Search results for: radiation pattern
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3803

Search results for: radiation pattern

3653 Effects of Gamma Radiation on Tomato Leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)

Authors: Akın Kuyulu, Hanife Genç

Abstract:

In present study, it was aimed to evaluate the gamma radiation impacts on tomato leaf miner at different biological stages. The laboratory colony of tomato leaf miner was used to set up the experiments. Different biological stages of the insects (eggs, 4th instars and pupae) were irradiated using Cobalt-60 at doses of 0 (control), 100 Gray (Gy), 200 Gy, 300 Gy and 400 Gy in Cos-44HH-N source, at dose rate of 480 Gy/h. After irradiation, the eggs were incubated until hatching; the mature larvae were reared to complete their developments. Adult emergences from irradiated pupae were also evaluated. The results showed that there were no egg hatching at all tested irradiation doses. Although, the pupal percentages of irradiated mature larvae were 54%, 15% and 8% at doses of 100 Gy, 200 Gy and 300 Gy respectively, there were no adult emergences from irradiated mature larvae. On the other hand, the adult emergences were observed from irradiated pupae, decreased as radiation doses increased along with malformed adult appearance. Male and female individuals were out crossed with laboratory reared adults. Fecundity was correlated with radiation doses.

Keywords: irradiation, tomato, tomato leafminer, Tuta absoluta

Procedia PDF Downloads 210
3652 Testing Method of Soil Failure Pattern of Sand Type as an Effort to Minimize the Impact of the Earthquake

Authors: Luthfi Assholam Solamat

Abstract:

Nowadays many people do not know the soil failure pattern as an important part in planning the under structure caused by the loading occurs. This is because the soil is located under the foundation, so it cannot be seen directly. Based on this study, the idea occurs to do a study for testing the soil failure pattern, especially the type of sand soil under the foundation. The necessity of doing this to the design of building structures on the land which is the initial part of the foundation structure that met with waves/vibrations during an earthquake. If the underground structure is not strong it is feared the building thereon more vulnerable to the risk of building damage. This research focuses on the search of soil failure pattern, which the most applicable in the field with the loading periodic re-testing of a particular time with the help of the integrated video visual observations performed. The results could be useful for planning under the structure in an effort to try the upper structure is minimal risk of the earthquake.

Keywords: soil failure pattern, earthquake, under structure, sand soil testing method

Procedia PDF Downloads 327
3651 60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks

Authors: N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, Y. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, P. S. Excell

Abstract:

A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1×8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks.

Keywords: mm-wave communications, multi-sector array, patch antenna, small cell networks

Procedia PDF Downloads 112
3650 Circadian Rhythm and Demographic Incidence

Authors: Behnaz Farahani, Abbas Mirzaei

Abstract:

This study explores association between circadian rhythm pattern and some demographic incidences. The participants targeting 193 (97 females and 96 males between the ages of 20-30 years) Iranian bachelor students from Islamic Azad University who completed the self-reported over the 2nd semester 2011-2012 university year. The questionnaire has been tailored amalgamation of Horn & Östberg Questionnaire (MEQ) and Demographic Incidences Questionnaire in order to measure the students circadian rhythm pattern and their Demographic Incidences. The finding of this quantitative, descriptive, cross-sectional analysis confirmed the hypothesis in that 'circadian rhythm pattern' was positively associated with the demographic indices like age, marital status, gender, day in week and month of the birth time, and parent’s age and educational level at the time of the birth of the samples.

Keywords: circadian rhythm pattern, demographic incidences, morning type, evening type

Procedia PDF Downloads 503
3649 Thermoluminescence Characteristic of Nanocrystalline BaSO4 Doped with Europium

Authors: Kanika S. Raheja, A. Pandey, Shaila Bahl, Pratik Kumar, S. P. Lochab

Abstract:

The subject of undertaking for this paper is the study of BaSO4 nanophosphor doped with Europium in which mainly the concentration of the rare earth impurity Eu (0.05, 0.1, 0.2, 0.5, and 1 mol %) has been varied. A comparative study of the thermoluminescence(TL) properties of the given nanophosphor has also been done using a well-known standard dosimetry material i.e. TLD-100.Firstly, a number of samples were prepared successfully by the chemical co-precipitation method. The whole lot was then compared to a well established standard material (TLD-100) for its TL sensitivity property. BaSO4:Eu ( 0.2 mol%) showed the highest sensitivity out of the lot. It was also found that when compared to the standard TLD-100, BaSo4:Eu (0.2mol%) showed surprisingly high sensitivity for a large range of doses. The TL response curve for all prepared samples has also been studied over a wide range of doses i.e 10Gy to 2kGy for gamma radiation. Almost all the samples of BaSO4:Eu showed a remarkable linearity for a broad range of doses, which is a characteristic feature of a fine TL dosimeter. The graph remained linear even beyond 1kGy for gamma radiation. Thus, the given nanophosphor has been successfully optimised for the concentration of the dopant material to achieve its highest TL sensitivity. Further, the comparative study with the standard material revealed that the current optimised sample shows an astonishingly better TL sensitivity and a phenomenal linear response curve for an incredibly wide range of doses for gamma radiation (Co-60) as compared to the standard TLD-100, which makes the current optimised BaSo4:Eu quite promising as an efficient gamma radiation dosimeter. Lastly, the present phosphor has been optimised for its annealing temperature to acquire the best results while also studying its fading and reusability properties.

