Search results for: radiation exposure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3084

Search results for: radiation exposure

564 Engineering the Topological Insulator Structures for Terahertz Detectors

Authors: M. Marchewka

Abstract:

The article is devoted to the possible optical transitions in double quantum wells system based on HgTe/HgCd(Mn)Te heterostructures. Such structures can find applications as detectors and sources of radiation in the terahertz range. The Double Quantum Wells (DQW) systems consist of two QWs separated by the transparent for electrons barrier. Such systems look promising from the point of view of the additional degrees of freedom. In the case of the topological insulator in about 6.4nm wide HgTe QW or strained 3D HgTe films at the interfaces, the topologically protected surface states appear at the interfaces/surfaces. Electrons in those edge states move along the interfaces/surfaces without backscattering due to time-reversal symmetry. Combination of the topological properties, which was already verified by the experimental way, together with the very well know properties of the DQWs, can be very interesting from the applications point of view, especially in the THz area. It is important that at the present stage, the technology makes it possible to create high-quality structures of this type, and intensive experimental and theoretical studies of their properties are already underway. The idea presented in this paper is based on the eight-band KP model, including the additional terms related to the structural inversion asymmetry, interfaces inversion asymmetry, the influence of the magnetically content, and the uniaxial strain describe the full pictures of the possible real structure. All of this term, together with the external electric field, can be sources of breaking symmetry in investigated materials. Using the 8 band KP model, we investigated the electronic shape structure with and without magnetic field from the application point of view as a THz detector in a small magnetic field (below 2T). We believe that such structures are the way to get the tunable topological insulators and the multilayer topological insulator. Using the one-dimensional electrons at the topologically protected interface states as fast and collision-free signal carriers as charge and signal carriers, the detection of the optical signal should be fast, which is very important in the high-resolution detection of signals in the THz range. The proposed engineering of the investigated structures is now one of the important steps on the way to get the proper structures with predicted properties.

Keywords: topological insulator, THz spectroscopy, KP model, II-VI compounds

Procedia PDF Downloads 96
563 Literature Review on the Barriers to Access Credit for Small Agricultural Producers and Policies to Mitigate Them in Developing Countries

Authors: Margarita Gáfaro, Karelys Guzmán, Paola Poveda

Abstract:

This paper establishes the theoretical aspects that explain the barriers to accessing credit for small agricultural producers in developing countries and identifies successful policy experiences to mitigate them. We will test two hypotheses. The first one is that information asymmetries, high transaction costs and high-risk exposure limit the supply of credit to small agricultural producers in developing countries. The second hypothesis is that low levels of financial education and productivity and high uncertainty about the returns of agricultural activity limit the demand for credit. To test these hypotheses, a review of the theoretical and empirical literature on access to rural credit in developing countries will be carried out. The first part of this review focuses on theoretical models that incorporate information asymmetries in the credit market and analyzes the interaction between these asymmetries and the characteristics of the agricultural sector in developing countries. Some of the characteristics we will focus on are the absence of collateral, the underdevelopment of the judicial systems and insurance markets, and the high dependence on climatic factors of production technologies. The second part of this review focuses on the determinants of credit demand by small agricultural producers, including the profitability of productive projects, security conditions, risk aversion or loss, financial education, and cognitive biases, among others. There are policies that focus on resolving these supply and demand constraints and managing to improve credit access. Therefore, another objective of this paper is to present a review of effective policies that have promoted access to credit for smallholders in the world. For this, information available in policy documents will be collected. This information will be complemented by interviews with officials in charge of the design and execution of these policies in a subset of selected countries. The information collected will be analyzed in light of the conceptual framework proposed in the first two parts of this section. The barriers to access to credit that each policy attempts to resolve and the factors that could explain its effectiveness will be identified.

Keywords: agricultural economics, credit access, smallholder, developing countries

Procedia PDF Downloads 34
562 Work-Related Musculoskeletal Disorders Among Malaysian Office Workers in Klang Valley

Authors: Mohd Fadzly Yahya, Matthew Teo Yong Chang

Abstract:

Globally, the increasing life expectancy of human beings has brought more issues with non-communicable diseases, especially work-related musculoskeletal disorders (WMDs). WMSD also is one of the leading causes of health-related absence from work restricted work time in Malaysia. WMDs are cumulative disorders, resulting from repeated exposure to high or low-intensity loads over a long period. Evidence from a previous study showed that office workers in government and private sectors were showing high WRMDs prevalence in Malaysia. The objectives of this study were to determine the prevalence of MSDs among Malaysian office workers in Klang Valley and to identify the association between MSDs pain and working experience among office workers. This is a cross-sectional study focusing on officer workers in the Klang Valley area. The questionnaires consisted of the subject’s demographics, Nordic Musculoskeletal Questionnaire, and The Numeric Pain Rating Scale were distributed online via google forms to all consenting participants. The data were analyzed for descriptive analysis, parametric test, and student T-test using IBM SPSS Statistics Version 27. From a total of 244 participants, 95 (38.9%) were male and 149 (61.1%) were female. 57.8% of the total samples were government staff while private-sector workers were 42.2%. The highest MSDs prevalence was neck pain during the last 12 months which contributed to 69.3% (n=169) of total participants, which is male 38.5% (n=65) and female 61.5% (n=104). Our study revealed that female office workers have a higher prevalence of WMDs and there is a significant difference in elbow pain, wrist, and hands pain, and lower back pain across four different working experience groups. Office workers in this study were highly exposed to MSDs due to poor ergonomics implementation at the workplace. It is crucial to advocate preventative measures to employers such as workplace ergonomics and changes to work practices to reduce the incidence of MSDs cases in office settings.

