Search results for: railway load carrying
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3372

Search results for: railway load carrying

3312 Features of the Functional and Spatial Organization of Railway Hubs as a Part of the Urban Nodal Area

Authors: Khayrullina Yulia Sergeevna, Tokareva Goulsine Shavkatovna

Abstract:

The article analyzes the modern major railway hubs as a main part of the Urban Nodal Area (UNA). The term was introduced into the theory of urban planning at the end of the XX century. Tokareva G.S. jointly with Gutnov A.E. investigated the structure-forming elements of the city. UNA is the basic unit, the "cell" of the city structure. Specialization is depending on the position in the frame or the fabric of the city. This is related to feature of its organization. Spatial and functional features of UNA proposed to investigate in this paper. The base object for researching are railway hubs as connective nodes of inner and extern-city communications. Research used a stratified sampling type with the selection of typical objects. Research is being conducted on the 14 railway hubs of the native and foreign experience of the largest cities with a population over 1 million people located in one and close to the Russian climate zones. Features of the organization identified in the complex research of functional and spatial characteristics based on the hypothesis of the existence of dual characteristics of the organization of urban nodes. According to the analysis, there is using the approximation method that enable general conclusions of a representative selection of the entire population of railway hubs and it development’s area. Results of the research show specific ratio of functional and spatial organization of UNA based on railway hubs. Based on it there proposed typology of spaces and urban nodal areas. Identification of spatial diversity and functional organization’s features of the greatest railway hubs and it development’s area gives an indication of the different evolutionary stages of formation approaches. It help to identify new patterns for the complex and effective design as a prediction of the native hub’s development direction.

Keywords: urban nodal area, railway hubs, features of structural, functional organization

Procedia PDF Downloads 362
3311 Effect of Reinforcement Steel Ratio on the Behavior of R. C. Columns Exposed to Fire

Authors: Hatem Ghith

Abstract:

This research paper experimentally investigates the effect of burning by fire flame from one face on the behavior and load carrying capacity for reinforced columns. Residual ultimate load carrying capacity, axial deformation, crack pattern and maximum crack width for column specimens with and without burning were recorded and discussed. Tested six reinforced concrete columns were divided into control specimen and two groups. The first group was exposed to a fire with a different temperature (300, 500, 700 °C) for an hour with reinforcement ratio 0.89% and the second group was exposed to a fire with a temperature 500 °C for an hour with different reinforcement ratio (0.89%, 2.18%, and 3.57%), then all columns were tested under short-term axial loading. From the obtained results, it could be concluded that the fire parameters significantly influence the fire resistance of R.C columns. The fire parameters cause axial deformation and moment on the column due to the eccentricity that generated from the difference in temperature and consequently the compressive stresses of both faces of the columns but the increased reinforcement ratio enhanced the resistance of columns for axial deformation and moment on the column due to the eccentricity.

Keywords: columns, reinforcement ratio, strength, time exposure

Procedia PDF Downloads 215
3310 Effect of CSL Tube Type on the Drilled Shaft Axial Load Carrying Capacity

Authors: Ali Motevalli, Shahin Nayyeri Amiri

Abstract:

Cross-Hole Sonic Logging (CSL) is a common type of Non-Destructive Testing (NDT) method, which is currently used to check the integrity of placed drilled shafts. CSL evaluates the integrity of the concrete inside the cage and between the access tubes based on propagation of ultrasonic waves between two or more access tubes. A number of access tubes are installed inside the reinforcing cage prior to concrete placement as guides for sensors. The access tubes can be PVC or steel galvanized based on ASTM6760. The type of the CSL tubes can affect the axial strength of the drilled shaft. The objective of this study is to compare the amount of axial load capacity of drilled shafts due to using a different type of CSL tubes inside the caging. To achieve this, three (3) large-scale drilled shaft samples were built and tested using a hydraulic actuator at the Florida International University’s (FIU) Titan America Structures and Construction Testing (TASCT) laboratory. During the static load test, load-displacement curves were recorded by the data acquisition system (MegaDAC). Three drilled shaft samples were built to evaluate the effect of the type of the CSL tube on the axial load capacity in drilled shaft foundations.