Keywords: gamma radiation, nanoparticles, radiation dosimetry, thermoluminescence

Procedia PDF Downloads 402
3648 Remote Radiation Mapping Based on UAV Formation

Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov

Abstract:

High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.

Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation

Procedia PDF Downloads 43
3647 Radiation Dose and Associated Exposure Parameters in Selected MDCT Scanners in Multiphase Scan of Abdomen-Pelvic Region: A Clinical Study

Authors: P. Sathyathas, H. M. I. S. W. Herath, T. Amalraj, U. J. M. A. L. Jayasinghe

Abstract:

Over two thirds of medical radiation can now be attributed to Computed Tomography (CT). There is little information on amount of radiation received from multiphase CT scan of abdomen- pelvic region in clinical practice. We sought to estimate the radiation dose and associated exposure parameters in the multiphase abdomen - pelvic scan of Multideteror Computed Tomography (MDCT) studies in clinical practice. This was a retrospective cross sectional studies describing radiation dose associated with main exposure parameters in diagnostic multiphase abdomen - pelvic scans performed on 152 consecutive patients by two different sixteen slice CT scanners. Patient information, exposure parameters of CTDI (volume), DLP, kVp, mAs and pitch were recorded for every phases of abdomen- a pelvic study from dose report of MDCT scanners (MDCTs). Age of patients range from 14 years to 87 years in both MDCT scanners. Overall CTDI (volume) median was 63.8 (±10.4) mGy for a multiphase abdominal-pelvic scan with scanner A while it was 35.4 (±15.6) mGy for scanner B. Patients' effective dose for multiphase abdomen - pelvic CT scan range from 8.2 mSv to 58 mSv. Median effective dose for patients, who underwent multiphase abdomen- pelvis scan with scanner A and B were 38.5 (± 8.2) mSv and 21.3 (± 8.6) mSv respectively. Median value of exposure parameters of mAs, kVp and pitch, were 150 (±29.7), 130 (±15.3) and 1.3 (±0.1) respectively in scanner A. In scanner B; they were 60 (±14.5), 120 and 1. The median effective dose for patients between multiphase abdomen-pelvic scan of both MDCT, a significant different (P<0.05) was observed. Multiphase abdomen – pelvic scan of clinical study shows significant different of effective dose with reference level of phantom studies (8-14mSv) and it depends on the type of vendors.

Keywords: abdomen-pelvic region, computed tomography, exposure parameters, radiation dose

Procedia PDF Downloads 286
3646 Effect of Radiation on Magnetohydrodynamic Two Phase Stenosed Arterial Blood Flow with Heat and Mass Transfer

Authors: Bhavya Tripathi, Bhupendra Kumar Sharma

Abstract:

In blood, the concentration of red blood cell varies with the arterial diameter. In the case of narrow arteries, red blood cells concentrate around the center of the artery and there exists a cell-free plasma layer near the arterial wall due to Fahraeus-Lindqvist effect. Due to non- uniformity of the fluid in the narrow arteries, it is preferable to consider the two-phase model of the blood flow. In the present article, coupled nonlinear differential equations have been developed for momentum, energy and concentration of two phase model of the blood flow assuming the Newtonian fluid in both central core and cell free plasma layer and the exact solutions have been found for the problem. For having an adequate insight into the stenosed arterial two-phase blood flow, major components of the flow as flow resistance, total flow rate, and wall shear stress have been estimated for different values of magnetic and radiation parameter. Results show that the increase in the effects of magnetic field decreases the velocity of both cores as well as plasma regions. This result can be helpful to control the blood flow in narrow arteries during surgical process. Temperature of core as well plasma regions decrease as value of radiation parameter increases. The present result is implemented in the form of radiation therapy which is very helpful for cancer patients.

Keywords: two phase blood flow, radiation, magnetohydrodynamics (MHD), stenosis

Procedia PDF Downloads 169
3645 Management Pattern for Service Sector in Samut Songkram by Sufficient Economy Approach

Authors: Krisada Sungkhamanee

Abstract:

The objectives of this research are to search the management pattern of one district lodging entrepreneurs by sufficient economy ways, to know the constrains that affects this sector and design fit arrangement shape to sustain their business with Samut Songkram style. What will happen if they do not use this approach? Will they have a monetary crisis? The data and information are collected by informal discussions with 8 managers and 400 questionnaires. A mixed methods of both qualitative research and quantitative research are used and Bent Flyvbjerg’s phronesis is utilized for this analysis. Our paper will prove that sufficient economy can help small business firms to solve their problems. We think that the results of our research will be a financial pattern to solve many problems of the entrepreneurs and this way will can be a super model for other provinces of Thailand.

