Search results for: river management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9959

Search results for: river management

9839 Investigation of the Heavy Metal Pollution of the River Ecosystems in the Lake Sevan Basin, Armenia

Authors: G. Gevorgyan, S. Khudaverdyan, A. Vaseashta

Abstract:

The Lake Sevan basin is situated in the eastern part of the Republic of Armenia (Gegharquniq marz/district). The heavy metal pollution of the some tributaries of Lake Sevan was investigated. Water sampling was performed in August and December, 2014 from the 4 observation sites: 1) Sotq river upstream (about 600 meters upstream from the Sotq gold mine); 2) Sotq river mouth; 3) Masrik river mouth; 4) Dzknaget river mouth. Heavy metal (V, Fe, Ni, Cu, As, Mo, Pb) concentrations in the water samples were determined by the standard methods using an atomic absorption spectrophotometer. The results of the study showed that heavy metal content mainly increased from the upstream of the Sotq river to the mouth of the Masrik river which may have been conditioned by the influence of gold mining activity as the Masrik and its tributary-Sotq rivers passing through the gold mining area were exposed to heavy metal pollution. The observation sites can be ranked by pollution degree as follows: №3> №2> №1> №4. The highest heavy metal pollution degree was observed in the Masrik river mouth which may have been conditioned by the direct impact of gold mining activity and the pressure of its tributary–the Sotq river which flows through the gold mining area. The lowest heavy metal pollution degree was registered in the Dzknaget river mouth which flowing through rural areas wasn’t subject to significant heavy metal pollution. According to the observation sites of the Sotq and Masrik rivers, high positive correlation was mainly observed between the concentrations of the investigated heavy metals (except nickel) which indicated that all the heavy metals except the nickel had the same anthropogenic pollution source which was the activity of the Sotq gold mine. In general, it is possible to state that the activity of the Sotq gold mine in the Lake Sevan basin caused the heavy metal pollution of the Sotq and Masrik rivers which may have posed environmental hazards. Heavy metals are nondegradable substances, and heavy metal pollution of freshwater systems may pose risks to the environment and human health through accumulation in the tissues of aquatic organisms, water-food chain as well as oral ingestion and dermal contact.

Keywords: Armenia, Lake Sevan basin, gold mining activity, river ecosystems, heavy metal pollution

Procedia PDF Downloads 562
9838 Erosion Susceptibility Zoning and Prioritization of Micro-Watersheds: A Remote Sensing-Gis Based Study of Asan River Basin, Western Doon Valley, India

Authors: Pijush Roy, Vinay Kumar Rai

Abstract:

The present study highlights the estimation of soil loss and identification of critical area for implementation of best management practice is central to the success of soil conservation programme. The quantification of morphometric and Universal Soil Loss Equation (USLE) factors using remote sensing and GIS for prioritization of micro-watersheds in Asan River catchment, western Doon valley at foothills of Siwalik ranges in the Dehradun districts of Uttarakhand, India. The watershed has classified as a dendritic pattern with sixth order stream. The area is classified into very high, high, moderately high, medium and low susceptibility zones. High to very high erosion zone exists in the urban area and agricultural land. Average annual soil loss of 64 tons/ha/year has been estimated for the watershed. The optimum management practices proposed for micro-watersheds of Asan River basin are; afforestation, contour bunding suitable sites for water harvesting structure as check dam and soil conservation, agronomical measure and bench terrace.

Keywords: erosion susceptibility zones, morphometric characteristics, prioritization, remote sensing and GIS, universal soil loss equation

Procedia PDF Downloads 274
9837 Cloud Resources Utilization and Science Teacher’s Effectiveness in Secondary Schools in Cross River State, Nigeria

Authors: Michael Udey Udam

Abstract:

Background: This study investigated the impact of cloud resources, a component of cloud computing, on science teachers’ effectiveness in secondary schools in Cross River State. Three (3) research questions and three (3) alternative hypotheses guided the study. Method: The descriptive survey design was adopted for the study. The population of the study comprised 1209 science teachers in public secondary schools of Cross River state. Sample: A sample of 487 teachers was drawn from the population using a stratified random sampling technique. The researcher-made structured questionnaire with 18 was used for data collection for the study. Research question one was answered using the Pearson Product Moment Correlation, while research question two and the hypotheses were answered using the Analysis of Variance (ANOVA) statistics in the Statistical Package for Social Sciences (SPSS) at a 0.05 level of significance. Results: The results of the study revealed that there is a positive correlation between the utilization of cloud resources in teaching and teaching effectiveness among science teachers in secondary schools in Cross River state; there is a negative correlation between gender and utilization of cloud resources among science teachers in secondary schools in Cross River state; and that there is a significant correlation between teaching experience and the utilization of cloud resources among science teachers in secondary schools in Cross River state. Conclusion: The study justifies the effectiveness of the Cross River state government policy of introducing cloud computing into the education sector. The study recommends that the policy should be sustained.

Keywords: cloud resources, science teachers, effectiveness, secondary school

Procedia PDF Downloads 40
9836 Flood Hazard and Risk Mapping to Assess Ice-Jam Flood Mitigation Measures

Authors: Karl-Erich Lindenschmidt, Apurba Das, Joel Trudell, Keanne Russell

Abstract:

In this presentation, we explore options for mitigating ice-jam flooding along the Athabasca River in western Canada. Not only flood hazard, expressed in this case as the probability of flood depths and extents being exceeded, but also flood risk, in which annual expected damages are calculated. Flood risk is calculated, which allows a cost-benefit analysis to be made so that decisions on the best mitigation options are not based solely on flood hazard but also on the costs related to flood damages and the benefits of mitigation. The river ice model is used to simulate extreme ice-jam flood events with which scenarios are run to determine flood exposure and damages in flood-prone areas along the river. We will concentrate on three mitigation options – the placement of a dike, artificial breakage of the ice cover along the river, the installation of an ice-control structure, and the construction of a reservoir. However, any mitigation option is not totally failsafe. For example, dikes can still be overtopped and breached, and ice jams may still occur in areas of the river where ice covers have been artificially broken up. Hence, for all options, it is recommended that zoning of building developments away from greater flood hazard areas be upheld. Flood mitigation can have a negative effect of giving inhabitants a false sense of security that flooding may not happen again, leading to zoning policies being relaxed. (Text adapted from Lindenschmidt [2022] "Ice Destabilization Study - Phase 2", submitted to the Regional Municipality of Wood Buffalo, Alberta, Canada)