Keywords: drilled shaft foundations, axial load capacity, cage, PVC, galvanized tube, CSL tube

Procedia PDF Downloads 378
3309 An Analysis of the Relations between Aggregates’ Shape and Mechanical Properties throughout the Railway Ballast Service Life

Authors: Daianne Fernandes Diogenes

Abstract:

Railway ballast aggregates’ shape properties and size distribution can be directly affected by several factors, such as traffic, fouling, and maintenance processes, which cause breakage and wearing, leading to the fine particles’ accumulation through the ballast layer. This research aims to analyze the influence of traffic, tamping process, and sleepers’ stiffness on aggregates' shape and mechanical properties, by using traditional and digital image processing (DIP) techniques and cyclic tests, like resilient modulus (RM) and permanent deformation (PD). Aggregates were collected in different phases of the railway service life: (i) right after the crushing process; (ii) after construction, for the aggregates positioned below the sleepers and (iii) after 5 years of operation. An increase in the percentage of cubic particles was observed for the materials (ii) and (iii), providing a better interlocking, increasing stiffness and reducing axial deformation after 5 years of service, when compared to the initial conditions.

Keywords: digital image processing, mechanical behavior, railway ballast, shape properties

Procedia PDF Downloads 95
3308 Optical Flow Direction Determination for Railway Crossing Occupancy Monitoring

Authors: Zdenek Silar, Martin Dobrovolny

Abstract:

This article deals with the obstacle detection on a railway crossing (clearance detection). Detection is based on the optical flow estimation and classification of the flow vectors by K-means clustering algorithm. For classification of passing vehicles is used optical flow direction determination. The optical flow estimation is based on a modified Lucas-Kanade method.

Keywords: background estimation, direction of optical flow, K-means clustering, objects detection, railway crossing monitoring, velocity vectors

Procedia PDF Downloads 485
3307 Effect of Fire Exposure on the Ultimate Strength of Loaded Columns

Authors: Hatem Hamdy Ghieth

Abstract:

In the recent time many fires happened in many skeleton buildings. The fire may be continues for a long time. This fire may cause a collapse of the building. This collapse may be happened due to the time of exposure to fire as well as the rate of the loading to the carrying elements. In this research a laboratory study for reinforced concrete columns under effect of fire with temperature reaches (650 ْ C) on the behavior of columns which loaded with axial load and with exposing to fire temperature only from all sides of columns. the main parameters of this study are level of load applying to the column, and the temperature applied to the fire, this temperatures was 500oC and 650oc. Nine concrete columns with dimensions 20x20x100 cms were casted one of these columns was tested to determine the ultimate load while the least were fired according to the experimental schedule.

Keywords: columns, fire duration, concrete strength, level of loading

Procedia PDF Downloads 407
3306 A Steady State Characteristics of Four-Lobe Journal Bearing Lubricated with a Couple Stress Fluids in Turbulent Flow Regime

Authors: Boualem Chetti, Samir Zahaf

Abstract:

This paper presents the steady-state performance analysis of a four-lobe journal bearing lubricated with a couple stress fluids operating in the turbulent regime, following Constantinescu’s turbulent lubrication theory. The modified Reynolds equation is solved numerically using the finite difference method taking into consideration the effects of the turbulence and the couple stress. In this analysis, the steady-state parameters in terms of the attitude angle, load carrying capacity, side leakage and friction coefficient are determined at various values of eccentricities ratio. The computed results show that the turbulence increases the load carrying capacity, the attitude angle and the friction coefficient for a journal bearing lubricated with a Newtonian or a couple stress fluids. It is found that the turbulence has strongly influence on the steady-state performances of the four-lobe journal bearing lubricated with Newtonian fluids or a couple stress fluids.

Keywords: Four-lobe journal bearings, static characteristics, couple-stress fluids, turbulent flow

Procedia PDF Downloads 156
3305 Railway Process Automation to Ensure Human Safety with the Aid of IoT and Image Processing

Authors: K. S. Vedasingha, K. K. M. T. Perera, K. I. Hathurusinghe, H. W. I. Akalanka, Nelum Chathuranga Amarasena, Nalaka R. Dissanayake

Abstract:

Railways provide the most convenient and economically beneficial mode of transportation, and it has been the most popular transportation method among all. According to the past analyzed data, it reveals a considerable number of accidents which occurred at railways and caused damages to not only precious lives but also to the economy of the countries. There are some major issues which need to be addressed in railways of South Asian countries since they fall under the developing category. The goal of this research is to minimize the influencing aspect of railway level crossing accidents by developing the “railway process automation system”, as there are high-risk areas that are prone to accidents, and safety at these places is of utmost significance. This paper describes the implementation methodology and the success of the study. The main purpose of the system is to ensure human safety by using the Internet of Things (IoT) and image processing techniques. The system can detect the current location of the train and close the railway gate automatically. And it is possible to do the above-mentioned process through a decision-making system by using past data. The specialty is both processes working parallel. As usual, if the system fails to close the railway gate due to technical or a network failure, the proposed system can identify the current location and close the railway gate through a decision-making system, which is a revolutionary feature. The proposed system introduces further two features to reduce the causes of railway accidents. Railway track crack detection and motion detection are those features which play a significant role in reducing the risk of railway accidents. Moreover, the system is capable of detecting rule violations at a level crossing by using sensors. The proposed system is implemented through a prototype, and it is tested with real-world scenarios to gain the above 90% of accuracy.