Keywords: Samut Songkram, service sector, sufficient economy, management pattern

Procedia PDF Downloads 337
3644 Mathematical Model of Cancer Growth under the Influence of Radiation Therapy

Authors: Beata Jackowska-Zduniak

Abstract:

We formulate and analyze a mathematical model describing dynamics of cancer growth under the influence of radiation therapy. The effect of this type of therapy is considered as an additional equation of discussed model. Numerical simulations show that delay, which is added to ordinary differential equations and represent time needed for transformation from one type of cells to the other one, affects the behavior of the system. The validation and verification of proposed model is based on medical data. Analytical results are illustrated by numerical examples of the model dynamics. The model is able to reconstruct dynamics of treatment of cancer and may be used to determine the most effective treatment regimen based on the study of the behavior of individual treatment protocols.

Keywords: mathematical modeling, numerical simulation, ordinary differential equations, radiation therapy

Procedia PDF Downloads 374
3643 Ectoine: A Compatible Solute in Radio-Halophilic Stenotrophomonas sp. WMA-LM19 Strain to Prevent Ultraviolet-Induced Protein Damage

Authors: Wasim Sajjad, Manzoor Ahmad, Sundas Qadir, Muhammad Rafiq, Fariha Hasan, Richard Tehan, Kerry L. McPhail, Aamer Ali Shah

Abstract:

Aim: This study aims to investigate the possible radiation protective role of a compatible solute in the tolerance of radio-halophilic bacterium against stresses, like desiccation and exposure to ionizing radiation. Methods and Results: Nine different radio-resistant bacteria were isolated from desert soil, where strain WMA-LM19 was chosen for detailed studies on the basis of its high tolerance for ultraviolet radiation among all these isolates. 16S rRNA gene sequencing indicated that the bacterium was closely related to Stenotrophomonas sp. (KT008383). A bacterial milking strategy was applied for extraction of intracellular compatible solutes in 70% (v/v) ethanol, which were purified by high-performance liquid chromatography (HPLC). The compound was characterized as ectoine by 1H and 13C nuclear magnetic resonance (NMR), and mass spectrometry (MS). Ectoine demonstrated more efficient preventive activity (54.80%) to erythrocyte membranes and also inhibited oxidative damage to proteins and lipids in comparison to the standard ascorbic acid. Furthermore, a high level of ectoine-mediated protection of bovine serum albumin against ionizing radiation (1500-2000 Jm-2) was observed, as indicated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Conclusion: The results indicated that ectoine can be used as a potential mitigator and radio-protective agent to overcome radiation- and salinity-mediated oxidative damage in extreme environments. Significance and Impact of the Study: This study shows that ectoine from radio-halophiles can be used as a potential source in topical creams as sunscreen. The investigation of ectoine as UV protectant also changes the prospective that radiation resistance is specific only to molecular adaptation.

Keywords: ectoine, anti-oxidant, stenotrophomonas sp., ultraviolet radiation

Procedia PDF Downloads 182
3642 Gamma Irradiation Effect on Structural and Optical Properties of Bismuth-Boro-Tellurite Glasses

Authors: Azuraida Amat, Halimah Mohamed Kamari, Che Azurahanim Che Abdullah, Ishak Mansor

Abstract:

The changes of the optical and structural properties of Bismuth-Boro-Tellurite glasses pre and post gamma irradiation were studied. Six glass samples, with different compositions [(TeO2)0.7 (B2O3)0.3]1-x (Bi2O3)x prepared by melt quenching method were irradiated with 25kGy gamma radiation at room temperature. The Fourier Transform Infrared Spectroscopy (FTIR) was used to explore the structural bonding in the prepared glass samples due to exposure, while UV-VIS Spectrophotometer was used to evaluate the changes in the optical properties before and after irradiation. Gamma irradiation causes a profound changes in the peak intensity as shown by FTIR spectra which is due to the breaking of the network bonding. Before gamma irradiation, the optical band gap, Eg value decreased from 2.44 eV to 2.15 eV with the addition of Bismuth content. The value kept decreasing (from 2.18 eV to 2.00 eV) following exposure to gamma radiation due to the increase of non-bridging oxygen (NBO) and the increase of defects in the glass. In conclusion, the glass with high content of Bi2O3 (0.30Bi) give the smallest Eg and show less changes in FTIR spectra after gamma irradiation, which indicate that this glass is more resistant to gamma radiation compared to other glasses.

Keywords: boro-tellurite, bismuth, gamma radiation, optical properties

Procedia PDF Downloads 392
3641 Relationship between Finger Print Pattern and Gender among Adolescents of Igala Ethnic Group, Kogi State, Nigeria

Authors: Paul Idoko Ukanu, Sunday Abba, Balogun Sadiya

Abstract:

The study of the finger prints patterns among the Igala ethnic groups was done in order to see their association gender. A cross sectional study was conducted and a total of 602 subjects participated in this study, 322 females and 280 males, which were mainly secondary school students between the age ranges of 13-19 years. The subjects fingerprint pattern was obtained by allowing them place the tip of each finger on the stamp pad, which is then imprinted on the questionnaire, this was done for both the left and right hand. Female had higher arch, whorl and loop finger print pattern in most of the right fingers than the males, the differences were statistically significant for the right index, right ring finger and right little finger, but were statistically insignificant for right thumb and right middle finger as p = 0.207 and 0.726, respectively. The result also revealed that males had higher arch finger print pattern in the right index and right little finger than the females, which was statistically significant (p = 0.001), and also a high whorl finger print pattern than the females in the right middle and ring finger.