Keywords: ice jam, flood hazard, flood risk river ice modelling, flood risk

Procedia PDF Downloads 144
9835 Potential Impacts of Warming Climate on Contributions of Runoff Components from Two Catchments of Upper Indus Basin, Karakoram, Pakistan

Authors: Syed Hammad Ali, Rijan Bhakta Kayastha, Ahuti Shrestha, Iram Bano

Abstract:

The hydrology of Upper Indus basin is not recognized well due to the intricacies in the climate and geography, and the scarcity of data above 5000 meters above sea level where most of the precipitation falls in the form of snow. The main objective of this study is to measure the contributions of different components of runoff in Upper Indus basin. To achieve this goal, the Modified positive degree-day model (MPDDM) was used to simulate the runoff and investigate its components in two catchments of Upper Indus basin, Hunza and Gilgit River basins. These two catchments were selected because of their different glacier coverage, contrasting area distribution at high altitudes and significant impact on the Upper Indus River flow. The components of runoff like snow-ice melt and rainfall-base flow were identified by the model. The simulation results show that the MPDDM shows a good agreement between observed and modeled runoff of these two catchments and the effects of snow-ice are mainly reliant on the catchment characteristics and the glaciated area. For Gilgit River basin, the largest contributor to runoff is rain-base flow, whereas large contribution of snow-ice melt observed in Hunza River basin due to its large fraction of glaciated area. This research will not only contribute to the better understanding of the impacts of climate change on the hydrological response in the Upper Indus, but will also provide guidance for the development of hydropower potential, water resources management and offer a possible evaluation of future water quantity and availability in these catchments.

Keywords: future discharge projection, positive degree day, regional climate model, water resource management

Procedia PDF Downloads 329
9834 Bathymetric Change of Brahmaputra River and Its Influence on Flooding Scenario

Authors: Arup Kumar Sarma, Rohan Kar

Abstract:

The development of physical model of River like Brahmaputra, which finds its origin in the Chema Yundung glacier of Tibet and flows through India and Bangladesh, is always expensive and very much time consuming. With the advancement of computational technique, mathematical modeling has found wide application. MIKE 21C is one such commercial software, developed by Danish Hydraulic Institute (DHI), with the depth-averaged approach and a two-dimensional curvilinear finite-difference model, which is capable of modeling hydrodynamic and morphological processes with some limitations. The main purpose of this study are to generate bathymetry of the River Brahmaputra starting from “Sadia” at upstream to “Dhubri,” at downstream stretching a distance of approximately 695 km, for four different years: 1957, 1971, 1977, and 1981 over the grid generated in the MIKE 21C and to carry out the hydrodynamic simulation for these years to analyze the effect of bathymetry change on the surface water elevation. The study has established that bathymetric change can influence the flood level significantly in some of the river reaches and therefore the modification or updating of regular bathymetry is very much essential for the reliable flood routing in alluvial rivers.

Keywords: bathymetry, brahmaputra river, hydrodynamic model, surface water elevation

Procedia PDF Downloads 424
9833 Assessment of Water Quality Network in Karoon River by Dynamic Programming Approach (DPA)

Authors: M. Nasri Nasrabadi, A. A. Hassani

Abstract:

Karoon is one of the greatest and longest rivers of Iran, which because of the existence of numerous industrial, agricultural centers and drinking usage, has a strategic situation in the west and southwest parts of Iran, and the optimal monitoring of its water quality is an essential and indispensable national issue. Due to financial constraints, water quality monitoring network design is an efficient way to manage water quality. The most crucial part is to find appropriate locations for monitoring stations. Considering the objectives of water usage, we evaluate existing water quality sampling stations of this river. There are several methods for assessment of existing monitoring stations such as Sanders method, multiple criteria decision making and dynamic programming approach (DPA) which DPA opted in this study. The results showed that due to the drinking water quality index out of 20 existing monitoring stations, nine stations should be retained on the river, that include of Gorgor-Band-Ghir of A zone, Dez-Band-Ghir of B zone, Teir, Pole Panjom and Zargan of C zone, Darkhoein, Hafar, Chobade, and Sabonsazi of D zone. In additional, stations of Dez river have the best conditions.

Keywords: DPA, karoon river, network monitoring, water quality, sampling site

Procedia PDF Downloads 344
9832 Outcome-Based Water Resources Management in the Gash River Basin, Eastern Sudan

Authors: Muna Mohamed Omer Mirghani

Abstract:

This paper responds to one of the key national development strategies and a typical challenge in the Gash Basin as well as in different parts of Sudan, namely managing water scarcity in view of climate change impacts in minor water systems sustaining over 50% of the Sudan population. While now focusing on the Gash river basin, the ultimate aim is to replicate the same approach in similar water systems in central and west Sudan. The key objective of the paper is the identification of outcome-based water governance interventions in Gash Basin, guided by the global Sustainable Development Goal six (SDG 6 on water and sanitation) and the Sudan water resource policy framework. The paper concluded that improved water resources management of the Gash Basin is a prerequisite for ensuring desired policy outcomes of groundwater use and flood risk management purposes. Analysis of various water governance dimensions in the Gash indicated that the operationalization of a Basin-level institutional reform is critically focused on informed actors and adapted practices through knowledge and technologies along with the technical data and capacity needed to make that. Adapting the devolved Institutional structure at state level is recommended to strengthen the Gash basin regulatory function and improve compliance of groundwater users.