Keywords: crack detection, decision-making, image processing, Internet of Things, motion detection, prototype, sensors

Procedia PDF Downloads 150
3304 Degradation Model for UK Railway Drainage System

Authors: Yiqi Wu, Simon Tait, Andrew Nichols

Abstract:

Management of UK railway drainage assets is challenging due to the large amounts of historical assets with long asset life cycles. A major concern for asset managers is to maintain the required performance economically and efficiently while complying with the relevant regulation and legislation. As the majority of the drainage assets are buried underground and are often difficult or costly to examine, it is important for asset managers to understand and model the degradation process in order to foresee the upcoming reduction in asset performance and conduct proactive maintenance accordingly. In this research, a Markov chain approach is used to model the deterioration process of rail drainage assets. The study is based on historical condition scores and characteristics of drainage assets across the whole railway network in England, Scotland, and Wales. The model is used to examine the effect of various characteristics on the probabilities of degradation, for example, the regional difference in probabilities of degradation, and how material and shape can influence the deterioration process for chambers, channels, and pipes.

Keywords: deterioration, degradation, markov models, probability, railway drainage

Procedia PDF Downloads 191
3303 Selection of Intensity Measure in Probabilistic Seismic Risk Assessment of a Turkish Railway Bridge

Authors: M. F. Yilmaz, B. Ö. Çağlayan

Abstract:

Fragility curve is an effective common used tool to determine the earthquake performance of structural and nonstructural components. Also, it is used to determine the nonlinear behavior of bridges. There are many historical bridges in the Turkish railway network; the earthquake performances of these bridges are needed to be investigated. To derive fragility curve Intensity measures (IMs) and Engineering demand parameters (EDP) are needed to be determined. And the relation between IMs and EDP are needed to be derived. In this study, a typical simply supported steel girder riveted railway bridge is studied. Fragility curves of this bridge are derived by two parameters lognormal distribution. Time history analyses are done for selected 60 real earthquake data to determine the relation between IMs and EDP. Moreover, efficiency, practicality, and sufficiency of three different IMs are discussed. PGA, Sa(0.2s) and Sa(1s), the most common used IMs parameters for fragility curve in the literature, are taken into consideration in terms of efficiency, practicality and sufficiency.

Keywords: railway bridges, earthquake performance, fragility analyses, selection of intensity measures

Procedia PDF Downloads 333
3302 Logistics Model for Improving Quality in Railway Transport

Authors: Eva Nedeliakova, Juraj Camaj, Jaroslav Masek

Abstract:

This contribution is focused on the methodology for identifying levels of quality and improving quality through new logistics model in railway transport. It is oriented on the application of dynamic quality models, which represent an innovative method of evaluation quality services. Through this conception, time factor, expected, and perceived quality in each moment of the transportation process within logistics chain can be taken into account. Various models describe the improvement of the quality which emphases the time factor throughout the whole transportation logistics chain. Quality of services in railway transport can be determined by the existing level of service quality, by detecting the causes of dissatisfaction employees but also customers, to uncover strengths and weaknesses. This new logistics model is able to recognize critical processes in logistic chain. It includes service quality rating that must respect its specific properties, which are unrepeatability, impalpability, their use right at the time they are provided and particularly changeability, which is significant factor in the conditions of rail transport as well. These peculiarities influence the quality of service regarding the constantly increasing requirements and that result in new ways of finding progressive attitudes towards the service quality rating.

Keywords: logistics model, quality, railway transport

Procedia PDF Downloads 530
3301 Solar Powered Front Wheel Drive (FWD) Electric Trike: An Innovation

Authors: Michael C. Barbecho, Romeo B. Morcilla

Abstract:

This study focused on the development of a solar powered front wheel drive electric trike for personal use and short distance travel, utilizing solar power and a variable speed transmission to adapt in places where varying road grades and unavailability of plug-in charging stations are of great problems. The actual performance of the vehicle was measured in terms of duration of charging using solar power, distance travel and battery power duration, top speed developed at full power, and load capacity. This project followed the research and development process which involved planning, designing, construction, and testing. Solar charging tests revealed that the vehicle requires 6 to 8 hours sunlight exposure to fully charge the batteries. At full charge, the vehicle can travel 35 km utilizing battery power down to 42%. Vehicle showed top speed of 25 kph at 0 to 3% road grade carrying a maximum load of 122 kg. The maximum climbing grade was 23% with the vehicle carrying a maximum load of 122 kg. Technically the project was feasible and can be a potential model for possible conversion of traditional Philippine made “pedicabs” and gasoline engine powered tricycle into modern electric vehicles. Moreover, it has several technical features and advantages over a commercialized electric vehicle such as the use solar charging system and variable speed power transmission and front drive power train for adaptability in any road gradient.

