gentle grinding of the crushed concrete in an autogenous mill, and a novel dry classification technology called ADR to remove the fines. The feasibility of this recycling process was examined in demonstration projects involving in total 20,000 tons of End of Life (EOL) concrete from two office towers in Groningen, The Netherlands. This paper concentrates on the second demonstration project of C2CA, where EOL concrete was recycled on an industrial site. After recycling, the properties of the produced Recycled Aggregate (RA) were investigated, and results are presented. An experimental study was carried out on mechanical and durability properties of produced Recycled Aggregate Concrete (RAC) compared to those of the Natural Aggregate Concrete (NAC). The aim was to understand the importance of RA substitution, w/c ratio and type of cement to the properties of RAC. In this regard, two series of reference concrete with strength classes of C25/30 and C45/55 were produced using natural coarse aggregates (rounded and crushed) and natural sand. The RAC series were created by replacing parts of the natural aggregate, resulting in series of concrete with 0%, 20%, 50% and 100% of RA. Results show that the concrete mix design and type of cement have a decisive effect on the properties of RAC. On the other hand, the substitution of RA even at a high percentage replacement level has a minor and manageable impact on the performance of RAC. This result is a good indication towards the feasibility of using RA in structural concrete by modifying the mix design and using a proper type of cement.

Keywords: C2CA, ADR, concrete recycling, recycled aggregate, durability

Procedia PDF Downloads 361
51 Agricultural Investment in Ethiopia: The Case of Oromia Region

Authors: Misganaw Ayele Gelaw

Abstract:

This abstract presents an overview of agricultural investment in Ethiopia, with a focus on the Oromia Region. Ethiopia is a developing country that heavily relies on agriculture as a major contributor to its economic growth and employment. The Oromia Region, located in the central part of the country, is the largest region in Ethiopia and plays a significant role in the agricultural sector. The study aims to explore the current state of agricultural investment in the Oromia Region, focusing on the opportunities, challenges, and potential benefits that arise from such investments. It also highlights the key agricultural investment strategies and policies implemented by the Ethiopian government to attract domestic and foreign investors. To achieve these objectives, a comprehensive literature review and analysis of relevant reports, publications, and government policies will be conducted. The study will also incorporate qualitative and quantitative data collection methods, such as interviews, surveys, and statistical analysis, to provide a well-rounded understanding of agricultural investment dynamics in the Oromia Region. The findings of this study are expected to shed light on the impact of agricultural investments on local farmers, rural development, food security, income generation, and overall economic growth in the Oromia Region. It will also identify the key risk factors and potential mitigations associated with agricultural investment, offering recommendations to policymakers, investors, and stakeholders to improve the effectiveness and sustainability of investment efforts in the region. This abstract highlights the importance of agricultural investment in the Oromia Region and Ethiopia as a whole, as it strives to enhance productivity, increase farmers' income, and contribute to the country's long-term development goals. By understanding the challenges and opportunities associated with agricultural investment, policymakers and investors can develop targeted strategies to ensure inclusive and sustainable growth in the agricultural sector, leading to improved livelihoods and economic prosperity in the Oromia Region.

Keywords: agriculture, investment, agriculture policy, economy

Procedia PDF Downloads 36
50 Characterization of A390 Aluminum Alloy Produced at Different Slow Shot Speeds Using Assisted Vacuum High-Pressure Die Casting

Authors: Wenbo Yu, Zihao Yuan, Zhipeng Guo, Shoumei Xiong

Abstract:

Under different slow shot speeds in vacuum assisted high pressure die casting (VHPDC) process, plate-shaped specimens of hypereutectic A390 aluminum alloy were produced. According to the results, the vacuum pressure inside the die cavity increased linearly with the increasing slow shot speed at the beginning of mold filling. Meanwhile, it was found that the tensile properties of vacuum die castings were deteriorated by the porosity content. In addition, the average primary Si size varies between 14µm to 23µm, which has a binary functional relationship with the slow shot speeds. Due to the vacuum effect, the castings were treated by T6 heat treatment. After heat treatment, microstructural morphologies revealed that needle-shaped and thin-flaked eutectic Si particles became rounded while Al2Cu dissolved into α-Al matrix. For the as-received sample in-situ tensile test, microcracks firstly initiate at the primary Si particles and propagated along Al matrix with a transgranular fracture mode. In contrast, for the treated sample, the crack initiated at the Al2Cu particles and propagated along Al grain boundaries with an intergranular fracture mode. In-situ three bending test, microcracks firstly formed in the primary Si particles for both samples. Subsequently, the cracks between primary Si linked along Al grain boundaries in as received sample. In contrast, the cracks in primary Si linked through the solid lines in Al matrix. Furthermore, the fractography revealed that the fracture mechanism has evolved from brittle transgranular fracture to a fracture mode with many dimples after heat treatment.

Keywords: A390 aluminum, vacuum assisted high pressure die casting, heat treatment, mechanical properties

Procedia PDF Downloads 213
49 The Effects of Placement and Cross-Section Shape of Shear Walls in Multi-Story RC Buildings with Plan Irregularity on Their Seismic Behavior by Using Nonlinear Time History Analyses

Authors: Mohammad Aminnia, Mahmood Hosseini

Abstract:

Environmental and functional conditions sometimes necessitate the architectural plan of the building to be asymmetric, and this result in an asymmetric structure. In such cases, finding an optimal pattern for locating the components of the lateral load bearing system, including shear walls, in the building’s plan is desired. In case of shear walls, in addition to the location, the shape of the wall cross-section is also an effective factor. Various types of shear wall and their proper layout might come effective in better stiffness distribution and more appropriate seismic response of the building. Several studies have been conducted in the context of analysis and design of shear walls; however, few studies have been performed on making decisions for the location and form of shear walls in multi-story buildings, especially those with irregular plan. In this study, an attempt has been made to obtain the most reliable seismic behavior of multi-story reinforced concrete vertically chamfered buildings by using more appropriate shear walls form and arrangement in 7-, 10-, 12-, and 15-story buildings. The considered forms and arrangements include common rectangular walls and L-, T-, U- and Z-shaped plan, located as the core or in the outer frames of the building structure. Comparison of seismic behaviors of the buildings, including maximum roof displacement, and particularly the formation of plastic hinges and their distribution in the buildings’ structures, have been done based on the results of a series of nonlinear time history analyses by using a set of selected earthquake records. Results show that shear walls with U-shaped cross-section, placed as the building central core, and also walls with Z-shaped cross-section, placed at the corners give the building more reliable seismic behavior.

Keywords: vertically chamfered buildings, non-linear time history analyses, l-, t-, u- and z-shaped plan walls

Procedia PDF Downloads 230
48 Design and Computational Fluid Dynamics Analysis of Aerodynamic Package of a Formula Student Car

Authors: Aniketh Ravukutam, Rajath Rao M., Pradyumna S. A.

Abstract:

In the past few decades there has been great advancement in use of aerodynamics in cars. Now its use has been evident from commercial cars to race cars for achieving higher speeds, stability and efficiency. This paper focusses on studying the effects of aerodynamics in Formula Student car. These cars weigh around 200kgs with an average speed of 60kmph. With increasing competition every year, developing a competitive car is a herculean task. The race track comprises mostly of tight corners and little or no straights thus testing the car’s cornering capabilities. Higher cornering speeds can be achieved by increasing traction at the tires. Studying the aerodynamics helps in achieving higher traction without much addition in overall weight of car. The main focus is to develop an aerodynamic package involving front wing, under tray and body to obtain an optimum value of down force. The initial process involves the detail study of geometrical constraints mentioned in the rule book and calculating the limiting value of drag as per the engine specifications. The successive steps involve conduction of various iterations in ANSYS for selection of airfoils, deciding the number of elements, designing the nose for low drag, channelizing the flow under the body and obtain an optimum value of down force within the limits defined in the initial process. The final step involves design of model using these results in Virtual environment called OptimumLap® for detailed study of performance with and without the presence of aerodynamics. The CFD analysis results showed an overall down force of 377.44N with a drag of 164.08N. The corresponding parameters of the last model were applied in OptimumLap® and an improvement of 3.5 seconds in lap times was observed.