Keywords: water governance, Gash Basin, integrated groundwater management, Sudan

Procedia PDF Downloads 149
9831 Quantitative Analysis of Nutrient Inflow from River and Groundwater to Imazu Bay in Fukuoka, Japan

Authors: Keisuke Konishi, Yoshinari Hiroshiro, Kento Terashima, Atsushi Tsutsumi

Abstract:

Imazu Bay plays an important role for endangered species such as horseshoe crabs and black-faced spoonbills that stay in the bay for spawning or the passing of winter. However, this bay is semi-enclosed with slow water exchange, which could lead to eutrophication under the condition of excess nutrient inflow to the bay. Therefore, quantification of nutrient inflow is of great importance. Generally, analysis of nutrient inflow to the bays takes into consideration nutrient inflow from only the river, but that from groundwater should not be ignored for more accurate results. The main objective of this study is to estimate the amounts of nutrient inflow from river and groundwater to Imazu Bay by analyzing water budget in Zuibaiji River Basin and loads of T-N, T-P, NO3-N and NH4-N. The water budget computation in the basin is performed using groundwater recharge model and quasi three-dimensional two-phase groundwater flow model, and the multiplication of the measured amount of nutrient inflow with the computed discharge gives the total amount of nutrient inflow to the bay. In addition, in order to evaluate nutrient inflow to the bay, the result is compared with nutrient inflow from geologically similar river basins. The result shows that the discharge is 3.50×107 m3/year from the river and 1.04×107 m3/year from groundwater. The submarine groundwater discharge accounts for approximately 23 % of the total discharge, which is large compared to the other river basins. It is also revealed that the total nutrient inflow is not particularly large. The sum of NO3-N and NH4-N loadings from groundwater is less than 10 % of that from the river because of denitrification in groundwater. The Shin Seibu Sewage Treatment Plant located below the observation points discharges treated water of 15,400 m3/day and plans to increase it. However, the loads of T-N and T-P from the treatment plant are 3.9 mg/L and 0.19 mg/L, so that it does not contribute a lot to eutrophication.

Keywords: Eutrophication, groundwater recharge model, nutrient inflow, quasi three-dimensional two-phase groundwater flow model, submarine groundwater discharge

Procedia PDF Downloads 431
9830 Hydrographic Mapping Based on the Concept of Fluvial-Geomorphological Auto-Classification

Authors: Jesús Horacio, Alfredo Ollero, Víctor Bouzas-Blanco, Augusto Pérez-Alberti

Abstract:

Rivers have traditionally been classified, assessed and managed in terms of hydrological, chemical and / or biological criteria. Geomorphological classifications had in the past a secondary role, although proposals like River Styles Framework, Catchment Baseline Survey or Stroud Rural Sustainable Drainage Project did incorporate geomorphology for management decision-making. In recent years many studies have been attracted to the geomorphological component. The geomorphological processes and their associated forms determine the structure of a river system. Understanding these processes and forms is a critical component of the sustainable rehabilitation of aquatic ecosystems. The fluvial auto-classification approach suggests that a river is a self-built natural system, with processes and forms designed to effectively preserve their ecological function (hydrologic, sedimentological and biological regime). Fluvial systems are formed by a wide range of elements with multiple non-linear interactions on different spatial and temporal scales. Besides, the fluvial auto-classification concept is built using data from the river itself, so that each classification developed is peculiar to the river studied. The variables used in the classification are specific stream power and mean grain size. A discriminant analysis showed that these variables are the best characterized processes and forms. The statistical technique applied allows to get an individual discriminant equation for each geomorphological type. The geomorphological classification was developed using sites with high naturalness. Each site is a control point of high ecological and geomorphological quality. The changes in the conditions of the control points will be quickly recognizable, and easy to apply a right management measures to recover the geomorphological type. The study focused on Galicia (NW Spain) and the mapping was made analyzing 122 control points (sites) distributed over eight river basins. In sum, this study provides a method for fluvial geomorphological classification that works as an open and flexible tool underlying the fluvial auto-classification concept. The hydrographic mapping is the visual expression of the results, such that each river has a particular map according to its geomorphological characteristics. Each geomorphological type is represented by a particular type of hydraulic geometry (channel width, width-depth ratio, hydraulic radius, etc.). An alteration of this geometry is indicative of a geomorphological disturbance (whether natural or anthropogenic). Hydrographic mapping is also dynamic because its meaning changes if there is a modification in the specific stream power and/or the mean grain size, that is, in the value of their equations. The researcher has to check annually some of the control points. This procedure allows to monitor the geomorphology quality of the rivers and to see if there are any alterations. The maps are useful to researchers and managers, especially for conservation work and river restoration.

Keywords: fluvial auto-classification concept, mapping, geomorphology, river

Procedia PDF Downloads 347
9829 The Basin Management Methodology for Integrated Water Resources Management and Development

Authors: Julio Jesus Salazar, Max Jesus De Lama

Abstract:

The challenges of water management are aggravated by global change, which implies high complexity and associated uncertainty; water management is difficult because water networks cross domains (natural, societal, and political), scales (space, time, jurisdictional, institutional, knowledge, etc.) and levels (area: patches to global; knowledge: a specific case to generalized principles). In this context, we need to apply natural and non-natural measures to manage water and soil. The Basin Management Methodology considers multifunctional measures of natural water retention and erosion control and soil formation to protect water resources and address the challenges related to the recovery or conservation of the ecosystem, as well as natural characteristics of water bodies, to improve the quantitative status of water bodies and reduce vulnerability to floods and droughts. This method of water management focuses on the positive impacts of the chemical and ecological status of water bodies, restoration of the functioning of the ecosystem and its natural services; thus, contributing to both adaptation and mitigation of climate change. This methodology was applied in 7 interventions in the sub-basin of the Shullcas River in Huancayo-Junín-Peru, obtaining great benefits in the framework of the participation of alliances of actors and integrated planning scenarios. To implement the methodology in the sub-basin of the Shullcas River, a process called Climate Smart Territories (CST) was used; with which the variables were characterized in a highly complex space. The diagnosis was then worked using risk management and adaptation to climate change. Finally, it was concluded with the selection of alternatives and projects of this type. Therefore, the CST approach and process face the challenges of climate change through integrated, systematic, interdisciplinary and collective responses at different scales that fit the needs of ecosystems and their services that are vital to human well-being. This methodology is now replicated at the level of the Mantaro river basin, improving with other initiatives that lead to the model of a resilient basin.