Keywords: electric vehicle, solar vehicles, front drive, solar, solar power

Procedia PDF Downloads 544
3300 Choice of Sleeper and Rail Fastening Using Linear Programming Technique

Authors: Luciano Oliveira, Elsa Vásquez-Alvarez

Abstract:

The increase in rail freight transport in Brazil in recent years requires new railway lines and the maintenance of existing ones, which generates high costs for concessionaires. It is in this context that this work is inserted, whose objective is to propose a method that uses Binary Linear Programming for the choice of sleeper and rail fastening, from various options, including the way to apply these materials, with focus to minimize costs. Unit value information, the life cycle each of material type, and service expenses are considered. The model was implemented in commercial software using real data for its validation. The formulated model can be replicated to support decision-making for other railway projects in the choice of sleepers and rail fastening with lowest cost.

Keywords: linear programming, rail fastening, rail sleeper, railway

Procedia PDF Downloads 173
3299 Railway Transport as a Potential Source of Polychlorinated Biphenyls in Soil

Authors: Nataša Stojić, Mira Pucarević, Nebojša Ralević, Vojislava Bursić, Gordan Stojić

Abstract:

Surface soil (0 – 10 cm) samples from 52 sampling sites along the length of railway tracks on the territory of Srem (the western part of the Autonomous Province of Vojvodina, itself part of Serbia) were collected and analyzed for 7 polychlorinated biphenyls (PCBs) in order to see how the distance from the railroad on the one hand and dump on the other hand, affect the concentration of PCBs (CPCBs) in the soil. Samples were taken at a distance of 0.03 to 4.19 km from the railway and 0.43 to 3.35 km from the landfills. For the soil extraction the Soxhlet extraction (USEPA 3540S) was used. The extracts were purified on a silica-gel column (USEPA 3630C). The analysis of the extracts was performed by gas chromatography with tandem mass spectrometry. PCBs were not detected only at two locations. Mean total concentration of PCBs for all other sampling locations was 0,0043 ppm dry weight (dw) with a range of 0,0005 to 0,0227 ppm dw. On the part of the data that were interesting for this research with statistical methods (PCA) were isolated factors that affect the concentration of PCBs. Data were also analyzed using the Pearson's chi-squared test which showed that the hypothesis of independence of CPCBs and distance from the railway can be rejected. Hypothesis of independence between CPCB and the percentage of humus in the soil can also be rejected, in contrast to dependence of CPCB and the distance from the landfill where the hypothesis of independence cannot be rejected. Based on these results can be said that railway transport is a potential source of PCBs. The next step in this research is to establish the position of transformers which are located near sampling sites as another important factor that affects the concentration of PCBs in the soil.

Keywords: GC/MS, landfill, PCB, railway, soil

Procedia PDF Downloads 297
3298 Optimal Scheduling of Trains in Complex National Scale Railway Networks

Authors: Sanat Ramesh, Tarun Dutt, Abhilasha Aswal, Anushka Chandrababu, G. N. Srinivasa Prasanna

Abstract:

Optimal Schedule Generation for a large national railway network operating thousands of passenger trains with tens of thousands of kilometers of track is a grand computational challenge in itself. We present heuristics based on a Mixed Integer Program (MIP) formulation for local optimization. These methods provide flexibility in scheduling new trains with varying speed and delays and improve utilization of infrastructure. We propose methods that provide a robust solution with hundreds of trains being scheduled over a portion of the railway network without significant increases in delay. We also provide techniques to validate the nominal schedules thus generated over global correlated variations in travel times thereby enabling us to detect conflicts arising due to delays. Our validation results which assume only the support of the arrival and departure time distributions takes an order of few minutes for a portion of the network and is computationally efficient to handle the entire network.

Keywords: mixed integer programming, optimization, railway network, train scheduling

Procedia PDF Downloads 131
3297 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.