Keywords: aerodynamics, formula student, traction, front wing, undertray, body, rule book, drag, down force, virtual environment, computational fluid dynamics (CFD)

Procedia PDF Downloads 217
47 The Seeds of Limitlessness: Dambudzo Marechera's Utopian Thinking

Authors: Emily S. M. Chow

Abstract:

The word ‘utopia’ was coined by Thomas More in Utopia (1516). Its Greek roots ‘ou’ means ‘not’ and ‘topos’ means ‘place.’ In other words, it literally refers to ‘no-place.’ However, the possibility of having an alternative and better future society has always been appealing. In fact, at the core of every utopianism is the search for a future alternative state with the anticipation of a better life. Nonetheless, the practicalities of such ideas have never ceased to be questioned. At times, building a utopia presents itself as a divisive act. In addition to the violence that must be employed to sweep away the old regime in order to make space for the new, all utopias carry within them the potential for bringing catastrophic consequences to human life. After all, every utopia seeks to remodel the individual in a very particular way for the benefit of the masses. In this sense, utopian thinking has the potential both to create and destroy the future. While writing during a traumatic transitional period in Zimbabwe’s history, Dambudzo Marechera witnessed an age of upheavals in which different parties battled for power over Zimbabwe. Being aware of the fact that all institutionalized narratives, be they originated from the governance of the UK, Ian Smith’s white minority regime or Zimbabwe’s revolutionary parties, revealed themselves to be nothing more than fiction, Marechera realized the impossibility of determining reality absolutely. As such, this thesis concerns the writing of the Zimbabwean maverick, Dambudzo Marechera. It argues that Marechera writes a unique vision of utopia. In short, for Marechera utopia is not a static entity but a moment of perpetual change. He rethinks utopia in the sense that he phrases it as an event that ceaselessly contests institutionalized and naturalized narratives of a post-colonial self and its relationship to society. Marechera writes towards a vision of an alternative future of the country. Yet, it is a vision that does not constitute a fully rounded sense of utopia. Being cautious about the world and the operation of power upon the people, rather than imposing his own utopian ideals, Marechera chooses to instead peeling away the narrative constitution of the self in relation to society in order to turn towards a truly radical utopian thinking that empowers the individual.

Keywords: African literature, Marechera, post-colonial literature, utopian studies

Procedia PDF Downloads 388
46 The Ethical Healthcare Paradigm with in Corporate Framework: CSR for Equitable Access to Drugs

Authors: Abhay Vir Singh Kanwar

Abstract:

The pharmaceutical industry today is a multi-billion dollar business and yet disadvantages people in many corners of the globe who are still dying in large numbers from curable illnesses for lack of access to drugs. The astronomical prices of essential and life-saving drugs is not just an economic problem that can be settled through clever market strategies but is an ethical issue, given the accumulated wealth of today’s humanity and the sense of global justice that it increasingly comes to share. In this paper, I make a very practical argument for what I shall call ‘the ethical healthcare paradigm’, which, I propose, can replace the economistic paradigm that can still drive the healthcare sector without creating spillover effects on the market. Taking off from the ethical-philosophical argument for recognizing every individual’s right to capability to be healthy, I shall come to the focused practical proposal of the cost-rationalization and universal availability of essential, life-saving drugs through the undertaking of research and development funding for drug innovation by the business establishment as such in terms of the concept of CSR. The paper will first expose the concepts of basic and fundamental capabilities in relation to education and health, after which it will focus on the right to capability to be healthy of every person. In the third section, it will discuss the ‘ethical healthcare paradigm’ as opposed to the economistic health paradigm and will argue that the patient will have to be considered the primary stakeholder of this paradigm or the very ‘subject’ of healthcare. The next section will be on an ethical-historical critique of the pharmaceutical industry’s profit driven economism. The section after that will look at the business operation and the stages in the life cycle of a drug that comes to the market in order to understand the risks, strengths and problems of the pharmaceutical industry. Finally, the paper will discuss the concept of CSR in relation to the ethical healthcare paradigm in order to propose CSR funding in research and development for innovation on drugs so that life-saving drugs can be made available to every sick person cost-effectively.