Keywords: climate-smart territories, climate change, ecosystem services, natural measures, Climate Smart Territories (CST) approach

Procedia PDF Downloads 117
9828 Assessment of the Water Quality of the Nhue River in Vietnam and its Suitability for Irrigation Water

Authors: Thi Lan Huong Nguyen, Motohei Kanayama, Takahiro Higashi, Van Chinh Le, Thu Ha Doan, Anh Dao Chu

Abstract:

The Nhue River in Vietnam is the main source of irrigation water for suburban agricultural land and fish farm. Wastewater from the industrial plants located along these rivers has been discharged, which has degraded the water quality of the rivers. The present paper describes the chemical properties of water from the river focusing on heavy metal pollution and the suitability of water quality for irrigation. Water from the river was heavily polluted with heavy metals such as Pb, Cu, Zn, Cr, Cd, and Ni. Dissolved oxygen, COD, and total suspended solids, and the concentrations of all heavy metals exceeded the Vietnamese standard for surface water quality in all investigated sites. The concentrations of some heavy metals such as Cu, Cd, Cr and Ni were over the internationally recommended WHO maximum limits for irrigation water. A wide variation in heavy metal concentration of water due to metal types is the result of wastewater discharged from different industrial sources.

Keywords: heavy metals, stream water, irrigation, industry

Procedia PDF Downloads 375
9827 Research on Design Methods for Riverside Spaces of Deep-cut Rivers in Mountainous Cities: A Case Study of Qingshuixi River in Chongqing City

Authors: Luojie Tang

Abstract:

Riverside space is an important public space and ecological corridor in urban areas, but mountainous urban rivers are often overlooked due to their deep valleys and poor accessibility. This article takes the Qing Shui Xi River in Chongqing as an example, and through long-term field inspections, measurements, interviews, and online surveys, summarizes the problems of poor accessibility, limited space for renovation, lack of waterfront facilities, excessive artificial intervention, low average runoff, severe river water pollution, and difficulty in integrated watershed management in riverside space. Based on the current situation and drawing on relevant experiences, this article summarizes the design methods for riverside space in deep valley rivers in mountainous urban areas. Regarding spatial design techniques, the article emphasizes the importance of integrating waterfront spaces into the urban public space system and vertical linkages. Furthermore, the article suggests different design methods and improvement strategies for the already developed areas and new development areas. Specifically, the article proposes a planning and design strategy of "protection" and "empowerment" for new development areas and an updating and transformation strategy of "improvement" and "revitalization" for already developed areas. In terms of ecological restoration methods, the article suggests three focus points: increasing the runoff of urban rivers, raising the landscape water level during dry seasons, and restoring vegetation and wetlands in the riverbank buffer zone while protecting the overall pattern of the watershed. Additionally, the article presents specific design details of the Qingshuixi River to illustrate the proposed design and restoration techniques.

Keywords: deep-cut river, design method, mountainous city, Qingshuixi river in Chongqing, waterfront space design

Procedia PDF Downloads 63
9826 Geomorphological Features and their Significance Along Dhauli Ganga River Valley in North-Eastern Kumaun Himalaya in Pithauragah District, Uttarakhand, India

Authors: Puran Chandra Joshi

Abstract:

The Himalaya is the newest mountain system on this earth. This highest as well as fragile mountain system is still rising up. The tectonic activities have been experienced by this entire area, so the geomorphology of the region is affected by it. As we know, geomorphology is the study of landforms and their processes on the earth surface. These landforms are very important for human beings and other creatures on this planet. Present paper traces out the geomorphological features and their significance along Dhauli Ganga river valley in the Himalaya. Study area falls in higher Himalaya, which has experienced glacial and fluvial processes. Dhauli Ganga river is a considerable tributary of river kali, which is the part of huge Gangetic system. Dhauli originates in the form of two tributaries from valley glaciers of the southern slopes of Kumaun-Tibbet water divide. The upper catchment of this river has been carved by the glacial activity. The area of investigation is a remote regionin, Kumaun Himalaya. The native people do seasonal migration due to harsh winters. In summers, they return back with their cattle. In this season, they also grow potatoes and pulses, especiallybeanson river terraces. This study is important for making policies in the entire area. Area has witnessed big landslide in the recent past. So, the present study becomes more important.

Keywords: himalaya, geomorphology, glacial, tectonics

Procedia PDF Downloads 89
9825 Growth Rates of Planktonic Organisms in “Yerevanyan Lich” Reservoir and the Hrazdan River in Yerevan City, Armenia

Authors: G. A. Gevorgyan, A. S. Mamyan, L. G. Stepanyan, L. R. Hambaryan

Abstract:

Bacterio- and phytoplankton growth rates in 'Yerevanyan lich' reservoir and the Hrazdan river in Yerevan city, Armenia were investigated in April and June-August, 2015. Phytoplankton sampling and analysis were performed by the standard methods accepted in hydrobiological studies. The quantitative analysis of aerobic, coliform and E. coli bacteria is done by the 'RIDA COUNT' medium sheets (coated with ready-to-use culture medium). The investigations showed that the insufficient management of household discharges in Yerevan city caused the organic and fecal pollution of the Hrazdan river in this area which in turn resulted in an increase in bacterial count and increased sanitary and pathogenic risks to the environment and human health. During the investigation in April, the representatives of diatom algae prevailed quantitatively in the coastal area of 'Yerevanyan lich' reservoir, nevertheless, a significant change in the phytoplankton community in June occurred: due to green algae bloom in the reservoir, the quantitative parameters of phytoplankton increased significantly. This was probably conditioned by a seasonal increase in the water temperature in the conditions of the sufficient concentration of nutrients. However, a succession in phytoplankton groups during July-August occurred, and a dominant group (according to quantitative parameters) in the phytoplankton community was changed as follows: green algae-diatom algae-blue-green algae. Rapid increase in the quantitative parameters of diatom and blue-green algae in the reservoir may have been conditioned by increased organic matter level resulted from green algae bloom. Algal bloom in 'Yerevanyan lich' reservoir caused changes in phytoplankton community and an increase in bacterioplankton count not only in the reservoir but also in the Hrazdan river sites located in the downstream from the reservoir. Thus, the insufficient management of urban discharges and aquatic ecosystems in Yerevan city led to unfavorable changes in water quality and microbial and phytoplankton communities in “Yerevanyan lich” reservoir and the Hrazdan river which in turn caused increased sanitary and pathogenic risks to the environment and human health.

Keywords: algal bloom, bacterioplankton, phytoplankton, Hrazdan river, Yerevanyan lich reservoir

Procedia PDF Downloads 245
9824 Flood Vulnerability Zoning for Blue Nile Basin Using Geospatial Techniques

Authors: Melese Wondatir

Abstract:

Flooding ranks among the most destructive natural disasters, impacting millions of individuals globally and resulting in substantial economic, social, and environmental repercussions. This study's objective was to create a comprehensive model that assesses the Nile River basin's susceptibility to flood damage and improves existing flood risk management strategies. Authorities responsible for enacting policies and implementing measures may benefit from this research to acquire essential information about the flood, including its scope and susceptible areas. The identification of severe flood damage locations and efficient mitigation techniques were made possible by the use of geospatial data. Slope, elevation, distance from the river, drainage density, topographic witness index, rainfall intensity, distance from road, NDVI, soil type, and land use type were all used throughout the study to determine the vulnerability of flood damage. Ranking elements according to their significance in predicting flood damage risk was done using the Analytic Hierarchy Process (AHP) and geospatial approaches. The analysis finds that the most important parameters determining the region's vulnerability are distance from the river, topographic witness index, rainfall, and elevation, respectively. The consistency ratio (CR) value obtained in this case is 0.000866 (<0.1), which signifies the acceptance of the derived weights. Furthermore, 10.84m2, 83331.14m2, 476987.15m2, 24247.29m2, and 15.83m2 of the region show varying degrees of vulnerability to flooding—very low, low, medium, high, and very high, respectively. Due to their close proximity to the river, the northern-western regions of the Nile River basin—especially those that are close to Sudanese cities like Khartoum—are more vulnerable to flood damage, according to the research findings. Furthermore, the AUC ROC curve demonstrates that the categorized vulnerability map achieves an accuracy rate of 91.0% based on 117 sample points. By putting into practice strategies to address the topographic witness index, rainfall patterns, elevation fluctuations, and distance from the river, vulnerable settlements in the area can be protected, and the impact of future flood occurrences can be greatly reduced. Furthermore, the research findings highlight the urgent requirement for infrastructure development and effective flood management strategies in the northern and western regions of the Nile River basin, particularly in proximity to major towns such as Khartoum. Overall, the study recommends prioritizing high-risk locations and developing a complete flood risk management plan based on the vulnerability map.

Keywords: analytic hierarchy process, Blue Nile Basin, geospatial techniques, flood vulnerability, multi-criteria decision making

Procedia PDF Downloads 37
9823 Stream Channel Changes in Balingara River, Sulawesi Tengah

Authors: Muhardiyan Erawan, Zaenal Mutaqin

Abstract:

Balingara River is one of the rivers with the type Gravel-Bed in Indonesia. Gravel-Bed Rivers easily deformed in a relatively short time due to several variables, that are climate (rainfall), river discharge, topography, rock types, and land cover. To determine stream channel changes in Balingara River used Landsat 7 and 8 and analyzed planimetric or two dimensions. Parameters to determine changes in the stream channel are sinuosity ratio, Brice Index, the extent of erosion and deposition. Changes in stream channel associated with changes in land cover then analyze with a descriptive analysis of spatial and temporal. The location of a stream channel has a low gradient in the upstream, and middle watershed with the type of rock in the form of gravel is more easily changed than other locations. Changes in the area of erosion and deposition influence the land cover changes.

Keywords: Brice Index, erosion, deposition, gravel-bed, land cover change, sinuosity ratio, stream channel change

Procedia PDF Downloads 297
9822 Comparative Study on Daily Discharge Estimation of Soolegan River

Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu

Abstract:

Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.

Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming

Procedia PDF Downloads 533
9821 Contribution of Algerians Local Materials on the Compressive Strengths of Concrete: Experimental and Numerical Study

Authors: Mohamed Lyes Kamel Khouadjia, Bouzidi Mezghiche

Abstract:

The evolution in the civil engineering and carried out more consumption of aggregates and particularly the sand. Due to the depletion of natural reserves of sand, it is necessary to focus on the use of local materials such as crushed sand, river sand and dune sand, mineral additions. The aim of this work is to improve the state of knowledge on the compressive strengths of crushed sands with several mixtures (dune sand, river sand, pozzolan, and slag). The obtained results were compared with numerical results obtained with the software Béton Lab Pro 3.

Keywords: crushed sand, river sand, dune sand, pouzzolan, slag, compressive strengths, Béton Lab Pro 3

Procedia PDF Downloads 286
9820 The Risk Assessments of Water Quality in Selected White Water River in Malaysia

Authors: Jaffry Zakaria, Nor Azlina Hasbullah

Abstract:

The research on water quality based on 'Water Quality Index' (WQI) has been on the run along Kampar River in Perak State of Malaysia. This study was conducted to achieve several key objective that determe the value of the parameters that were studied based on Water Quality Index (WQI). The parameters include Dissolved Oxygen (DO), pH, Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and Suspended Solids. In this study, three sampling stations were selected. Through observations from the researchers, several pollutions were found occurring along the research area such as the disposal of waste water directly without treatment from villagers, widespread dumping of solid waste and the development of the surrounding areas that contributed to the pollution of Sungai Kampar in Perak, Malaysia. Sungai Kampar is commonly used for water recreational activities as well as for bathing purposes. Results showed that Sungai Kampar is classified under category III. According to Interim National Water Quality Standard for Malaysia (INWQS), rivers in the third grade are clean but not suitable for river recreational activities. Therefore, there is a requirement to investigate and analysis the water quality of all white water rivers in Malaysia focusing on the area of water activities. The combination of technology and risk management based on risk assessments can help the recreational industry to survive in future.