Keywords: musculoskeletal disorders, pain, prevalence rate, office workers, risks

Procedia PDF Downloads 106
561 Using Daily Light Integral Concept to Construct the Ecological Plant Design Strategy of Urban Landscape

Authors: Chuang-Hung Lin, Cheng-Yuan Hsu, Jia-Yan Lin

Abstract:

It is an indispensible strategy to adopt greenery approach on architectural bases so as to improve ecological habitats, decrease heat-island effect, purify air quality, and relieve surface runoff as well as noise pollution, all of which are done in an attempt to achieve sustainable environment. How we can do with plant design to attain the best visual quality and ideal carbon dioxide fixation depends on whether or not we can appropriately make use of greenery according to the nature of architectural bases. To achieve the goal, it is a need that architects and landscape architects should be provided with sufficient local references. Current greenery studies focus mainly on the heat-island effect of urban with large scale. Most of the architects still rely on people with years of expertise regarding the adoption and disposition of plantation in connection with microclimate scale. Therefore, environmental design, which integrates science and aesthetics, requires fundamental research on landscape environment technology divided from building environment technology. By doing so, we can create mutual benefits between green building and the environment. This issue is extremely important for the greening design of the bases of green buildings in cities and various open spaces. The purpose of this study is to establish plant selection and allocation strategies under different building sunshade levels. Initially, with the shading of sunshine on the greening bases as the starting point, the effects of the shades produced by different building types on the greening strategies were analyzed. Then, by measuring the PAR( photosynthetic active radiation), the relative DLI( daily light integral) was calculated, while the DLI Map was established in order to evaluate the effects of the building shading on the established environmental greening, thereby serving as a reference for plant selection and allocation. The discussion results were to be applied in the evaluation of environment greening of greening buildings and establish the “right plant, right place” design strategy of multi-level ecological greening for application in urban design and landscape design development, as well as the greening criteria to feedback to the eco-city greening buildings.

Keywords: daily light integral, plant design, urban open space

Procedia PDF Downloads 486
560 Towards the Need of Resilient Design and Its Assessment in South China

Authors: Alan Lai, Wilson Yik

Abstract:

With rapid urbanization, there has been a dramatic increase in global urban population in Asia and over half of population in Asia will live in urban regions in the near future. Facing with increasing exposure to climate-related stresses and shocks, most of the Asian cities will very likely to experience more frequent heat waves and flooding with rising sea levels, particularly the coastal cities will grapple for intense typhoons and storm surges. These climate changes have severe impacts in urban areas at the costs of infrastructure and population, for example, human health, wellbeing and high risks of dengue fever, malaria and diarrheal disease. With the increasing prominence of adaptation to climate changes, there have been changes in corresponding policies. Smaller cities have greater potentials for integrating the concept of resilience into their infrastructure as well as keeping pace with their rapid growths in population. It is therefore important to explore the potentials of Asian cities adapting to climate change and the opportunities of building climate resilience in urban planning and building design. Furthermore, previous studies have mainly attempted at exploiting the potential of resilience on a macro-level within urban planning rather than that on micro-level within the context of individual building. The resilience of individual building as a research field has not yet been much explored. Nonetheless, recent studies define that the resilience of an individual building is the one which is able to respond to physical damage and recover from such damage in a quickly and cost-effectively manner, while maintain its primary functions. There is also a need to develop an assessment tool to evaluate the resilience on building scale which is still largely uninvestigated as it should be regarded as a basic function of a building. Due to the lack of literature reporting metric for assessing building resilience with sustainability, the research will be designed as a case study to provide insight into the issue. The aim of this research project is to encourage and assist in developing neighborhood climate resilience design strategies for Hong Kong so as to bridge the gap between difference scales and that between theory and practice.

Keywords: resilience cities, building resilience, resilient buildings and infrastructure, climate resilience, hot and humid southeast area, high-density cities

Procedia PDF Downloads 143
559 The Gender Digital Divide in Education: The Case of Students from Rural Area from Republic of Moldova

Authors: Bărbuță Alina

Abstract:

The inter-causal relationship between social inequalities and the digital divide raises the relation issue of gender and information and communication technologies (ICT) - a key element in achieving sustainable development. In preparing generations as future digital citizens and for active socio-economic participation, ICT plays a key role in respecting gender equality. Although several studies over the years have shown that gender plays an important role in digital exclusion, in recent years, many studies with a focus on economically developed or developing countries identify an improvement in these aspects and a gap narrowing. By measuring students' digital competencies level, this paper aims to identify and analyse the existing gender digital inequalities among students. Our analyses are based on a sample of 1526 middle school students residing in rural areas from Republic of Moldova (54.2% girls, mean age 14,00, SD = 1.02). During the online survey they filled in a questionnaire adapted from the (yDSI) ”The Youth Digital Skills Indicator”. The instrument measures the level of five digital competence areas indicated in The European Digital Competence Framework (DigiCom 2.3.). Our results, based on t-test, indicate that depending on gender, there are no statistically significant differences regarding the levels of digital skills in 3 areas: Information navigation and processing; Communication and interaction; Problem solving. However, were identified significant differences in the level of digital skills in the area of ”Digital content creation” [t(1425) = 4.20, p = .000] and ”Safety” [t(1421) = 2.49, p = .000], with higher scores recorded by girls. Our results contradicts the general stereotype regarding the low level of digital competence among girls, in our sample girls scores being on pear with boys and even bigger in knowledge related to digital content creation and online safety skills. Additional investigations related to boys competence on digital safety are necessary as the implication of their low scores on this dimension may suggest boys exposure to digital threats.

Keywords: digital divide, education, gender digital divide, digital literacy, remote learning

Procedia PDF Downloads 73
558 Hybrid Speciation and Morphological Differentiation in Senecio (Senecioneae, Asteraceae) from the Andes

Authors: Luciana Salomon

Abstract:

The Andes hold one of the highest plant species diversity in the world. How such diversity originated is one of the most intriguing questions in studies addressing the pattern of plant diversity worldwide. Recently, the explosive adaptive radiations found in high Andean groups have been pointed as major triggers of this spectacular diversity. The Andes are one of the most species-rich area for the largest genus from the Asteraceae family, Senecio. There, the genus presents an incredible variation in growth form and ecological niche space. If this diversity of Andean Senecio can be explained by a monophyletic origin and subsequent radiation has not been tested up to now. Previous studies trying to disentangle the evolutionary history of some Andean Senecio struggled with the relatively low resolution and support of the phylogenies, which is indicative of recently radiated groups. Using Hyb-Seq, a powerful approach is available to address phylogenetic questions in groups whose evolutionary histories are recent and rapid. This approach was used for Senecio to build a phylogenetic backbone on which to study the mechanisms shaping its hyper-diversity in the Andes, focusing on Senecio ser. Culcitium, an exclusively Andean and well circumscribed group presenting large morphological variation and which is widely distributed across the Andes. Hyb-Seq data for about 130 accessions of Seneciowas generated. Using standard data analysis work flows and a newly developed tool to utilize paralogs for phylogenetic reconstruction, robustness of the species treewas investigated. Fully resolved and moderately supported species trees were obtained, showing Senecio ser. Culcitium as monophyletic. Within this group, some species formed well-supported clades congruent with morphology, while some species would not have exclusive ancestry, in concordance with previous studies showing a geographic differentiation. Additionally, paralogs were detected for a high number of loci, indicating duplication events and hybridization, known to be common in Senecio ser. Culcitium might have lead to hybrid speciation. The rapid diversification of the group seems to have followed a south-north distribution throughout the Andes, having accelerated in the conquest of new habitats more recently available: i.e., Montane forest, Paramo, and Superparamo.

Keywords: evolutionary radiations, andes, paralogy, hybridization, senecio

Procedia PDF Downloads 102
557 Entrepreneurial Intention and Social Entrepreneurship among Students in Malaysian Higher Education

Authors: Radin Siti Aishah Radin A Rahman, Norasmah Othman, Zaidatol Akmaliah Lope Pihie, Hariyaty Ab. Wahid

Abstract:

The recent instability in economy was found to be influencing the situation in Malaysia whether directly or indirectly. Taking that into consideration, the government needs to find the best approach to balance its citizen’s socio-economic strata level urgently. Through education platform is among the efforts planned and acted upon for the purpose of balancing the effects of the influence, through the exposure of social entrepreneurial activity towards youth especially those in higher institution level. Armed with knowledge and skills that they gained, with the support by entrepreneurial culture and environment while in campus; indirectly, the students will lean more on making social entrepreneurship as a career option when they graduate. Following the issues of marketability and workability of current graduates that are becoming dire, research involving how far the willingness of student to create social innovation that contribute to the society without focusing solely on personal gain is relevant enough to be conducted. With that, this research is conducted with the purpose of identifying the level of entrepreneurial intention and social entrepreneurship among higher institution students in Malaysia. Stratified random sampling involves 355 undergraduate students from five public universities had been made as research respondents and data were collected through surveys. The data was then analyzed descriptively using min score and standard deviation. The study found that the entrepreneurial intention of higher education students are on moderate level, however it is the contrary for social entrepreneurship activities, where it was shown on a high level. This means that while the students only have moderate level of willingness to be a social entrepreneur, they are very committed to created social innovation through the social entrepreneurship activities conducted. The implication from this study can be contributed towards the higher institution authorities in prediction the tendency of student in becoming social entrepreneurs. Thus, the opportunities and facilities for realizing the courses related to social entrepreneurship must be created expansively so that the vision of creating as many social entrepreneurs as possible can be achieved.

Keywords: entrepreneurial intention, higher education institutions (HEIs), social entrepreneurship, social entrepreneurial activity, gender

Procedia PDF Downloads 240
556 Malate Dehydrogenase Enabled ZnO Nanowires as an Optical Tool for Malic Acid Detection in Horticultural Products

Authors: Rana Tabassum, Ravi Kant, Banshi D. Gupta

Abstract:

Malic acid is an extensively distributed organic acid in numerous horticultural products in minute amounts which significantly contributes towards taste determination by balancing sugar and acid fractions. An enhanced concentration of malic acid is utilized as an indicator of fruit maturity. In addition, malic acid is also a crucial constituent of several cosmetics and pharmaceutical products. An efficient detection and quantification protocol for malic acid is thus highly demanded. In this study, we report a novel detection scheme for malic acid by synergistically collaborating fiber optic surface plasmon resonance (FOSPR) and distinctive features of nanomaterials favorable for sensing applications. The design blueprint involves the deposition of an assembly of malate dehydrogenase enzyme entrapped in ZnO nanowires forming the sensing route over silver coated central unclad core region of an optical fiber. The formation and subsequent decomposition of the enzyme-analyte complex on exposure of the sensing layer to malic acid solutions of diverse concentration results in modification of the dielectric function of the sensing layer which is manifested in terms of shift in resonance wavelength. Optimization of experimental variables such as enzyme concentration entrapped in ZnO nanowires, dip time of probe for deposition of sensing layer and working pH range of the sensing probe have been accomplished through SPR measurements. The optimized sensing probe displays high sensitivity, broad working range and a minimum limit of detection value and has been successfully tested for malic acid determination in real samples of fruit juices. The current work presents a novel perspective towards malic acid determination as the unique and cooperative combination of FOSPR and nanomaterials provides myriad advantages such as enhanced sensitivity, specificity, compactness together with the possibility of online monitoring and remote sensing.

Keywords: surface plasmon resonance, optical fiber, sensor, malic acid

Procedia PDF Downloads 355
555 Effective Thermal Retrofitting Methods to Improve Energy Efficiency of Existing Dwellings in Sydney

Authors: Claire Far, Sara Wilkinson, Deborah Ascher Barnstone

Abstract:

Energy issues have been a growing concern in current decades. Limited energy resources and increasing energy consumption from one side and environmental pollution and waste of resources from the other side have substantially affected the future of human life. Around 40 percent of total energy consumption of Australian buildings goes to heating and cooling due to the low thermal performance of the buildings. Thermal performance of buildings determines the amount of energy used for heating and cooling of the buildings which profoundly influences energy efficiency. Therefore, employing sustainable design principles and effective use of construction materials for building envelope can play crucial role in the improvement of energy efficiency of existing dwellings and enhancement of thermal comfort of the occupants. The energy consumption for heating and cooling normally is determined by the quality of the building envelope. Building envelope is the part of building which separates the habitable areas from exterior environment. Building envelope consists of external walls, external doors, windows, roof, ground and the internal walls that separate conditioned spaces from non-condition spaces. The energy loss from the building envelope is the key factor. Heat loss through conduction, convection and radiation from building envelope. Thermal performance of the building envelope can be improved by using different methods of retrofitting depending on the climate conditions and construction materials. Based on the available studies, the importance of employing sustainable design principles has been highlighted among the Australian building professionals. However, the residential building sector still suffers from a lack of having the best practice examples and experience for effective use of construction materials for building envelope. As a result, this study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of existing dwellings in Sydney, the most populated city in Australia. Based on the research findings, the best thermal retrofitting methods for increasing thermal comfort and energy efficiency of existing residential dwellings as well as reducing their environmental impact and footprint have been identified and proposed.