Keywords: clustering, load profiling, load modeling, machine learning, energy efficiency and quality

Procedia PDF Downloads 133
3296 Measurement of Influence of the COVID-19 Pandemic on Efficiency of Japan’s Railway Companies

Authors: Hideaki Endo, Mika Goto

Abstract:

The global outbreak of the COVID-19 pandemic has seriously affected railway businesses. The number of railway passengers decreased due to the decline in the number of commuters and business travelers to avoid crowded trains and a sharp drop in inbound tourists visiting Japan. This has affected not only railway businesses but also related businesses, including hotels, leisure businesses, and retail businesses at station buildings. In 2021, the companies were divided into profitable and loss-making companies. This division suggests that railway companies, particularly loss-making companies, needed to decrease operational inefficiency. To measure the impact of COVID-19 and discuss the sustainable management strategies of railway companies, we examine the cost inefficiency of Japanese listed railway companies by applying stochastic frontier analysis (SFA) to their operational and financial data. First, we employ the stochastic frontier cost function approach to measure inefficiency. The cost frontier function is formulated as a Cobb–Douglas type, and we estimated parameters and variables for inefficiency. This study uses panel data comprising 26 Japanese-listed railway companies from 2005 to 2020. This period includes several events deteriorating the business environment, such as the financial crisis from 2007 to 2008 and the Great East Japan Earthquake of 2011, and we compare those impacts with those of the COVID-19 pandemic after 2020. Second, we identify the characteristics of the best-practice railway companies and examine the drivers of cost inefficiencies. Third, we analyze the factors influencing cost inefficiency by comparing the profiles of the top 10 railway companies and others before and during the pandemic. Finally, we examine the relationship between cost inefficiency and the implementation of efficiency measures for each railway company. We obtained the following four findings. First, most Japanese railway companies showed the lowest cost inefficiency (most efficient) in 2014 and the highest in 2020 (least efficient) during the COVID-19 pandemic. The second worst occurred in 2009 when it was affected by the financial crisis. However, we did not observe a significant impact of the 2011 Great East Japan Earthquake. This is because no railway company was influenced by the earthquake in this operating area, except for JR-EAST. Second, the best-practice railway companies are KEIO and TOKYU. The main reason for their good performance is that both operate in and near the Tokyo metropolitan area, which is densely populated. Third, we found that non-best-practice companies had a larger decrease in passenger kilometers than best-practice companies. This indicates that passengers made fewer long-distance trips because they refrained from inter-prefectural travel during the pandemic. Finally, we found that companies that implement more efficiency improvement measures had higher cost efficiency and they effectively used their customer databases through proactive DX investments in marketing and asset management.

Keywords: COVID-19 pandemic, stochastic frontier analysis, railway sector, cost efficiency

Procedia PDF Downloads 33
3295 Analysis of Spatiotemporal Efficiency and Fairness of Railway Passenger Transport Network Based on Space Syntax: Taking Yangtze River Delta as an Example

Authors: Lin Dong, Fei Shi

Abstract:

Based on the railway network and the principles of space syntax, the study attempts to reconstruct the spatial relationship of the passenger network connections from space and time perspective. According to the travel time data of main stations in the Yangtze River Delta urban agglomeration obtained by the Internet, the topological drawing of railway network under different time sections is constructed. With the comprehensive index composed of connection and integration, the accessibility and network operation efficiency of the railway network in different time periods is calculated, while the fairness of the network is analyzed by the fairness indicators constructed with the integration and location entropy from the perspective of horizontal and vertical fairness respectively. From the analysis of the efficiency and fairness of the railway passenger transport network, the study finds: (1) There is a strong regularity in regional system accessibility change; (2) The problems of efficiency and fairness are different in different time periods; (3) The improvement of efficiency will lead to the decline of horizontal fairness to a certain extent, while from the perspective of vertical fairness, the supply-demand situation has changed smoothly with time; (4) The network connection efficiency of Shanghai, Jiangsu and Zhejiang regions is higher than that of the western regions such as Anqing and Chizhou; (5) The marginalization of Nantong, Yancheng, Yangzhou, Taizhou is obvious. The study explores the application of spatial syntactic theory in regional traffic analysis, in order to provide a reference for the development of urban agglomeration transportation network.

Keywords: spatial syntax, the Yangtze River Delta, railway passenger time, efficiency and fairness

Procedia PDF Downloads 108
3294 Lateral Torsional Buckling Investigation on Welded Q460GJ Structural Steel Unrestrained Beams under a Point Load

Authors: Yue Zhang, Bo Yang, Gang Xiong, Mohamed Elchalakanic, Shidong Nie

Abstract:

This study aims to investigate the lateral torsional buckling of I-shaped cross-section beams fabricated from Q460GJ structural steel plates. Both experimental and numerical simulation results are presented in this paper. A total of eight specimens were tested under a three-point bending, and the corresponding numerical models were established to conduct parametric studies. The effects of some key parameters such as the non-dimensional member slenderness and the height-to-width ratio, were investigated based on the verified numerical models. Also, the results obtained from the parametric studies were compared with the predictions calculated by different design codes including the Chinese design code (GB50017-2003, 2003), the new draft version of Chinese design code (GB50017-201X, 2012), Eurocode 3 (EC3, 2005) and the North America design code (ANSI/AISC360-10, 2010). These comparisons indicated that the sectional height-to-width ratio does not play an important role to influence the overall stability load-carrying capacity of Q460GJ structural steel beams with welded I-shaped cross-sections. It was also found that the design methods in GB50017-2003 and ANSI/AISC360-10 overestimate the overall stability and load-carrying capacity of Q460GJ welded I-shaped cross-section beams.