Keywords: risk assessments, White Water River, water quality index (WQI), Interim National Water Quality Standard for Malaysia (INWQS)

Procedia PDF Downloads 316
9819 Spatial Orientation of Land Use Activities along Buffalo River Estuary: A Study in Buffalo City Metropolitan Municipality, Eastern Cape South Africa

Authors: A. Ngunga, M. K. Soviti, S. Nakin

Abstract:

South Africa is one of the developing countries rich in estuary ecosystem. Previous studies have identified many impacts of land use activities on the pollution status of the estuaries. These land use activity and related practices are often blamed for the many pollution problems affecting the estuaries. For example, the estuarine ecosystems on a global scale are experiencing vast transformations from anthropogenic influences; Buffalo River Estuary is one of the influenced estuaries whereby the sources of pollution are unknown. These problems consequently lead to the degradation of the estuaries. The aim of the research was to establish the factors that have the potential to impact pollution status of Buffalo river estuary. Study focuses on Identifying and mapping land use activities along Buffalo River Estuary. Questionnaire survey, structured interviews, direct observation, GPS survey and ArcGIS mapping were the methods used for data collection in the area, and results were analyzed and presented by ANOVA and Microsoft Excel statistical methods. The results showed that harbour is the main source of pollution, in Buffalo River Estuary, through Ballast water discharge. Therefore that requires more concern for protecting and cleaning the estuary.

Keywords: estuary, land-use activities, pollution, mapping, water pollution

Procedia PDF Downloads 162
9818 Transboundary Pollution after Natural Disasters: Scenario Analyses for Uranium at Kyrgyzstan-Uzbekistan Border

Authors: Fengqing Li, Petra Schneider

Abstract:

Failure of tailings management facilities (TMF) of radioactive residues is an enormous challenge worldwide and can result in major catastrophes. Particularly in transboundary regions, such failure is most likely to lead to international conflict. This risk occurs in Kyrgyzstan and Uzbekistan, where the current major challenge is the quantification of impacts due to pollution from uranium legacy sites and especially the impact on river basins after natural hazards (i.e., landslides). By means of GoldSim, a probabilistic simulation model, the amount of tailing material that flows into the river networks of Mailuu Suu in Kyrgyzstan after pond failure was simulated for three scenarios, namely 10%, 20%, and 30% of material inputs. Based on Muskingum-Cunge flood routing procedure, the peak value of uranium flood wave along the river network was simulated. Among the 23 TMF, 19 ponds are close to the river networks. The spatiotemporal distributions of uranium along the river networks were then simulated for all the 19 ponds under three scenarios. Taking the TP7 which is 30 km far from the Kyrgyzstan-Uzbekistan border as one example, the uranium concentration decreased continuously along the longitudinal gradient of the river network, the concentration of uranium was observed at the border after 45 min of the pond failure and the highest value was detected after 69 min. The highest concentration of uranium at the border were 16.5, 33, and 47.5 mg/L under scenarios of 10%, 20%, and 30% of material inputs, respectively. In comparison to the guideline value of uranium in drinking water (i.e., 30 µg/L) provided by the World Health Organization, the observed concentrations of uranium at the border were 550‒1583 times higher. In order to mitigate the transboundary impact of a radioactive pollutant release, an integrated framework consisting of three major strategies were proposed. Among, the short-term strategy can be used in case of emergency event, the medium-term strategy allows both countries handling the TMF efficiently based on the benefit-sharing concept, and the long-term strategy intends to rehabilitate the site through the relocation of all TMF.

Keywords: Central Asia, contaminant transport modelling, radioactive residue, transboundary conflict

Procedia PDF Downloads 87
9817 Sedimentation and Morphology of the Kura River-Deltaic System in the Southern Caucasus under Anthropogenic and Sea-Level Controls

Authors: Elmira Aliyeva, Dadash Huseynov, Robert Hoogendoorn, Salomon Kroonenberg

Abstract:

The Kura River is the major water artery in the Southern Caucasus; it is a third river in the Caspian Sea basin in terms of length and size of the catchment area, the second in terms of the water budget, and the first in the volume of sediment load. Understanding of major controls on the Kura fluvial- deltaic system is valuable for efficient management of the highly populated river basin and coastal zone. We have studied grain size of sediments accumulated in the river channels and delta and dated by 210Pb method, astrophotographs, old topographic and geological maps, and archive data. At present time sediments are supplied by the Kura River to the Caspian Sea through three distributary channels oriented north-east, south-east, and south-west. The river is dominated by the suspended load - mud, silt, very fine sand. Coarse sediments are accumulated in the distributaries, levees, point bar, and delta front. The annual suspended sediment budget in the time period 1934-1952 before construction of the Mingechavir water reservoir in 1953 in the Kura River midstream area was 36 mln.t/yr. From 1953 to 1964, the suspended load has dropped to 12 mln.t/yr. After regulation of the Kura River discharge the volume of suspended load transported via north-eastern channel reduced from 35% of the total sediment amount to 4%, and through the main south-eastern channel increased from 65% to 96% with further fall to 56% due to creation of new south-western channel in 1964. Between 1967-1976 the annual sediment budget of the Kura River reached 22,5 mln. t/yr. From 1977 to 1986, the sediment load carried by the Kura River dropped to 17,6 mln.t/yr. The historical data show that between 1860 and 1907, during relatively stable Caspian Sea level two channels - N and SE, appear to have distributed an equal amount of sediments as seen from the bilateral geometry of the delta. In the time period 1907-1929, two new channels - E and NE, appeared. The growth of three delta lobes - N, NE, and SE, and rapid progradation of the delta has occurred on the background of the Caspian Sea level rise as a result of very high sediment supply. Since 1929 the Caspian Sea level decline was followed by the progradation of the delta occurring along the SE channel. The eastern and northern channels have been silted up. The slow rate of progradation at its initial stage was caused by the artificial reduction in the sediment budget. However, the continuous sea-level fall has brought to this river bed gradient increase, high erosional rate, increase in the sediment supply, and more rapid progradation. During the subsequent sea-level rise after 1977 accompanied by the decrease in the sediment budget, the southern part of the delta has turned into a complex of small, shallow channels oriented to the south. The data demonstrate that behaviour of the Kura fluvial – deltaic system and variations in the sediment budget besides anthropogenic regulation are strongly governed by the Caspian Sea level very rapid changes.