Keywords: thermal comfort, energy consumption, residential dwellings, sustainable design principles, thermal retrofit

Procedia PDF Downloads 242
554 The Effect of Acute Toxicity and Thyroid Hormone Treatments on Hormonal Changes during Embryogenesis of Acipenser persicus

Authors: Samaneh Nazeri, Bagher Mojazi Amiri, Hamid Farahmand

Abstract:

Production of high quality fish eggs with reasonable hatching rate makes a success in aquaculture industries. It is influenced by the environmental stimulators and inhibitors. Diazinon is a widely-used pesticide in Golestan province (Southern Caspian Sea, North of Iran) which is washed to the aquatic environment (3 mg/L in the river). It is little known about the effect of this pesticide on the embryogenesis of sturgeon fish, the valuable species of the Caspian Sea. Hormonal content of the egg is an important factor to guaranty the successful passes of embryonic stages. In this study, the fate of Persian sturgeon embryo to 24, 48, 72, and 96-hours exposure of diazinon (LC50 dose) was tested. Also, the effect of thyroid hormones (T3 and T4) on these embryos was tested concurrently or separately with diazinon LC 50 dose. Fertilized eggs are exposed to T3 (low dose: 1 ng/ml, high dose: 10 ng/ml), T4 (low dose: 1 ng/ml, high dose: 10 ng/ml). Six eggs were randomly selected from each treatment (with three replicates) in five developmental stages (two cell- division, neural, heart present, heart beaten, and hatched larvae). The possibility of changing T3, T4, and cortisol contents of the embryos were determined in all treated groups and in every mentioned embryonic stage. The hatching rate in treated groups was assayed at the end of the embryogenesis to clarify the effect of thyroid hormones and diazinon. The results indicated significant differences in thyroid hormone contents, but no significant differences were recognized in cortisol levels at various early life stages of embryos. There was also significant difference in thyroid hormones in (T3, T4) + diazinon treated embryos (P˂0.05), while no significant difference between control and treatments in cortisol levels was observed. The highest hatching rate was recorded in HT3 treatment, while the lowest hatching rate was recorded for diazinon LC50 treatment. The result confirmed that Persian sturgeon embryo is less sensitive to diazinon compared to teleost embryos, and thyroid hormones may increase hatching rate even in the presence of diazinon.

Keywords: Persian sturgeon, diazinon, thyroid hormones, cortisol, embryo

Procedia PDF Downloads 278
553 Study of Geological Structure for Potential Fresh-Groundwater Aquifer Determination around Cidaun Beach, Cianjur Regency, West Java Province, Indonesia

Authors: Ilham Aji Dermawan, M. Sapari Dwi Hadian, R. Irvan Sophian, Iyan Haryanto

Abstract:

The study of the geological structure in the surrounding area of Cidaun, Cianjur Regency, West Java Province, Indonesia was conducted around the southern coast of Java Island. This study aims to determine the potentially structural trap deposits of freshwater resources in the study area, according to that the study area is an area directly adjacent to the beach, where the water around it did not seem fresh and brackish due to the exposure of sea water intrusion. This study uses the method of geomorphological analysis and geological mapping by taking the data directly in the field within 10x10 km of the research area. Geomorphological analysis was done by calculating the watershed drainage density value and roundness of watershed value ratio. The goal is to determine the permeability of the sub-soil conditions, rock constituent, and the flow of surface water. While the field geological mapping aims to take the geological structure data and then will do the reconstruction to determine the geological conditions of research area. The result, from geomorphology aspects, that the considered area of potential groundwater consisted of permeable surface material, permeable sub-soil, and low of water run-off flow. It is very good for groundwater recharge area. While the results of geological reconstruction after conducted of geological mapping is joints that present were initiated for the Cipandak Fault that cuts Cipandak River. That fault across until the Cibako Syncline fold through the Cibako River. This syncline is expected to place of influent groundwater aquifer. The tip of Cibako River then united with Cipandak River, where the Cipandak River extends through Cipandak Syncline fold axis in the southern regions close to its estuary. This syncline is expected to place of influent groundwater aquifer too.

Keywords: geological structure, groundwater, hydrogeology, influent aquifer, structural trap

Procedia PDF Downloads 180
552 Cascade Multilevel Inverter-Based Grid-Tie Single-Phase and Three-Phase-Photovoltaic Power System Controlling and Modeling

Authors: Syed Masood Hussain

Abstract:

An effective control method, including system-level control and pulse width modulation for quasi-Z-source cascade multilevel inverter (qZS-CMI) based grid-tie photovoltaic (PV) power system is proposed. The system-level control achieves the grid-tie current injection, independent maximum power point tracking (MPPT) for separate PV panels, and dc-link voltage balance for all quasi-Z-source H-bridge inverter (qZS-HBI) modules. A recent upsurge in the study of photovoltaic (PV) power generation emerges, since they directly convert the solar radiation into electric power without hampering the environment. However, the stochastic fluctuation of solar power is inconsistent with the desired stable power injected to the grid, owing to variations of solar irradiation and temperature. To fully exploit the solar energy, extracting the PV panels’ maximum power and feeding them into grids at unity power factor become the most important. The contributions have been made by the cascade multilevel inverter (CMI). Nevertheless, the H-bridge inverter (HBI) module lacks boost function so that the inverter KVA rating requirement has to be increased twice with a PV voltage range of 1:2; and the different PV panel output voltages result in imbalanced dc-link voltages. However, each HBI module is a two-stage inverter, and many extra dc–dc converters not only increase the complexity of the power circuit and control and the system cost, but also decrease the efficiency. Recently, the Z-source/quasi-Z-source cascade multilevel inverter (ZS/qZS-CMI)-based PV systems were proposed. They possess the advantages of both traditional CMI and Z-source topologies. In order to properly operate the ZS/qZS-CMI, the power injection, independent control of dc-link voltages, and the pulse width modulation (PWM) are necessary. The main contributions of this paper include: 1) a novel multilevel space vector modulation (SVM) technique for the single phase qZS-CMI is proposed, which is implemented without additional resources; 2) a grid-connected control for the qZS-CMI based PV system is proposed, where the all PV panel voltage references from their independent MPPTs are used to control the grid-tie current; the dual-loop dc-link peak voltage control.