Keywords: arch, loop, whorl, fingers

Procedia PDF Downloads 110
3640 The Design Inspired by Phra Maha Chedi of King Rama I-IV at Wat Phra Chetuphon Vimolmangklaram Rajwaramahaviharn

Authors: Taechit Cheuypoung

Abstract:

The research will focus on creating pattern designs that are inspired by the pagodas, Phra Maha Chedi of King Rama I-IV, that are located in the temple, Wat Phra Chetuphon Vimolmangklararm Rajwaramahaviharn. Different aspects of the temple were studied, including the history, architecture, significance of the temple, and techniques used to decorate the pagodas, Phra Maha Chedi of King Rama I-IV. Moreover, composition of arts and the form of pattern designs which all led to the outcome of four Thai application pattern. The four patterns combine Thai traditional design with international scheme, however, maintaining the distinctiveness of the glaze mosaic tiles of each Phra Maha Chedi. The patterns consist of rounded and notched petal flowers, leaves and vine, and various square shapes, and original colors which are updated for modernity. These elements are then grouped and combined with new techniques, resulting in pattern designs with modern aspects and simultaneously reflecting the charm and the aesthetic of Thai craftsmanship which are eternally embedded in the designs.

Keywords: Chedi, Pagoda, pattern, Wat

Procedia PDF Downloads 347
3639 Dosimetry in Interventional Radiology Examinations for Occupational Exposure Monitoring

Authors: Ava Zarif Sanayei, Sedigheh Sina

Abstract:

Interventional radiology (IR) uses imaging guidance, including X-rays and CT scans, to deliver therapy precisely. Most IR procedures are performed under local anesthesia and start with a small needle being inserted through the skin, which may be called pinhole surgery or image-guided surgery. There is increasing concern about radiation exposure during interventional radiology procedures due to procedure complexity. The basic aim of optimizing radiation protection as outlined in ICRP 139, is to strike a balance between image quality and radiation dose while maximizing benefits, ensuring that diagnostic interpretation is satisfactory. This study aims to estimate the equivalent doses to the main trunk of the body for the Interventional radiologist and Superintendent using LiF: Mg, Ti (TLD-100) chips at the IR department of a hospital in Shiraz, Iran. In the initial stage, the dosimeters were calibrated with the use of various phantoms. Afterward, a group of dosimeters was prepared, following which they were used for three months. To measure the personal equivalent dose to the body, three TLD chips were put in a tissue-equivalent batch and used under a protective lead apron. After the completion of the duration, TLDs were read out by a TLD reader. The results revealed that these individuals received equivalent doses of 387.39 and 145.11 µSv, respectively. The findings of this investigation revealed that the total radiation exposure to the staff was less than the annual limit of occupational exposure. However, it's imperative to implement appropriate radiation protection measures. Although the dose received by the interventional radiologist is a bit noticeable, it may be due to the reason for using conventional equipment with over-couch x-ray tubes for interventional procedures. It is therefore important to use dedicated equipment and protective means such as glasses and screens whenever compatible with the intervention when they are available or have them fitted to equipment if they are not present. Based on the results, the placement of staff in an appropriate location led to increasing the dose to the radiologist. Manufacturing and installation of moveable lead curtains with a thickness of 0.25 millimeters can effectively minimize the radiation dose to the body. Providing adequate training on radiation safety principles, particularly for technologists, can be an optimal approach to further decreasing exposure.

Keywords: interventional radiology, personal monitoring, radiation protection, thermoluminescence dosimetry

Procedia PDF Downloads 33
3638 Study of Superconducting Patch Printed on Electric-Magnetic Substrates Materials

Authors: Fortaki Tarek, S. Bedra

Abstract:

In this paper, the effects of both uniaxial anisotropy in the substrate and high Tc superconducting patch on the resonant frequency, half-power bandwidth, and radiation patterns are investigated using an electric field integral equation and the spectral domain Green’s function. The analysis has been based on a full electromagnetic wave model with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant and radiation characteristics of high Tc superconducting rectangular microstrip patch in the case where the patch is printed on electric-magnetic uniaxially anisotropic substrate materials. The stationary phase technique has been used for computing the radiation electric field. The obtained results demonstrate a considerable improvement in the half-power bandwidth, of the rectangular microstrip patch, by using a superconductor patch instead of a perfect conductor one. Further results show that high Tc superconducting rectangular microstrip patch on the uniaxial substrate with properly selected electric and magnetic anisotropy ratios is more advantageous than the one on the isotropic substrate by exhibiting wider bandwidth and radiation characteristic. This behavior agrees with that discovered experimentally for superconducting patches on isotropic substrates. The calculated results have been compared with measured one available in the literature and excellent agreement has been found.