Keywords: anthropogenic control on sediment budget, Caspian sea-level variations, Kura river sediment load, morphology of the Kura river delta, sedimentation in the Kura river delta

Procedia PDF Downloads 126
9816 Seasonal Variation of the Impact of Mining Activities on Ga-Selati River in Limpopo Province, South Africa

Authors: Joshua N. Edokpayi, John O. Odiyo, Patience P. Shikwambana

Abstract:

Water is a very rare natural resource in South Africa. Ga-Selati River is used for both domestic and industrial purposes. This study was carried out in order to assess the quality of Ga-Selati River in a mining area of Limpopo Province-Phalaborwa. The pH, Electrical Conductivity (EC) and Total Dissolved Solids (TDS) were determined using a Crinson multimeter while turbidity was measured using a Labcon Turbidimeter. The concentrations of Al, Ca, Cd, Cr, Fe, K, Mg, Mn, Na and Pb were analysed in triplicate using a Varian 520 flame atomic absorption spectrometer (AAS) supplied by PerkinElmer, after acid digestion with nitric acid in a fume cupboard. The average pH of the river from eight different sampling sites was 8.00 and 9.38 in wet and dry season respectively. Higher EC values were determined in the dry season (138.7 mS/m) than in the wet season (96.93 mS/m). Similarly, TDS values were higher in dry (929.29 mg/L) than in the wet season (640.72 mg/L) season. These values exceeded the recommended guideline of South Africa Department of Water Affairs and Forestry (DWAF) for domestic water use (70 mS/m) and that of the World Health Organization (WHO) (600 mS/m), respectively. Turbidity varied between 1.78-5.20 and 0.95-2.37 NTU in both wet and dry seasons. Total hardness of 312.50 mg/L and 297.75 mg/L as the concentration of CaCO3 was computed for the river in both the wet and the dry seasons and the river water was categorised as very hard. Mean concentration of the metals studied in both the wet and the dry seasons are: Na (94.06 mg/L and 196.3 mg/L), K (11.79 mg/L and 13.62 mg/L), Ca (45.60 mg/L and 41.30 mg/L), Mg (48.41 mg/L and 44.71 mg/L), Al (0.31 mg/L and 0.38 mg/L), Cd (0.01 mg/L and 0.01 mg/L), Cr (0.02 mg/L and 0.09 mg/L), Pb (0.05 mg/L and 0.06 mg/L), Mn (0.31 mg/L and 0.11 mg/L) and Fe (0.76 mg/L and 0.69 mg/L). Results from this study reveal that most of the metals were present in concentrations higher than the recommended guidelines of DWAF and WHO for domestic use and the protection of aquatic life.

Keywords: contamination, mining activities, surface water, trace metals

Procedia PDF Downloads 294
9815 Application of ANN and Fuzzy Logic Algorithms for Runoff and Sediment Yield Modelling of Kal River, India

Authors: Mahesh Kothari, K. D. Gharde

Abstract:

The ANN and fuzzy logic (FL) models were developed to predict the runoff and sediment yield for catchment of Kal river, India using 21 years (1991 to 2011) rainfall and other hydrological data (evaporation, temperature and streamflow lag by one and two day) and 7 years data for sediment yield modelling. The ANN model performance improved with increasing the input vectors. The fuzzy logic model was performing with R value more than 0.95 during developmental stage and validation stage. The comparatively FL model found to be performing well to ANN in prediction of runoff and sediment yield for Kal river.

Keywords: transferred function, sigmoid, backpropagation, membership function, defuzzification

Procedia PDF Downloads 536
9814 Hydrodynamics of Shear Layers at River Confluences by Formation of Secondary Circulation

Authors: Ali Aghazadegan, Ali Shokri, Julia Mullarney

Abstract:

River confluences are areas where there is a lot of mixing, which is often caused by the formation of shear layers and helical motions. The hydrodynamics of secondary circulation at river confluences with low flow discharge ratios and a 90° junction angle are investigated in this study. The analysis is based on Delft 3D modelling, which includes a three-dimensional time-averaged velocity field, turbulence, and water surface levels that have been validated using laboratory data. Confluence structure was characterized by shear layer, secondary circulation, and mixing at the junction and post confluence channel. This study analysis formation of the shear layer by generation of secondary circulations in variation discharge ratios. The values of streamwise, cross-wise, and vertical components are used to estimate the secondary circulation observed within and downstream of the tributary mouth. These variables are estimated for three horizontal planes at Z = [0.14; 0.07; 0.02] and for eight cross-sections at X = [-0.1; 0.00; 0.10; 0.2; 0.30; 0.4; 0.5; 0.6] within a range of 0.05 Y 0.30.