Keywords: Quzi-Z source inverter, Photo voltaic power system, space vector modulation, cascade multilevel inverter

Procedia PDF Downloads 522
551 Applications of Artificial Intelligence (AI) in Cardiac imaging

Authors: Angelis P. Barlampas

Abstract:

The purpose of this study is to inform the reader, about the various applications of artificial intelligence (AI), in cardiac imaging. AI grows fast and its role is crucial in medical specialties, which use large amounts of digital data, that are very difficult or even impossible to be managed by human beings and especially doctors.Artificial intelligence (AI) refers to the ability of computers to mimic human cognitive function, performing tasks such as learning, problem-solving, and autonomous decision making based on digital data. Whereas AI describes the concept of using computers to mimic human cognitive tasks, machine learning (ML) describes the category of algorithms that enable most current applications described as AI. Some of the current applications of AI in cardiac imaging are the follows: Ultrasound: Automated segmentation of cardiac chambers across five common views and consequently quantify chamber volumes/mass, ascertain ejection fraction and determine longitudinal strain through speckle tracking. Determine the severity of mitral regurgitation (accuracy > 99% for every degree of severity). Identify myocardial infarction. Distinguish between Athlete’s heart and hypertrophic cardiomyopathy, as well as restrictive cardiomyopathy and constrictive pericarditis. Predict all-cause mortality. CT Reduce radiation doses. Calculate the calcium score. Diagnose coronary artery disease (CAD). Predict all-cause 5-year mortality. Predict major cardiovascular events in patients with suspected CAD. MRI Segment of cardiac structures and infarct tissue. Calculate cardiac mass and function parameters. Distinguish between patients with myocardial infarction and control subjects. It could potentially reduce costs since it would preclude the need for gadolinium-enhanced CMR. Predict 4-year survival in patients with pulmonary hypertension. Nuclear Imaging Classify normal and abnormal myocardium in CAD. Detect locations with abnormal myocardium. Predict cardiac death. ML was comparable to or better than two experienced readers in predicting the need for revascularization. AI emerge as a helpful tool in cardiac imaging and for the doctors who can not manage the overall increasing demand, in examinations such as ultrasound, computed tomography, MRI, or nuclear imaging studies.

Keywords: artificial intelligence, cardiac imaging, ultrasound, MRI, CT, nuclear medicine

Procedia PDF Downloads 44
550 Malignant Ovarian Cancer Ascites Confers Platinum Chemoresistance to Ovarian Cancer Cells: A Combination Treatment with Crizotinib and 2 Hydroxyestradiol Restore Platinum Sensitivity

Authors: Yifat Koren Carmi, Abed Agbarya, Hazem Khamaisi, Raymond Farah, Yelena Shechtman, Roman Korobochka, Jacob Gopas, Jamal Mahajna

Abstract:

Ovarian cancer (OC), the second most common form of gynecological malignancy, has a poor prognosis and is frequently identified in its late stages. The recommended treatment for OC typically includes a platinum-based chemotherapy, like carboplatin. Nonetheless, OC treatment has proven challenging due to toxicity and development of acquired resistance to therapy. Chemoresistance is a significant obstacle to a long-lasting response in OC patients, believed to arise from alterations within the cancer cells as well as within the tumor microenvironments (TME). Malignant ascites is a presenting feature in more than one-third of OC patients. It serves as a reservoir for a complex mixture of soluble factors, metabolites, and cellular components, providing a pro-inflammatory and tumor-promoting microenvironment for the OC cells. Malignant ascites is also associated with metastasis and chemoresistance. In an attempt to elucidate the role of TME in chemoresistance of OC, we monitored the ability of soluble factors derived from ascites fluids to affect platinum sensitivity of OC cells. This research, compared ascites fluids from non-malignant cirrhotic patients to those from OC patients in terms of their ability to alter the platinum sensitivity of OC cells. Our findings indicated that exposure to OC ascites induces platinum chemoresistance on OC cells in 11 out of 13 cases (85%). In contrast, 75% of cirrhosis ascites (3 out of 4) failed to confer platinum chemoresistance to OC cells. Cytokine array analysis revealed that IL-6, and to a lesser extent HGF were enriched in OC ascites, whereas IL-22 was enriched in cirrhosis ascites. Pharmaceutical inhibitors that target the IL-6/JAK signaling pathway were mildly effective in overcoming the platinum chemoresistance induced by malignant ascites. In contrast, Crizotinib an HGF/c-MET inhibitor, and 2-hydroxyestradiol (2HE2) were effective in restoring platinum chemoresistance to OC. Our findings demonstrate the importance of OC ascites in supporting platinum chemoresistance as well as the potential of a combination therapy with Crizotinib and the estradiol metabolite 2HE2 to regain OC cells chemosensitivity.

Keywords: ovarian cancer, platinum chemoresistance, malignant ascites, tumor microenvironment, IL-6, 2-hydroxyestradiol, HGF, crizotinib

Procedia PDF Downloads 33
549 Climate Changes Impact on Artificial Wetlands

Authors: Carla Idely Palencia-Aguilar

Abstract:

Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.