Keywords: high Tc superconducting microstrip patch, electric-magnetic anisotropic substrate, Galerkin method, surface complex impedance with boundary conditions, radiation patterns

Procedia PDF Downloads 412
3637 Effect of Tillage Practices and Planting Patterns on Growth and Yield of Maize (Zee Maize)

Authors: O. R. Obalowu, F. B. Akande, T. P Abegunrin

Abstract:

Maize (Zea may) is mostly grown and consumed by Nigeria farmers using different tillage practices which have a great effect on its growth and yield. In order to maximize output, there is need to recommend a suitable tillage practice for crop production which will increase the growth and yield of maize. This study investigated the effect of tillage practices and planting pattern on the growth and yield of maize. The experiment was arranged in a 4x3x3 Randomized Complete Block Design (RCBD) layout, with four tillage practices consisting of no-tillage (NT), disc ploughing only (Ponly), disc ploughing followed by harrowing (PH), and disc ploughing, harrowing then ridging (PHR). Three planting patterns which include; 65 x 75, 75 x 75 and 85 x 75 cm spacing within and between the rows respectively, were randomly applied on the plots. All treatments were replicated three times. Data which consist of plant height, stem girth, leaf area and weight of maize per plots were taken and recorded. Data gathered were analyzed using Analysis of Variance (ANOVA) in the Minitab Software Package. The result shows that PHR under the third planting pattern has the highest growth rate (216.50 cm) while NT under the first planting pattern has the lowest mean value of growth rate (115.60 cm). Also, Ponly under the first planting pattern gives a better maize yield (19.45 kg) when compared with other tillage practices while NT under first planting pattern recorded the least yield of maize (9.40 kg). In conclusion, considering soil and weather conditions of the research area, plough only under the first planting pattern (65 x 75 cm) is the best alternative for the production of the Swan maize variety.

Keywords: tillage practice, planting pattern, disc ploughing, harrowing, ridging

Procedia PDF Downloads 450
3636 Evolution of Pop Art Pattern on Modern Ao Dai

Authors: Mai Anh Pham Ho

Abstract:

Ao Dai is the traditional dress of Vietnamese women that consists of a long tunic with slits on either side and wide trousers. This is the Vietnamese national costume which most common worn by women in daily life. The Vietnamese men may wear Ao Dai on special occasions like New Year Eve or Wedding Ceremony. Ao Dai is one of the few Vietnamese words that appear in English language dictionaries. Nowadays, there are variations in modern Ao Dai that consist of a short tunic on knee and slim trousers with the other materials like kaki or jeans. This paper aims to apply Pop art pattern on modern Ao Dai through the image of Vietnamese women by modifying the creation process of fashion design. It reflects on how modern culture is involved in Ao Dai and how it affects on fashion design. The research method of this paper is done through surveying the various examples of technological applications to fashion design, then the pop art pattern with the image of Vietnamese women is applied on modern Ao Dai. The results of this paper have shown through the collection of modern Ao Dai with three artworks applied the pop art pattern. In conclusion, the role of fashion technology supports and evolves the traditional value in order to establish the Vietnamese national personality as well as distinguish to other cultural values in the world.

Keywords: pop art pattern, Vietnamese national costume, modern ao dai, fashion design

Procedia PDF Downloads 251
3635 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Authors: Motahar Reza, Rajni Chahal, Neha Sharma

Abstract:

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.

Keywords: boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation

Procedia PDF Downloads 367
3634 Verification of Satellite and Observation Measurements to Build Solar Energy Projects in North Africa

Authors: Samy A. Khalil, U. Ali Rahoma

Abstract:

The measurements of solar radiation, satellite data has been routinely utilize to estimate solar energy. However, the temporal coverage of satellite data has some limits. The reanalysis, also known as "retrospective analysis" of the atmosphere's parameters, is produce by fusing the output of NWP (Numerical Weather Prediction) models with observation data from a variety of sources, including ground, and satellite, ship, and aircraft observation. The result is a comprehensive record of the parameters affecting weather and climate. The effectiveness of reanalysis datasets (ERA-5) for North Africa was evaluate against high-quality surfaces measured using statistical analysis. Estimating the distribution of global solar radiation (GSR) over five chosen areas in North Africa through ten-years during the period time from 2011 to 2020. To investigate seasonal change in dataset performance, a seasonal statistical analysis was conduct, which showed a considerable difference in mistakes throughout the year. By altering the temporal resolution of the data used for comparison, the performance of the dataset is alter. Better performance is indicate by the data's monthly mean values, but data accuracy is degraded. Solar resource assessment and power estimation are discuses using the ERA-5 solar radiation data. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R2) varies from 0.93 to 99% during the period time in the present research. This research's objective is to provide a reliable representation of the world's solar radiation to aid in the use of solar energy in all sectors.