Keywords: experimental study, finite element analysis, global stability, lateral torsional buckling, Q460GJ structural steel

Procedia PDF Downloads 305
3293 Investigation on the Bogie Pseudo-Hunting Motion of a Reduced-Scale Model Railway Vehicle Running on Double-Curved Rails

Authors: Barenten Suciu, Ryoichi Kinoshita

Abstract:

In this paper, an experimental and theoretical study on the bogie pseudo-hunting motion of a reduced-scale model railway vehicle, running on double-curved rails, is presented. Since the actual bogie hunting motion, occurring for real railway vehicles running on straight rails at high travelling speeds, cannot be obtained in laboratory conditions, due to the speed and wavelength limitations, a pseudo- hunting motion was induced by employing double-curved rails. Firstly, the test rig and the experimental procedure are described. Then, a geometrical model of the double-curved rails is presented. Based on such model, the variation of the carriage rotation angle relative to the bogies and the working conditions of the yaw damper are clarified. Vibration spectra recorded during vehicle travelling, on straight and double-curved rails, are presented and interpreted based on a simple vibration model of the railway vehicle. Ride comfort of the vehicle is evaluated according to the ISO 2631 standard, and also by using some particular frequency weightings, which account for the discomfort perceived during the reading and writing activities. Results obtained in this work are useful for the adequate design of the yaw dampers, which are used to attenuate the lateral vibration of the train car bodies.

Keywords: double-curved rail, octave analysis, vibration model, ride comfort, railway vehicle

Procedia PDF Downloads 288
3292 Multi-Agent Railway Control System: Requirements Definitions of Multi-Agent System Using the Behavioral Patterns Analysis (BPA) Approach

Authors: Assem I. El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent Railway Control System (MARCS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, multi-agent, railway control, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases

Procedia PDF Downloads 511
3291 Optimal Tamping for Railway Tracks, Reducing Railway Maintenance Expenditures by the Use of Integer Programming

Authors: Rui Li, Min Wen, Kim Bang Salling

Abstract:

For the modern railways, maintenance is critical for ensuring safety, train punctuality and overall capacity utilization. The cost of railway maintenance in Europe is high, on average between 30,000 – 100,000 Euros per kilometer per year. In order to reduce such maintenance expenditures, this paper presents a mixed 0-1 linear mathematical model designed to optimize the predictive railway tamping activities for ballast track in the planning horizon of three to four years. The objective function is to minimize the tamping machine actual costs. The approach of the research is using the simple dynamic model for modelling condition-based tamping process and the solution method for finding optimal condition-based tamping schedule. Seven technical and practical aspects are taken into account to schedule tamping: (1) track degradation of the standard deviation of the longitudinal level over time; (2) track geometrical alignment; (3) track quality thresholds based on the train speed limits; (4) the dependency of the track quality recovery on the track quality after tamping operation; (5) Tamping machine operation practices (6) tamping budgets and (7) differentiating the open track from the station sections. A Danish railway track between Odense and Fredericia with 42.6 km of length is applied for a time period of three and four years in the proposed maintenance model. The generated tamping schedule is reasonable and robust. Based on the result from the Danish railway corridor, the total costs can be reduced significantly (50%) than the previous model which is based on optimizing the number of tamping. The different maintenance strategies have been discussed in the paper. The analysis from the results obtained from the model also shows a longer period of predictive tamping planning has more optimal scheduling of maintenance actions than continuous short term preventive maintenance, namely yearly condition-based planning.

Keywords: integer programming, railway tamping, predictive maintenance model, preventive condition-based maintenance

Procedia PDF Downloads 412
3290 Load Management Using Multiple Sequential Load Shaping Techniques

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasi

Abstract:

Demand Side Management (DSM) is an essential characteristic of current and future smart grid systems. As one of DSM functions, load management aims to control customers’ total electric consumption and utility’s load factor by using various load shaping techniques. However, applying load shaping techniques such as load shifting, peak clipping, or strategic conservation individually does not provide the desired level of improvement for load factor increment and/or customer’s bill reduction. In this paper, two load shaping techniques will be simulated as constrained optimization problems. The purpose is to reflect the application of combined load shifting and strategic conservation model together at the same time, and the application of combined load shifting and peak clipping model as well. The problem will be formulated and solved by using disciplined convex programming (CVX) based MATLAB® R2013b. Simulation results will be evaluated and compared for studying the most impactful multi-techniques model in improving load curve.