Keywords: river confluence, shear layer, secondary circulation, hydrodynamics

Procedia PDF Downloads 68
9813 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality

Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn

Abstract:

This research was conducted in the Mae Sot Watershed whereas located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urbanized in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recently years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood event in 2013 as the worst studied case for those all communities in this municipality. Moreover, other problems are also faced in this watershed such shortage water supply for domestic consumption and agriculture utilizations including deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of appropriated application of some short period rainfall forecasting model as the aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in short period of 7 - 10 days in advance during rainy season instead of real time record. The IDV product can be present in advance period of rainfall with time step of 3 - 6 hours was introduced to the communities. The result can be used to input to either the hydrologic modeling system model (HEC-HMS) or the soil water assessment tool model (SWAT) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfied. The result of IDV’s rainfall forecast data was compared to observed data and found fair. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.

Keywords: global rainfall, flood forecast, hydrologic modeling system, river analysis system

Procedia PDF Downloads 320
9812 Feedback from Experiments on Managing Methods against Japanese Knotweed on a River Appendix of the RhôNe between 2015 and 2020

Authors: William Brasier, Nicolas Rabin, Celeste Joly

Abstract:

Japanese knotweed (Fallopia japonica) is very present on the banks of the Rhone, colonizing more and more areas along the river. The Compagnie Nationale du Rhone (C.N.R.), which manages the river, has experimented with several control techniques in recent years. Since 2015, 15 experimental plots have been monitored on the banks of a restored river appendix to measure the effect of three control methods: confinement by felt, repeated mowing and the planting of competing species and/or species with allelopathic power: Viburnum opulus, Rhamnus frangula, Sambucus ebulus and Juglans regia. Each year, the number of stems, the number of elderberry plants, the height of the plants and photographs were collected. After six years of monitoring, the results showed that the density of knotweed stems decreased by 50 to 90% on all plots. The control methods are sustainable and are gradually gaining in efficiency. The establishment of native plants coupled with regular manual maintenance can reduce the development of Japanese knotweed. Continued monitoring over the next few years will determine the kinetics of the total eradication (i.e. 0 stem/plot) of the Japanese knotweed by these methods.

Keywords: fallopia japonica, interspecific plant competition , Rhone river, riparian trees

Procedia PDF Downloads 103
9811 Suitability of Satellite-Based Data for Groundwater Modelling in Southwest Nigeria

Authors: O. O. Aiyelokun, O. A. Agbede

Abstract:

Numerical modelling of groundwater flow can be susceptible to calibration errors due to lack of adequate ground-based hydro-metrological stations in river basins. Groundwater resources management in Southwest Nigeria is currently challenged by overexploitation, lack of planning and monitoring, urbanization and climate change; hence to adopt models as decision support tools for sustainable management of groundwater; they must be adequately calibrated. Since river basins in Southwest Nigeria are characterized by missing data, and lack of adequate ground-based hydro-meteorological stations; the need for adopting satellite-based data for constructing distributed models is crucial. This study seeks to evaluate the suitability of satellite-based data as substitute for ground-based, for computing boundary conditions; by determining if ground and satellite based meteorological data fit well in Ogun and Oshun River basins. The Climate Forecast System Reanalysis (CFSR) global meteorological dataset was firstly obtained in daily form and converted to monthly form for the period of 432 months (January 1979 to June, 2014). Afterwards, ground-based meteorological data for Ikeja (1981-2010), Abeokuta (1983-2010), and Oshogbo (1981-2010) were compared with CFSR data using Goodness of Fit (GOF) statistics. The study revealed that based on mean absolute error (MEA), coefficient of correlation, (r) and coefficient of determination (R²); all meteorological variables except wind speed fit well. It was further revealed that maximum and minimum temperature, relative humidity and rainfall had high range of index of agreement (d) and ratio of standard deviation (rSD), implying that CFSR dataset could be used to compute boundary conditions such as groundwater recharge and potential evapotranspiration. The study concluded that satellite-based data such as the CFSR should be used as input when constructing groundwater flow models in river basins in Southwest Nigeria, where majority of the river basins are partially gaged and characterized with long missing hydro-metrological data.

Keywords: boundary condition, goodness of fit, groundwater, satellite-based data

Procedia PDF Downloads 95
9810 Impact of Environmental Pollution on Oxidative Stress Indices in African Cat Fish (Clarias gariepinus) from Araromi River in Ondo State, Nigeria

Authors: Arojojoye Oluwatosin Adetola, Nwaechefu Olajumoke Olufunlayo, Ademola Adetokunbo Oyagbemi, Jeremiah Moyinoluwalogo Afolabi, Asaolu Racheal Oluwabukola

Abstract:

The effects of man’s activities on the environment include depletion of natural resources alongside pollution of water bodies. Petroleum exploration in the Niger Delta region of Nigeria has compromised the aquatic environment with grave consequences on the entire ecosystem. In this study, we assessed the environmental safety of Araromi River, located in an oil-producing area in Ondo State, in the Niger Delta region of Nigeria by determining the levels of heavy metals (copper, cadmium, chromium, nickel, lead) and some biomarkers of oxidative stress (malondialdehyde, glutathione-S-transferase, glutathione peroxidase, catalase, superoxide dismutase, myeloperoxidase and reduced glutathione) in Clarias gariepinus (350-400g) from the river using standard methods. Clarias gariepinus from a clean fish farm in the same geographical location as the reference site (Ilesannmi fishery) was used as a control. Water samples from both sites were also analysed for some physicochemical parameters, heavy metals, and bacterial contamination. Our findings show a significant increase in malondialdehyde level (index of lipid peroxidation) as well as alterations in antioxidant status in the organs of Clarias gariepinus from Araromi River compared with control. A significant increase in bacterial contaminants, heavy metal pollutants, and particulate matter deposits were also observed in the water sample from Araromi River compared with control. In conclusion, high levels of indicators of environmental pollution observed in the water sample from Araromi River coupled with induction of oxidative stress in Clarias gariepinus from the river show that Araromi River is polluted; therefore, consumption of fishes and other aquatic organisms from the river may be unsafe for the people in that community.

Keywords: Araromi River, Clarias gariepinus, environmental pollution, heavy metals, oxidative stress

Procedia PDF Downloads 133