Keywords: solar energy, ERA-5 analysis data, global solar radiation, North Africa

Procedia PDF Downloads 70
3633 In Vitro Propagation of Aloe vera and Aloe littoralis Plants: Gamma Radiation, Biochemical and Genetic Changes

Authors: Z. Nourmohammadi, F. Farahani, M. Shaker

Abstract:

Aloe is an important commercial crop available in a wide range of species and varieties in international markets. The applications of this plant have been recorded in the ancient cultures of India, Egypt, Greece, Rome and China. Aloe has been used for centuries and is currently being actively studied for medicinal purposes. Aloe is propagated through lateral buds, which is slow, very expensive and low income practice. Nowadays, it has been cultured by in vitro propagation for rapid multiplication of plants, genetic improvement of crops, obtaining disease-free clones and for progressive valuable germplasm. The present study focused on the influence of different phytohormones on rapid in vitro propagation of Aloe plants. We also investigated the effect of gamma radiation on biochemical characters as well as genetic changes. Shoot tip of 2-3 cm were collected from offshoot of Aloe barbadensis and Aloe littoralis, and were inoculated with MS medium containing various concentrations of BA (0.5, 1, 2 mg/l), IAA (0.5, 1 mg/l). The best treatment for a highest shoot number and bud proliferation was MS medium containing 2 mg/l BAP and 0.5 mg/l IAA in A. barbadensis and A. littoralis. Maximum percentage of proliferated shoot buds (90% and 95%) from a single explant were obtained in MS medium after 4-5 weeks of the second and the first subcultures, respectively. Different genome sizes were also indicated among treatments and subcultures. The mixoploids identified in flow cytometery histograms in different treatments. The effect of gamma radiation on A. littoralis showed that by increasing the dose of gamma radiation, amounts of chlorophyll A, B, carotenoids, total protein content and superoxide dismutase were significantly increased compared to control plants. Genetic variation analysis also revealed significant genetic differences between control and gamma radiation treated regenerated plants by AMOVA test. Higher genetic heterozygocity was observed in radiation treated plants. Our findings may provide useful method for improving of Aloe plant proliferation with increasing of useful material such as antioxidant enzymes.

Keywords: aloe, antioxidant enzyme, micropropagation, gamma radiation, genetic variation

Procedia PDF Downloads 403
3632 Numerical Simulation of Rayleigh Benard Convection and Radiation Heat Transfer in Two-Dimensional Enclosure

Authors: Raoudha Chaabane, Faouzi Askri, Sassi Ben Nasrallah

Abstract:

A new numerical algorithm is developed to solve coupled convection-radiation heat transfer in a two dimensional enclosure. Radiative heat transfer in participating medium has been carried out using the control volume finite element method (CVFEM). The radiative transfer equations (RTE) are formulated for absorbing, emitting and scattering medium. The density, velocity and temperature fields are calculated using the two double population lattice Boltzmann equation (LBE). In order to test the efficiency of the developed method the Rayleigh Benard convection with and without radiative heat transfer is analyzed. The obtained results are validated against available works in literature and the proposed method is found to be efficient, accurate and numerically stable.

Keywords: participating media, LBM, CVFEM- radiation coupled with convection

Procedia PDF Downloads 374
3631 Lead Chalcogenide Quantum Dots for Use in Radiation Detectors

Authors: Tom Nakotte, Hongmei Luo

Abstract:

Lead chalcogenide-based (PbS, PbSe, and PbTe) quantum dots (QDs) were synthesized for the purpose of implementing them in radiation detectors. Pb based materials have long been of interest for gamma and x-ray detection due to its high absorption cross section and Z number. The emphasis of the studies was on exploring how to control charge carrier transport within thin films containing the QDs. The properties of QDs itself can be altered by changing the size, shape, composition, and surface chemistry of the dots, while the properties of carrier transport within QD films are affected by post-deposition treatment of the films. The QDs were synthesized using colloidal synthesis methods and films were grown using multiple film coating techniques, such as spin coating and doctor blading. Current QD radiation detectors are based on the QD acting as fluorophores in a scintillation detector. Here the viability of using QDs in solid-state radiation detectors, for which the incident detectable radiation causes a direct electronic response within the QD film is explored. Achieving high sensitivity and accurate energy quantification in QD radiation detectors requires a large carrier mobility and diffusion lengths in the QD films. Pb chalcogenides-based QDs were synthesized with both traditional oleic acid ligands as well as more weakly binding oleylamine ligands, allowing for in-solution ligand exchange making the deposition of thick films in a single step possible. The PbS and PbSe QDs showed better air stability than PbTe. After precipitation the QDs passivated with the shorter ligand are dispersed in 2,6-difloupyridine resulting in colloidal solutions with concentrations anywhere from 10-100 mg/mL for film processing applications, More concentrated colloidal solutions produce thicker films during spin-coating, while an extremely concentrated solution (100 mg/mL) can be used to produce several micrometer thick films using doctor blading. Film thicknesses of micrometer or even millimeters are needed for radiation detector for high-energy gamma rays, which are of interest for astrophysics or nuclear security, in order to provide sufficient stopping power.