Keywords: convex programing, demand side management, load shaping, multiple, building energy optimization

Procedia PDF Downloads 285
3289 Technical and Economic Potential of Partial Electrification of Railway Lines

Authors: Rafael Martins Manzano Silva, Jean-Francois Tremong

Abstract:

Electrification of railway lines allows to increase speed, power, capacity and energetic efficiency of rolling stocks. However, this process of electrification is complex and costly. An electrification project is not just about design of catenary. It also includes installation of structures around electrification, as substation installation, electrical isolation, signalling, telecommunication and civil engineering structures. France has more than 30,000 km of railways, whose only 53% are electrified. The others 47% of railways use diesel locomotive and represent only 10% of the circulation (tons.km). For this reason, a new type of electrification, less expensive than the usual, is requested to enable the modernization of these railways. One solution could be the use of hybrids trains. This technology opens up new opportunities for less expensive infrastructure development such as the partial electrification of railway lines. In a partially electrified railway, the power supply of theses hybrid trains could be made either by the catenary or by the on-board energy storage system (ESS). Thus, the on-board ESS would feed the energetic needs of the train along the non-electrified zones while in electrified zones, the catenary would feed the train and recharge the on-board ESS. This paper’s objective deals with the technical and economic potential identification of partial electrification of railway lines. This study provides different scenarios of electrification by replacing the most expensive places to electrify using on-board ESS. The target is to reduce the cost of new electrification projects, i.e. reduce the cost of electrification infrastructures while not increasing the cost of rolling stocks. In this study, scenarios are constructed in function of the electrification’s cost of each structure. The electrification’s cost varies considerably because of the installation of catenary support in tunnels, bridges and viaducts is much more expensive than in others zones of the railway. These scenarios will be used to describe the power supply system and to choose between the catenary and the on-board energy storage depending on the position of the train on the railway. To identify the influence of each partial electrification scenario in the sizing of the on-board ESS, a model of the railway line and of the rolling stock is developed for a real case. This real case concerns a railway line located in the south of France. The energy consumption and the power demanded at each point of the line for each power supply (catenary or on-board ESS) are provided at the end of the simulation. Finally, the cost of a partial electrification is obtained by adding the civil engineering costs of the zones to be electrified plus the cost of the on-board ESS. The study of the technical and economic potential ends with the identification of the most economically interesting scenario of electrification.

Keywords: electrification, hybrid, railway, storage

Procedia PDF Downloads 399
3288 Hydrodynamic Analysis of Journal Bearing Operating With Nanolubricants

Authors: R. Hariprakash, K. Prabhakaran Nair

Abstract:

In this paper, the static and dynamic characteristics of hydrodynamic journal bearings operating under nano lubricants are presented. Hydrodynamic journal bearings are used in turbo machines of power plants to support heavy load. In power plants, bearings are getting failure because of its inability to support the heavy load due to various reasons. Failures of bearings make the power plant to be shutdown. The load carrying capacity of journal bearing mainly depends upon the viscosity of the lubricants. The addition of nano particles on commercially available lubricant may enhance the viscosity of lubricant and in turn, change the performance characteristics. In the literature, though many studies have been carried out for the hydrodynamic bearing operating under Newtonian and non-Newtonian lubricants, studies on hydrodynamic bearings operating under nano lubricants is scarce. Thus, it is felt that there is a need to recompute the performance characteristics of journal bearings operating under nano lubricants.

Keywords: hydrodynamic, journal, bearing, analysis

Procedia PDF Downloads 410
3287 Modelling Railway Noise Over Large Areas, Assisted by GIS

Authors: Conrad Weber

Abstract:

The modelling of railway noise over large projects areas can be very time consuming in terms of preparing the noise models and calculation time. An open-source GIS program has been utilised to assist with the modelling of operational noise levels for 675km of railway corridor. A range of GIS algorithms were utilised to break up the noise model area into manageable calculation sizes. GIS was utilised to prepare and filter a range of noise modelling inputs, including building files, land uses and ground terrain. A spreadsheet was utilised to manage the accuracy of key input parameters, including train speeds, train types, curve corrections, bridge corrections and engine notch settings. GIS was utilised to present the final noise modelling results. This paper explains the noise modelling process and how the spreadsheet and GIS were utilised to accurately model this massive project efficiently.