Keywords: DEM, evapotranspiration, geostatistics, NDVI

Procedia PDF Downloads 90
548 ANSYS FLUENT Simulation of Natural Convection and Radiation in a Solar Enclosure

Authors: Sireetorn Kuharat, Anwar Beg

Abstract:

In this study, multi-mode heat transfer characteristics of spacecraft solar collectors are investigated computationally. Two-dimensional steady-state incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics. Several radiative transfer models are employed which are available in the ANSYS workbench, including the classical Rosseland flux model and the more elegant P1 flux model. Mesh-independence tests are conducted. Validation of the simulations is conducted with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on temperature, isotherms, velocity, the pressure is evaluated and visualized in color plots. Additionally, the local convective heat flux is computed and solutions are compared with the MAC solver for various buoyancy effects (e.g. Ra = 10,000,000) achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar radiative flux on thermal fluid behavior compared with the limited Rosseland model. With increasing Rayleigh numbers the hot zone emanating from the base of the collector is found to penetrate deeper into the collector and rises symmetrically dividing into two vortex regions with very high buoyancy effect (Ra >100,000). With increasing Prandtl number (three gas cases are examined respectively hydrogen gas mixture, air and ammonia gas) there is also a progressive incursion of the hot zone at the solar collector base higher into the solar collector space and simultaneously a greater asymmetric behavior of the dual isothermal zones. With increasing aspect ratio (wider base relative to the height of the solar collector geometry) there is a greater thermal convection pattern around the whole geometry, higher temperatures and the elimination of the cold upper zone associated with lower aspect ratio.

Keywords: thermal convection, radiative heat transfer, solar collector, Rayleigh number

Procedia PDF Downloads 93
547 Interprofessional School-Based Mental Health Services for Rural Adolescents in South Australia

Authors: Garreth Kestell, Lukah Dykes, Danielle Zerk, Kyla Trewartha, Rhianon Marshall, Elena Rudnik

Abstract:

Adolescent mental health is an international priority and the impact of innovative service models must be evaluated. Secondary school-based mental health services (SBMHS) involving private general practitioners and psychologists are a model of care being trialed in South Australia. Measures of depression, anxiety, and stress are routinely collected throughout psychotherapy sessions. This research set out to quantify the impact of psychotherapy for rural adolescents in a school setting and explore the importance of session frequency. Methods: Demographics, session date and DASS21 scores from students (n=65) seen in 2016 by three psychologists working at the SBMHS were recorded. Students were aged 13-18 years (M=15.43, SD= 1.24), mostly female (F=51, M=14), attended between 1 and 23 sessions with a median of 6 sessions (MAD 5.93) in one-year. The treating psychologist collected self-administered DASS21 scores. A mixed model analysis was used with age, sex, treating psychologist, months from first session, and session number as fixed effects, with response variables of DASS depression, anxiety, and stress scores. Results: 71.5% were classified as having extreme or severe anxiety and half had extreme or severe depression and/or stress scores. On average males had a greater increase in DASS scores over time but males attending more sessions benefited most from therapy. Discussion: Psychologists are treating rural adolescents in schools for severe anxiety, depression, and stress. This pilot study indicates that a predictive model combining demographics, session frequency, and DASS scores may help identify who is most likely to benefit from individual psychotherapy. Variations in DAS scores of individuals over time indicate the need for the collection of information such as living situation and exposure to alcohol. A larger sample size and additional data are currently being collected to allow for a more robust analysis.

Keywords: adolescent health, psychotherapy, school based mental health services, DAS21

Procedia PDF Downloads 133
546 A Foodborne Cholera Outbreak in a School Caused by Eating Contaminated Fried Fish: Hoima Municipality, Uganda, February 2018

Authors: Dativa Maria Aliddeki, Fred Monje, Godfrey Nsereko, Benon Kwesiga, Daniel Kadobera, Alex Riolexus Ario

Abstract:

Background: Cholera is a severe gastrointestinal disease caused by Vibrio cholera. It has caused several pandemics. On 26 February 2018, a suspected cholera outbreak, with one death, occurred in School X in Hoima Municipality, western Uganda. We investigated to identify the scope and mode of transmission of the outbreak, and recommend evidence-based control measures. Methods: We defined a suspected case as onset of diarrhea, vomiting, or abdominal pain in a student or staff of School X or their family members during 14 February–10 March. A confirmed case was a suspected case with V. cholerae cultured from stool. We reviewed medical records at Hoima Hospital and searched for cases at School X. We conducted descriptive epidemiologic analysis and hypothesis-generating interviews of 15 case-patients. In a retrospective cohort study, we compared attack rates between exposed and unexposed persons. Results: We identified 15 cases among 75 students and staff of School X and their family members (attack rate=20%), with onset from 25-28 February. One patient died (case-fatality rate=6.6%). The epidemic curve indicated a point-source exposure. On 24 February, a student brought fried fish from her home in a fishing village, where a cholera outbreak was ongoing. Of the 21 persons who ate the fish, 57% developed cholera, compared with 5.6% of 54 persons who did not eat (RR=10; 95% CI=3.2-33). None of 4 persons who recooked the fish before eating, compared with 71% of 17 who did not recook it, developed cholera (RR=0.0, 95%CIFisher exact=0.0-0.95). Of 12 stool specimens cultured, 6 yielded V. cholerae. Conclusion: This cholera outbreak was caused by eating fried fish, which might have been contaminated with V. cholerae in a village with an ongoing outbreak. Lack of thorough cooking of the fish might have facilitated the outbreak. We recommended thoroughly cooking fish before consumption.