Keywords: colloidal synthesis, lead chalcogenide, radiation detectors, quantum dots

Procedia PDF Downloads 99
3630 Antioxidant Juice Prevents UV- Induced Skin Damage in Rats

Authors: S. P. Gomes, D. C. Goncalves, E. Ribeiro, M. C. L. Seelaender

Abstract:

Skin is susceptible to photo damage induced by exposure to sunlight, or ultraviolet (UV) radiation, which induces breakdown of extracellular matrix, DNA degradation, skin cell lesion and apoptosis, and development of cancer. Phytonutrients demonstrate protective effects against UV damage. The purpose of this study was evaluating the effect of an antioxidant juice (AJ) contaning Brazilian natural products upon skin damage. The juice was produced by Metabolics®. Male Wistar rats were divided in 4 groups: Animals receiving the antioxidant juice (AJ): orange, carrot, honey, tomato extract, avocado, ginger and camu-camu (Brazilian fruit, a major source of vitamin C) ad libitum for 21 days; or water (C), subdivided in groups exposed or not to UV radiation for 2 non consecutive days, during five hours each day, after 15 days of juice supplementation. On the 22nd day, rats were killed by decapitation and epithelium samples from the dorsal skin removed, fixed in bouin and embedded in paraffin. The sections were stained with hematoxylin and eosin or mallory and picrosirius red. Isolated DNA was submitted to electrophoresis (1.8% agarose gel, 0.5% ethidium bromide). UV radiation significantly induced sunburn of superficial epithelial cells of C, AJ treatment reduced this effect. Collagen changes were observed in UV groups, yet AJ treatment prevented collagen degradation. UV radiation induced significant DNA degradation, in C, which was prevented by AJ treatment. The antioxidant juice consumed chronically protected against acute skin damage.

Keywords: nutraceuticals, antioxidants, photoprotection, uv radiation

Procedia PDF Downloads 593
3629 Assessment of Gamma Radiation Exposure of Soils Associated with Granitic Rocks in Kapıdağ Peninsula, Turkey

Authors: Buket Canbaz Öztürk, N. Füsun Çam, Günseli Yaprak, Osman Candan

Abstract:

The external terrestrial radiation exposure is related to the types of rock from which the soils originate. Higher radiation levels are associated with igneous rocks, such as granite, and lower levels with sedimentary rocks. Therefore, this study aims to assess the gamma radiation exposure of soils associated with granitic rocks in Kapıdağ Peninsula, Turkey. In the ongoing study, a comprehensive survey carried out systematically as a part of the environmental monitoring program on radiologic impact of the granitoid areas in Western Anatolia. The activity measurements of the gamma emitters (238U, 232Th and 40K) in the surface soil samples and the granitic rocks carried out by means of NaI(Tl) gamma-ray spectrometry system. To evaluate the radiological hazard of the natural radioactivity, the absorbed dose rate (D), the annual effective dose rate (AED), the radium equivalent activity (Raeq) and the external (Hex) hazard index were calculated according to the UNSCEAR 2000 report. The corresponding absorbed dose rates in air from all natural radionuclides were always much lower than 200 nGy h-1 and did not exceed the typical range of worldwide average values noticed in the UNSCEAR (2000) report. Furthermore, the correlation between soil and granitic rock samples were utilized, and external gamma radiation exposure distribution was mapped in Kapıdağ Peninsula.

Keywords: external absorbed dose, granitic rocks, Kapıdağ Peninsula, soil

Procedia PDF Downloads 193
3628 Using Atomic Force Microscope to Investigate the Influence of UVA Radiation and HA on Cell Behaviour and Elasticity of Dermal Fibroblasts

Authors: Pei-Hsiu Chiang, Ling Hong Huang, Hsin-I Chang

Abstract:

In this research, we used UVA irradiation, which can penetrate into dermis and fibroblasts, the most abundant cells in dermis, to investigate the effect of UV light on dermis, such as inflammation, ECM degradation and elasticity loss. Moreover, this research is focused on the influence of hyaluronic acid (HA) on UVA treated dermal fibroblasts. We aim to establish whether HA can effectively relief ECM degradation, and restore the elasticity of UVA-damaged fibroblasts. Prolonged exposure to UVA radiation can damage fibroblasts and led variation in cell morphology and reduction in cell viability. Besides, UVA radiation can induce IL-1β expression on fibroblasts and then promote MMP-1 and MMP-3 expression, which can accelerate ECM degradation. On the other hand, prolonged exposure to UVA radiation reduced collagen and elastin synthesis on fibroblasts. Due to the acceleration of ECM degradation and the reduction of ECM synthesis, Atomic force microscope (AFM) was used to analyze the elasticity reduction on UVA-damaged fibroblasts. UVA irradiation causes photoaging on fibroblasts. UVA damaged fibroblasts with HA treatment can down-regulate the gene expression of MMP-1, MMP-3, and then slow down ECM degradation. On the other hand, HA may restore elastin and collagen synthesis in UV-damaged fibroblasts. Based on the slowdown of ECM degradation, UVA-damaged fibroblast elasticity can be effectively restored by HA treatment. In summary, HA can relief the photoaging conditions on fibroblasts, but may not be able to return fibroblasts to normal, healthy state. Although HA cannot fully recover UVA-damaged fibroblasts, HA is still potential for repairing photoaging skin.