Keywords: noise, modeling, GIS, rail

Procedia PDF Downloads 90
3286 Deregulation of Turkish State Railways Based on Public-Private Partnership Approaches

Authors: S. Shakibaei, P. Alpkokin

Abstract:

The railway network is one of the major components of a transportation system in a country which may be an indicator of the country’s level of economic improvement. Since 2000s on, revival of national railways and development of High Speed Rail (HSR) lines are one of the most remarkable policies of Turkish government in railway sector. Within this trend, the railway age is to be revived and coming decades will be a golden opportunity. Indubitably, major infrastructures such as road and railway networks require sizeable investment capital, precise maintenance and reparation. Traditionally, governments are held responsible for funding, operating and maintaining these infrastructures. However, lack or shortage of financial resources, risk responsibilities (particularly cost and time overrun), and in some cases inefficacy in constructional, operational and management phases persuade governments to find alternative options. Financial power, efficient experiences and background of private sector are the factors convincing the governments to make a collaboration with private parties to develop infrastructures. Public-Private Partnerships (PPP or 3P or P3) and related regulatory issues are born considering these collaborations. In Turkey, PPP approaches have attracted attention particularly during last decade and these types of investments have been accelerated by government to overcome budget limitations and cope with inefficacy of public sector in improving transportation network and its operation. This study mainly tends to present a comprehensive overview of PPP concept, evaluate the regulatory procedure in Europe and propose a general framework for Turkish State Railways (TCDD) as an outlook on privatization, liberalization and deregulation of railway network.

Keywords: deregulation, high-speed railway, liberalization, privatization, public-private partnership

Procedia PDF Downloads 141
3285 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: short-term load forecasting, artificial neural networks, back propagation learning, hourly load demand

Procedia PDF Downloads 428
3284 Comparative Safety Performance Evaluation of Profiled Deck Composite Slab from the Use of Slope-Intercept and Partial Shear Methods

Authors: Izian Abd. Karim, Kachalla Mohammed, Nora Farah Abd Aznieta Aziz, Law Teik Hua

Abstract:

The economic use and ease of construction of profiled deck composite slab is marred with the complex and un-economic strength verification required for the serviceability and general safety considerations. Beside these, albeit factors such as shear span length, deck geometries and mechanical frictions greatly influence the longitudinal shear strength, that determines the ultimate strength of profiled deck composite slab, and number of methods available for its determination; partial shear and slope-intercept are the two methods according to Euro-code 4 provision. However, the complexity associated with shear behavior of profiled deck composite slab, the use of these methods in determining the load carrying capacities of such slab yields different and conflicting values. This couple with the time and cost constraint associated with the strength verification is a source of concern that draws more attentions nowadays, the issue is critical. Treating some of these known shear strength influencing factors as random variables, the load carrying capacity violation of profiled deck composite slab from the use of the two-methods defined according to Euro-code 4 are determined using reliability approach, and comparatively studied. The study reveals safety values from the use of m-k method shows good standing compared with that from the partial shear method.

Keywords: composite slab, first order reliability method, longitudinal shear, partial shear connection, slope-intercept

Procedia PDF Downloads 329
3283 Digitalisation of the Railway Industry: Recent Advances in the Field of Dialogue Systems: Systematic Review

Authors: Andrei Nosov

Abstract:

This paper discusses the development directions of dialogue systems within the digitalisation of the railway industry, where technologies based on conversational AI are already potentially applied or will be applied. Conversational AI is one of the popular natural language processing (NLP) tasks, as it has great prospects for real-world applications today. At the same time, it is a challenging task as it involves many areas of NLP based on complex computations and deep insights from linguistics and psychology. In this review, we focus on dialogue systems and their implementation in the railway domain. We comprehensively review the state-of-the-art research results on dialogue systems and analyse them from three perspectives: type of problem to be solved, type of model, and type of system. In particular, from the perspective of the type of tasks to be solved, we discuss characteristics and applications. This will help to understand how to prioritise tasks. In terms of the type of models, we give an overview that will allow researchers to become familiar with how to apply them in dialogue systems. By analysing the types of dialogue systems, we propose an unconventional approach in contrast to colleagues who traditionally contrast goal-oriented dialogue systems with open-domain systems. Our view focuses on considering retrieval and generative approaches. Furthermore, the work comprehensively presents evaluation methods and datasets for dialogue systems in the railway domain to pave the way for future research. Finally, some possible directions for future research are identified based on recent research results.

Keywords: digitalisation, railway, dialogue systems, conversational AI, natural language processing, natural language understanding, natural language generation

Procedia PDF Downloads 33