Keywords: capability approach, healthcare, CSR, patient

Procedia PDF Downloads 276
45 Report of Gangamopteris cyclopteroides from the Rajmahal Basin, India: An Evidence for Coal Forming Vegetation in the Area

Authors: Arun Joshi

Abstract:

The present study deals with the report of Gangamopteriscyclopteroides from the Barakar Formation of Simlong Open Cast Mine, Rajmahal Area, Rajmahal Basin, Jharkhand, India. The genus Gangamopteriscomprises leaves which are simple, entire, symmetrical or asymmetrical, linear, lanceolate, elliptical, obovate in shape, apex broadly rounded, obtuse, acute, acuminate or mucronate, base petiolate or contracted, midrib absent. Median region occupied by subparallel veins with anastomoses of elongate or hexagonal outline. Secondary veins arise from median veins by repeated dichotomy, arched, bifurcating and anasotomosing network. The present work is significant as it represents the presence of Glossopteris flora (250- 290 ma) which is mainly responsible for the formation of coal. Coal is one of the major fuels for power production through thermal power plants. The Glossopteris flora is one of the major floras that occupied the southern continent during Carboniferous- Permian time. This southern continent is also known as Gondwana comprising Australia, South Africa, Antarctica, Madagascar and India. There is a vast geological reserve of coal with favorable stripping ratio available at the Simlong Block but the area comes under the most naxalite prone area and thus the mine has been running in an unplanned manner. It has got the potential of becoming a big project with higher capacity and is well suited for enhancing production which can be helpful in the economic growth of the country. Though, the present record is scanty, it shows the presence of Glossopteris flora responsible for the formation of coal in the Coalmine. However, there are fears of fossils disappearing from this area as the state government of Jharkhand has given out a mining lease in the area to private companies. Therefore, it is very necessary to study such coal forming vegetation and their systematic study from the area to generate a new palaeobotanical database, palaeoenvironmental interpretation, basinal correlation and for the understanding of evolutionary perspectives.

Keywords: Barakar formation, coal, Glossopteris flora, Gondwana, India, Naxalite, Rajmahal Basin

Procedia PDF Downloads 118
44 Enhancing Oral Pre-Exposure Prophylaxis Uptake and Continuation among Adolescent Girls and Young Women in Busia District East Central Uganda

Authors: Jameson Mirimu, Edward Mawejje, Ibra Twinomujuni

Abstract:

Introduction: Adolescent girls and young women (AGYW) are a vulnerable category whose risk of acquiring HIV is 20 times compared to the general population accounting for 25% of the new infections. Despite proven scientific evidence of preventing HIV acquisition, Oral Pre-Exposure Prophylaxis (PreP) is less used as one of the biomedical interventions among the AGYW. By 2020, only 31000-32000 of the targeted 90,000 persons in Uganda enrolled on Oral PreP LPHS-EC project employed a combination of Expanded Peer Outreach Approach (EPOA) and Effective client follow-up to increase PreP initiation (PrEP_NEW) and continuation for more than three months (PrEP_CT). Method: Quantitatively, data from National Key population Combination tracker retrospectively analyzed by M&E, focused group discussion with AGYWs and Health care workers to identify barriers. Barriers found; hesitancy of AGYW, misconceptions about Oral PrEP, inadequate knowledge and skills in handling adolescent and Data quality issues. To address the mentioned barriers, youth friendly corners initiated in study sites, identified PrEP Champions among the AGYW, oral PrEP dialogues, group Antenatal counselling, CQI Projects initiated, weekly perfomance meetings to track performance. Results: Routine program data review PrEP_NEW and PrEP_CT increased from 5% (4/80) and 4% (2/54), respectively, in July 2022 to 90% (72/80) and 79% (43/54) respectively for PrEP_NEW and PrEP_CT at the end of March 2023. Lessons Learnt: Demystifying misconception about oral Prep through provision of adequate information by involving health care workers through skills enhancement, CQI projects are critical intervention. Conclusion: With improved safe spaces, skills enhancement of health workers, stakeholders’ engagement through Oral Prep dialogues is critical in improving PreP uptake and continuity among the AGYWS.

Keywords: prep, uptake, continuation, AGYW

Procedia PDF Downloads 45
43 Using Indigenous Knowledge Systems in Teaching Early Literacy: A Case Study of Zambian Public Preschools

Authors: Ronald L. Kaunda

Abstract:

The education system in Zambia still bears scars of colonialism in the area of policy, curriculum and implementation. This historical context resulted in the failure by the Government of the Republic of Zambia to achieve literacy goals expected among school going children. Specifically, research shows that the use of English for initial literacy and Western based teaching methods to engage learners in literacy activities at lower levels of education including preschool has exacerbated this situation. In 2014, the Government of the Republic of Zambia implemented a new curriculum that, among others things, required preschool teachers to use local and cultural materials and familiar languages for early literacy teaching from preschool to grade 4. This paper presents findings from a study that sought to establish ways in which preschool teachers use Zambian Indigenous knowledge systems and Indigenous teaching strategies to support literacy development among preschool children. The study used Indigenous research methodology for data collection and iterative feature of Constructivist Grounded Theory (CGT) in the data collection process and analysis. This study established that, as agents of education, preschool teachers represented community adult educators because of some roles which they played beyond their academic mandate. The study further found that classrooms as venues of learning were equipped with learning corners reflecting Indigenous literacy materials and Indigenous ways of learning. Additionally, the study found that learners were more responsive to literacy lessons because of the use of familiar languages and local contextualized environments that supported their own cultural ways of learning. The study recommended that if the education system in Zambia is to be fully inclusive of Indigenous knowledge systems and cultural ways of learning, the education policy and curriculum should include conscious steps on how this should be implemented at the classroom level. The study further recommended that more diverse local literacy materials and teaching aids should be produced for use in the classroom.

Keywords: agents of learning, early literacy, indigenous knowledge systems, venues of education

Procedia PDF Downloads 132
42 Performance of Reinforced Concrete Wall with Opening Using Analytical Model

Authors: Alaa Morsy, Youssef Ibrahim

Abstract:

Earthquake is one of the most catastrophic events, which makes enormous harm to properties and human lives. As a piece of a safe building configuration, reinforced concrete walls are given in structures to decrease horizontal displacements under seismic load. Shear walls are additionally used to oppose the horizontal loads that might be incited by the impact of wind. Reinforced concrete walls in residential buildings might have openings that are required for windows in outside walls or for doors in inside walls or different states of openings due to architectural purposes. The size, position, and area of openings may fluctuate from an engineering perspective. Shear walls can encounter harm around corners of entryways and windows because of advancement of stress concentration under the impact of vertical or horizontal loads. The openings cause a diminishing in shear wall capacity. It might have an unfavorable impact on the stiffness of reinforced concrete wall and on the seismic reaction of structures. Finite Element Method using software package ‘ANSYS ver. 12’ becomes an essential approach in analyzing civil engineering problems numerically. Now we can make various models with different parameters in short time by using ANSYS instead of doing it experimentally, which consumes a lot of time and money. Finite element modeling approach has been conducted to study the effect of opening shape, size and position in RC wall with different thicknesses under axial and lateral static loads. The proposed finite element approach has been verified with experimental programme conducted by the researchers and validated by their variables. A very good correlation has been observed between the model and experimental results including load capacity, failure mode, and lateral displacement. A parametric study is applied to investigate the effect of opening size, shape, position on different reinforced concrete wall thicknesses. The results may be useful for improving existing design models and to be applied in practice, as it satisfies both the architectural and the structural requirements.