Keywords: atomic force microscope, hyaluronic acid, UVA radiation, dermal fibroblasts

Procedia PDF Downloads 356
3627 Industrial Process Mining Based on Data Pattern Modeling and Nonlinear Analysis

Authors: Hyun-Woo Cho

Abstract:

Unexpected events may occur with serious impacts on industrial process. This work utilizes a data representation technique to model and to analyze process data pattern for the purpose of diagnosis. In this work, the use of triangular representation of process data is evaluated using simulation process. Furthermore, the effect of using different pre-treatment techniques based on such as linear or nonlinear reduced spaces was compared. This work extracted the fault pattern in the reduced space, not in the original data space. The results have shown that the non-linear technique based diagnosis method produced more reliable results and outperforms linear method.

Keywords: process monitoring, data analysis, pattern modeling, fault, nonlinear techniques

Procedia PDF Downloads 357
3626 Lyapunov Exponents in the Restricted Three Body Problem under the Influence of Perturbations

Authors: Ram Kishor

Abstract:

The Lyapunov characteristic exponent (LCE) is an important tool to describe behavior of a dynamical system, which measures the average rate of divergence (or convergence) of a trajectory emanating in the vicinity of initial point. To analyze the behavior of nearby trajectory emanating in the neighborhood of an equilibrium point in the restricted three-body problem under the influence of perturbations in the form of radiation pressure and oblateness, we compute LCEs of first order with the help of slandered method which is based on variational equation of the system. It is observed that trajectories are chaotic in nature due positive LCEs. Also, we analyze the effect of radiation pressure and oblateness on the LCEs. Results are applicable to study the behavior of more generalized RTBP in the presence of perturbations such as PR drag, solar wind drag etc.

Keywords: Lyapunov characteristic exponent, RTBP, radiation pressure, oblateness

Procedia PDF Downloads 410
3625 A Miniaturized Circular Patch Antenna Based on Metamaterial for WI-FI Applications

Authors: Fatima Zahra Moussa, Yamina Belhadef, Souheyla Ferouani

Abstract:

In this work, we present a new form of miniature circular patch antenna based on CSRR metamaterials with an extended bandwidth proposed for 5 GHz Wi-Fiapplications. A reflection coefficient of -35 dB and a radiation pattern of 7.47 dB are obtained when simulating the initial proposed antenna with the CST microwave studio simulation software. The notch insertion technique in the radiating element was used for matching the antenna to the desired frequency in the frequency band [5150-5875] MHz.An extension of the bandwidth from 332 MHz to 1423 MHz was done by the DGS (defected ground structure) technique to meet the user's requirement in the 5 GHz Wi-Fi frequency band.

Keywords: patch antenna, miniaturisation, CSRR, notches, wifi, DGS

Procedia PDF Downloads 81
3624 The Cytoprotective Role of Antioxidants in Mammalian Cells Exposed to Variable Temperature, Pressure Overload and Radiation in the Stratosphere

Authors: Dawid Przystupski, Agata Gorska, Paulina Rozborska, Weronika Bartosik, Olga Michel, Joanna Rossowska, Anna Szewczyk, Malgorzata Drag-Zalesinska, Jedrzej Gorski, Julita Kulbacka

Abstract:

Researchers are still looking for an answer to the question which has been fascinating the mankind for generations, specifically – is there life beyond Earth? As long as routine flights to other planets remain beyond our reach, there is a need to find alternative ways to conduct the astrobiological research. It is worth noticing that the part of the Earth’s atmosphere, stratosphere, has been found to show subcosmic environmental conditions, namely temperatures around -50°C, very rarefied air, increased cosmic radiation and the Sun’s ultraviolet radiation. This phenomenon gives rise to the opportunity for the use of stratospheric environment as a research model for the space conditions. Therefore the idea of conducting astrobiological experiments during the stratospheric flights arose. Up to now, the preliminary work in this field included launching balloons containing solely microbiological samples into the stratosphere to figure out if they would be able to survive under the stratospheric conditions. In our study, we take this concept further, sending the human healthy and cancerous cells treated with various compounds to investigate whether these medicines are capable to protect the cells against stratospheric stress. Due to oxidative stress caused by ionizing radiation and temperature shock, we used natural compounds which display antioxidant properties. In this way, we were able to reduce the reactive oxygen species production affecting cells, which results in their death. After-flight laboratory tests of biological samples from the stratosphere have been performed and indicated the most active antioxidants as potential agents which can minimize the harmful impacts of stratospheric conditions, especially radiation and temperature.

Keywords: antioxidants, stratosphere, balloon flight, oxidative stress, cell death, radiation

Procedia PDF Downloads 108