Keywords: cholera, disease outbreak, foodborne, global health security, Uganda

Procedia PDF Downloads 165
545 Pioneering Technology of Night Photo-Stimulation of the Brain Lymphatic System: Therapy of Brain Diseases during Sleep

Authors: Semyachkina-Glushkovskaya Oxana, Fedosov Ivan, Blokhina Inna, Terskov Andrey, Evsukova Arina, Elovenko Daria, Adushkina Viktoria, Dubrovsky Alexander, Jürgen Kurths

Abstract:

In modern neurobiology, sleep is considered a novel biomarker and a promising therapeutic target for brain diseases. This is due to recent discoveries of the nighttime activation of the brain lymphatic system (BLS), playing an important role in the removal of wastes and toxins from the brain and contributes neuroprotection of the central nervous system (CNS). In our review, we discuss that night stimulation of BLS might be a breakthrough strategy in a new treatment of Alzheimer’s and Parkinson’s disease, stroke, brain trauma, and oncology. Although this research is in its infancy, however, there are pioneering and promising results suggesting that night transcranial photostimulation (tPBM) stimulates more effectively lymphatic removal of amyloid-beta from mouse brain than daily tPBM that is associated with a greater improvement of the neurological status and recognition memory of animals. In our previous study, we discovered that tPBM modulates the tone and permeability of the lymphatic endothelium by stimulating NO formation, promoting lymphatic clearance of wastes and toxins from the brain tissues. We also demonstrate that tPBM can also lead to angio- and lymphangiogenesis, which is another mechanism underlying tPBM-mediated stimulation of BLS. Thus, photo-augmentation of BLS might be a promising therapeutic target for preventing or delaying brain diseases associated with BLS dysfunction. Here we present pioneering technology for simultaneous tPBM in humans and sleep monitoring for stimulation of BLS to remove toxins from CNS and modulation of brain immunity. The wireless-controlled gadget includes a flexible organic light-emitting diode (LED) source that is controlled directly by a sleep-tracking device via a mobile application. The designed autonomous LED source is capable of providing the required therapeutic dose of light radiation at a certain region of the patient’s head without disturbing of sleeping patient. To minimize patients' discomfort, advanced materials like flexible organic LEDs were used. Acknowledgment: This study was supported by RSF project No. 23-75-30001.

Keywords: brain diseases, brain lymphatic system, phototherapy, sleep

Procedia PDF Downloads 50
544 Irradiated-Chitosan and Methyl Jasmonate Modulate the Growth, Physiology and Alkaloids Production in Catharanthus roseus (l.) G. Don.

Authors: Moin Uddin, M. Masroor A. Khan, Faisal Rasheed, Tariq Ahmad Dar, Akbar Ali, Lalit Varshney

Abstract:

Oligomers, obtained by exposing the natural polysaccharides (alginate, carrageenan, chitosan, etc.) to cobalt-60 generated gamma radiation may prove as potent plant growth promoters when applied as foliar sprays to the plants. They function as endogenous growth elicitors, triggering the synthesis of different enzymes and modulating various plant responses by exploiting the gene expression. Exogenous application of Jasmonic acid or of its methyl ester, methyl jasmonate (MeJ) has been reported to increase the secondary metabolites production in medicinal and aromatic plants. Keeping this in mind, three pot experiments were conducted to test whether the foliar application of irradiated-chitosan (IC) and MeJ, applied alone or in combination, could augment the active constituents as well as growth, physiological and yield attributes of Catharanthus roseus, which carries anticancer alkaloids, viz. vincristine and vinblastine, in its leaves in addition to various other useful alkaloids. Totally, 5 spray treatments, comprising various aqueous solutions of IC [20, 40, 80 and 160 mg L-1 (Experiment 1)], MeJ (10, 20, 30 and 40 mg L-1 (Experiment 2)] and those of IC+MeJ [40+20, 40+30, 80+20, 80+30, 160+20 and 160+30 mg L-1 (Experiment 3)], were applied at seven days interval. Total leaf-alkaloids content as well as growth, physiological and yield parameters, evaluated at 120 days after sowing, were significantly enhanced by IC application. IC application could not increase the leaf-content of vincristine and vinblastine; nonetheless, it significantly augmented the yield of these alkaloids owing to enhancing the dry mass of leaves per plant. MeJ application, particularly at 30 mg L-1, increased both content (17%) and yield (48%) of total leaf-alkaloids as well as the content and yield of vincristine ( 29 and 63%, respectively) and vinblastine (14 and 44%, respectively) alkaloids, though it significantly decreased most other parameters studied, particularly at higher concentrations (30 and 40 mg L-1 of MeJ). As compared to the control (water-spray treatment), collective application of IC (80 mg L-1) and MeJ (20 mg L-1) resulted in the highest values of most of the parameters studied. However, 80 mg L-1 of IC applied with 30 mg L-1 of MeJ gave the best results for the content and yield of total as well as anticancer leaf-alkaloids (vincristine and vinblastine). Comparing the control, it increased the content and yield of total leaf-alkaloids (37 and 118%, respectively) and those of vincristine (65 and 163%, respectively) and vinblastine (31 and 107%, respectively). Conclusively, the applied technique significantly enhanced the production of total as well as anticancer alkaloids of Catharanthus roseus.

Keywords: anticancer alkaloids (vincristine and vinblastine), catharanthus roseus, irradiated chitosan, methyl jasmonate

Procedia PDF Downloads 367
543 Enhancing Animal Protection: Topical RNAi with Polymer Carriers for Sustainable Animal Health in Australian Sheep Flystrike

Authors: Yunjia Yang, Yakun Yan, Peng Li, Gordon Xu, Timothy Mahony, Neena Mitter, Karishma Mody

Abstract:

Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls and the parasite has developed resistance to nearly all control chemicals used in the past. It is therefore critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi and insects. However, the environmental instability of dsRNA is a major bottleneck with a protection window only lasting 5-7 days. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for controlled release of the dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. We have investigated four different BenPol carriers for their dsRNA loading capabilities of which three of them were able to afford dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in the sheep serum. Based on stability results, we further tested dsRNA from potential targeted genes loaded with BenPol carrier in larvae feeding assay, and get three knockdowns. Our results, establish that the dsRNA when loaded on BenPol particles is stable unlike naked dsRNA which is rapidly degraded in the sheep serum. A stable nanoparticles delivery system that can protect and increase the inherent stability of the dsRNA molecules at higher temperatures in a complex biological fluid like serum, offers a great deal of promise for the future use of this approach for enhancing animal protection.