Keywords: Ansys, concrete walls, openings, out of plane behavior, seismic, shear wall

Procedia PDF Downloads 135
41 Biological Control of Karnal Bunt by Pseudomonas fluorescens

Authors: Geetika Vajpayee, Sugandha Asthana, Pratibha Kumari, Shanthy Sundaram

Abstract:

Pseudomonas species possess a variety of promising properties of antifungal and growth promoting activities in the wheat plant. In the present study, Pseudomonas fluorescens MTCC-9768 is tested against plant pathogenic fungus Tilletia indica, causing Karnal bunt, a quarantine disease of wheat (Triticum aestivum) affecting kernels of wheat. It is one of the 1/A1 harmful diseases of wheat worldwide under EU legislation. This disease develops in the growth phase by the spreading of microscopically small spores of the fungus (teliospores) being dispersed by the wind. The present chemical fungicidal treatments were reported to reduce teliospores germination, but its effect is questionable since T. indica can survive up to four years in the soil. The fungal growth inhibition tests were performed using Dual Culture Technique, and the results showed inhibition by 82.5%. The interaction of antagonist bacteria-fungus causes changes in the morphology of hyphae, which was observed using Lactophenol cotton blue staining and Scanning Electron Microscopy (SEM). The rounded and swollen ends, called ‘theca’ were observed in interacted fungus as compared to control fungus (without bacterial interaction). This bacterium was tested for its antagonistic activity like protease, cellulose, HCN production, Chitinase, etc. The growth promoting activities showed increase production of IAA in bacteria. The bacterial secondary metabolites were extracted in different solvents for testing its growth inhibiting properties. The characterization and purification of the antifungal compound were done by Thin Layer Chromatography, and Rf value was calculated (Rf value = 0.54) and compared to the standard antifungal compound, 2, 4 DAPG (Rf value = 0.54). Further, the in vivo experiments showed a significant decrease in the severity of disease in the wheat plant due to direct injection method and seed treatment. Our results indicate that the extracted and purified compound from the antagonist bacteria, P. fluorescens MTCC-9768 may be used as a potential biocontrol agent against T. indica. This also concludes that the PGPR properties of the bacteria may be utilized by incorporating it into bio-fertilizers.

Keywords: antagonism, Karnal bunt, PGPR, Pseudomonas fluorescens

Procedia PDF Downloads 369
40 Determination of the Structural Parameters of Calcium Phosphate for Biomedical Use

Authors: María Magdalena Méndez-González, Miguel García Rocha, Carlos Manuel Yermo De la Cruz

Abstract:

Calcium phosphate (Ca5(PO4)3(X)) is widely used in orthopedic applications and is widely used as powder and granules. However, their presence in bone is in the form of nanometric needles 60 nm in length with a non-stoichiometric phase of apatite contains CO3-2, Na+, OH-, F-, and other ions in a matrix of collagen fibers. The crystal size, morphology control and interaction with cells are essential for the development of nanotechnology. The structural results of calcium phosphate, synthesized by chemical precipitation with crystal size of 22.85 nm are presented in this paper. The calcium phosphate powders were analyzed by X-ray diffraction, energy dispersive spectroscopy (EDS), infrared spectroscopy and FT-IR transmission electron microscopy. Network parameters, atomic positions, the indexing of the planes and the calculation of FWHM (full width at half maximum) were obtained. The crystal size was also calculated using the Scherer equation d (hkl) = cλ/βcosѲ. Where c is a constant related to the shape of the crystal, the wavelength of the radiation used for a copper anode is 1.54060Å, Ѳ is the Bragg diffraction angle, and β is the width average peak height of greater intensity. Diffraction pattern corresponding to the calcium phosphate called hydroxyapatite phase of a hexagonal crystal system was obtained. It belongs to the space group P63m with lattice parameters a = 9.4394 Å and c = 6.8861 Å. The most intense peak is obtained 2Ѳ = 31.55 (FWHM = 0.4798), with a preferred orientation in 121. The intensity difference between the experimental data and the calculated values is attributable to the temperature at which the sintering was performed. The intensity of the highest peak is at angle 2Ѳ = 32.11. The structure of calcium phosphate obtained was a hexagonal configuration. The intensity changes in the peaks of the diffraction pattern, in the lattice parameters at the corners, indicating the possible presence of a dopant. That each calcium atom is surrounded by a tetrahedron of oxygen and hydrogen was observed by infrared spectra. The unit cell pattern corresponds to hydroxyapatite and transmission electron microscopic crystal morphology corresponding to the hexagonal phase with a preferential growth along the c-plane was obtained.

Keywords: structure, nanoparticles, calcium phosphate, metallurgical and materials engineering

Procedia PDF Downloads 476
39 Impact of Climate Variability on Household's Crop Income in Central Highlands and Arssi Grain Plough Areas of Ethiopia

Authors: Arega Shumetie Ademe, Belay Kassa, Degye Goshu, Majaliwa Mwanjalolo

Abstract:

Currently the world economy is suffering from one critical problem, climate change. Some studies done before identified that impact of the problem is region specific means in some part of the world (temperate zone) there is improvement in agricultural performance but in some others like in the tropics there is drastic reduction in crop production and crop income. Climate variability is becoming dominant cause of short-term fluctuation in rain-fed agricultural production and income of developing countries. The purely rain-fed Ethiopian agriculture is the most vulnerable sector to the risks and impacts of climate variability. Thus, this study tried to identify impact of climate variability on crop income of smallholders in Ethiopia. The research used eight rounded unbalanced panel data from 1994- 2014 collected from six villages in the study area. After having all diagnostic tests the research used fixed effect method of regression. Based on the regression result rainfall and temperature deviation from their respective long term averages have negative and significant effect on crop income. Other extreme devastating shocks like flood, storm and frost, which are sourced from climate variability, have significant and negative effect on crop income of households’. Parameters that notify rainfall inconsistency like late start, variation in availability at growing season, and early cessation are critical problems for crop income of smallholder households as to the model result. Given this, impact of climate variability is not consistent in different agro-ecologies of the country. Rainfall variability has similar impact on crop income in different agro-ecology, but variation in temperature affects cold agro-ecology villages negatively and significantly, while it has positive effect in warm villages. Parameters that represent rainfall inconsistency have similar impact in both agro-ecologies and the aggregate model regression. This implies climate variability sourced from rainfall inconsistency is the main problem of Ethiopian agriculture especially the crop production sub-sector of smallholder households.

Keywords: climate variability, crop income, household, rainfall, temperature

Procedia PDF Downloads 337
38 A Study of Smartphone Engagement Patterns of Millennial in India

Authors: Divyani Redhu, Manisha Rathaur

Abstract:

India has emerged as a very lucrative market for the smartphones in a very short span of time. The number of smartphone users here is growing massively with each passing day. Also, the expansion of internet services to far corners of the nation has also given a push to the smartphone revolution in India. Millennial, also known as Generation Y or the Net Generation is the generation born between the early 1980s and mid-1990s (some definitions extending further to early 2000s). Spanning roughly over 15 years, different social classes, cultures, and continents; it is irrational to imagine that millennial have a unified identity. But still, it cannot be denied that the growing millennial population is not only young but is highly tech-savvy too. It is not just the appearance of the device that today; we call it ‘smart’. Rather, it is the numerous tasks and functions that it can perform which has led its name to evolve as that of a ‘smartphone’. From usual tasks that were earlier performed by a simple mobile phone like making calls, sending messages, clicking photographs, recording videos etc.; today, the time has come where most of our day – to – day tasks are being taken care of by our all-time companion, i.e. smartphones. From being our alarm clock to being our note-maker, from our watch to our radio, our book-reader to our reminder, smartphones are present everywhere. Smartphone has now become an essential device for particularly the millennial to communicate not only with their friends but also with their family, colleagues, and teachers. The study by the researchers would be quantitative in nature. For the same, a survey would be conducted in particularly the capital of India, i.e. Delhi and the National Capital Region (NCR), which is the metropolitan area covering the entire National Capital Territory of Delhi and urban areas covering states of Haryana, Uttarakhand, Uttar Pradesh and Rajasthan. The tool of the survey would be a questionnaire and the number of respondents would be 200. The results derived from the study would primarily focus on the increasing reach of smartphones in India, smartphones as technological innovation and convergent tools, smartphone usage pattern of millennial in India, most used applications by the millennial, the average time spent by them, the impact of smartphones on the personal interactions of millennial etc. Thus, talking about the smartphone technology and the millennial in India, it would not be wrong to say that the growth, as well as the potential of the smartphones in India, is still immense. Also, very few technologies have made it possible to give a global exposure to the users and smartphone, if not the only one is certainly an immensely effective one that comes to the mind in this case.

Keywords: Delhi – NCR, India, millennial, smartphone

Procedia PDF Downloads 117
37 Optical Characterization of Transition Metal Ion Doped ZnO Microspheres Synthesized via Laser Ablation in Air

Authors: Parvathy Anitha, Nilesh J. Vasa, M. S. Ramachandra Rao

Abstract:

ZnO is a semiconducting material with a direct wide band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. Microspheres with high sphericity and symmetry exhibit unique functionalities which makes them excellent omnidirectional optical resonators. Hence there is an advent interest in fabrication of single crystalline semiconductor microspheres especially magnetic ZnO microspheres, as ZnO is a promising material for semiconductor device applications. Also, ZnO is non-toxic and biocompatible, implying it is a potential material for biomedical applications. Room temperature Photoluminescence (PL) spectra of the fabricated ZnO microspheres were measured, at an excitation wavelength of 325 nm. The ultraviolet (UV) luminescence observed is attributed to the room-temperature free exciton related near-band-edge (NBE) emission in ZnO. Besides the NBE luminescence, weak and broad visible luminescence (~560nm) was also observed. This broad emission band in the visible range is associated with oxygen vacancies related to structural defects. In transition metal (TM) ion-doped ZnO, 3d levels emissions of TM ions will modify the inherent characteristic emissions of ZnO. A micron-sized ZnO crystal has generally a wurtzite structure with a natural hexagonal cross section, which will serve as a WGM (whispering gallery mode) lasing micro cavity due to its high refractive index (~2.2). But hexagonal cavities suffers more optical loss at their corners in comparison to spherical structures; hence spheres may be a better candidate to achieve effective light confinement. In our study, highly smooth spherical shaped micro particles with different diameters ranging from ~4 to 6 μm were grown on different substrates. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) images show the presence of uniform smooth surfaced spheres. Raman scattering measurements from the fabricated samples at 488 nm light excitation provide convincing supports for the wurtzite structure of the prepared ZnO microspheres. WGM lasing studies from TM-doped ZnO microparticles are in progress.

Keywords: laser ablation, microcavity, photoluminescence, ZnO microsphere

Procedia PDF Downloads 191