Keywords: RNA interference, Lucillia cuprina, polymer carriers, polymer stability

Procedia PDF Downloads 48
542 Efficacy of Crystalline Admixtures in Self-Healing Capacity of Fibre Reinforced Concrete

Authors: Evangelia Tsampali, Evangelos Yfantidis, Andreas Ioakim, Maria Stefanidou

Abstract:

The purpose of this paper is the characterization of the effects of crystalline admixtures on concrete. Crystallites, aided by the presence of humidity, form idiomorphic crystals that block cracks and pores resulting in reduced porosity. In this project, two types of crystallines have been employed. The hydrophilic nature of crystalline admixtures helps the components to react with water and cement particles in the concrete to form calcium silicate hydrates and pore-blocking precipitates in the existing micro-cracks and capillaries. The underlying mechanism relies on the formation of calcium silicate hydrates and the resulting deposits of these crystals become integrally bound with the hydrated cement paste. The crystalline admixtures continue to activate throughout the life of the composite material when in the presence of moisture entering the concrete through hairline cracks, sealing additional gaps. The resulting concrete exhibits significantly increased resistance to water penetration under stress. Admixtures of calcium aluminates can also contribute to this healing mechanism in the same manner. However, this contribution is negligible compared to the calcium silicate hydrates due to the abundance of the latter. These crystalline deposits occur throughout the concrete volume and are a permanent part of the concrete mass. High-performance fibre reinforced cementitious composite (HPFRCC) were produced in the laboratory. The specimens were exposed in three healing conditions: water immersion until testing at 15 °C, sea water immersion until testing at 15 °C, and wet/dry cycles (immersion in tap water for 3 days and drying for 4 days). Specimens were pre-cracked at 28 days, and the achieved cracks width were in the range of 0.10–0.50 mm. Furthermore, microstructure observations and Ultrasonic Pulse Velocity tests have been conducted. Based on the outcomes, self-healing related indicators have also been defined. The results show almost perfect healing capability for specimens healed under seawater, better than for specimens healed in water while inadequate for the wet/dry exposure in both of the crystalline types.

Keywords: autogenous self-healing, concrete, crystalline admixtures, ultrasonic pulse velocity test

Procedia PDF Downloads 102
541 Investigation of a Novel Dual Band Microstrip/Waveguide Hybrid Antenna Element

Authors: Raoudane Bouziyan, Kawser Mohammad Tawhid

Abstract:

Microstrip antennas are low in profile, light in weight, conformable in structure and are now developed for many applications. The main difficulty of the microstrip antenna is its narrow bandwidth. Several modern applications like satellite communications, remote sensing, and multi-function radar systems will find it useful if there is dual-band antenna operating from a single aperture. Some applications require covering both transmitting and receiving frequency bands which are spaced apart. Providing multiple antennas to handle multiple frequencies and polarizations becomes especially difficult if the available space is limited as with airborne platforms and submarine periscopes. Dual band operation can be realized from a single feed using slot loaded or stacked microstrip antenna or two separately fed antennas sharing a common aperture. The former design, when used in arrays, has certain limitations like complicated beam forming or diplexing network and difficulty to realize good radiation patterns at both the bands. The second technique provides more flexibility with separate feed system as beams in each frequency band can be controlled independently. Another desirable feature of a dual band antenna is easy adjustability of upper and lower frequency bands. This thesis presents investigation of a new dual-band antenna, which is a hybrid of microstrip and waveguide radiating elements. The low band radiator is a Shorted Annular Ring (SAR) microstrip antenna and the high band radiator is an aperture antenna. The hybrid antenna is realized by forming a waveguide radiator in the shorted region of the SAR microstrip antenna. It is shown that the upper to lower frequency ratio can be controlled by the proper choice of various dimensions and dielectric material. Operation in both linear and circular polarization is possible in either band. Moreover, both broadside and conical beams can be generated in either band from this antenna element. Finite Element Method based software, HFSS and Method of Moments based software, FEKO were employed to perform parametric studies of the proposed dual-band antenna. The antenna was not tested physically. Therefore, in most cases, both HFSS and FEKO were employed to corroborate the simulation results.

Keywords: FEKO, HFSS, dual band, shorted annular ring patch

Procedia PDF Downloads 375
540 An Original and Suitable Induction Method of Repeated Hypoxic Stress by Hydralazine to Investigate the Integrity of an in Vitro Contact Co-Culture Blood Brain Barrier Model

Authors: Morgane Chatard, Clémentine Puech, Nathalie Perek, Frédéric Roche

Abstract:

Several neurological disorders are linked to repeated hypoxia. The impact of such repeated hypoxic stress, on endothelial cells function of the blood-brain barrier (BBB) is little studied in the literature. Indeed, the study of hypoxic stress in cellular pathways is complex using hypoxia exposure because HIF 1α (factor induced by hypoxia) has a short half life. Our study presents an innovative induction method of repeated hypoxic stress, more reproducible, which allows us to study its impacts on an in vitro contact co-culture BBB model. Repeated hypoxic stress was induced by hydralazine (a mimetic agent of hypoxia pathway) during two hours and repeated during 24 hours. Then, BBB integrity was assessed by permeability measurements (transendothelial electrical resistance and membrane permeability), tight junction protein expressions (cell-ELISA and confocal microscopy) and by studying expression and activity of efflux transporters. First, this study showed that repeated hypoxic stress leads to a BBB’s dysfunction illustrated by a significant increase in permeability. This loss of membrane integrity was linked to a significant decrease of tight junctions’ protein expressions, facilitating a possible transfer of potential cytotoxic compounds in the brain. Secondly, we demonstrated that brain microvascular endothelial cells had set-up defence mechanism. These endothelial cells significantly increased the activity of their efflux transporters which was associated with a significant increase in their expression. In conclusion, repeated hypoxic stress lead to a loss of BBB integrity with a decrease of tight junction proteins. In contrast, endothelial cells increased the expression of their efflux transporters to fight against cytotoxic compounds brain crossing. Unfortunately, enhanced efflux activity could also lead to reducing pharmacological drugs delivering to the brain in such hypoxic conditions.

Keywords: BBB model, efflux transporters, repeated hypoxic stress, tigh junction proteins

Procedia PDF Downloads 271
539 Particle Deflection in a PDMS Microchannel Caused by a Plane Travelling Surface Acoustic Wave

Authors: Florian Keipert, Hagen Schmitd

Abstract:

The size selective separation of different species in a microfluidic system is an actual task in biological or medical research. Former works dealt with the utilisation of the acoustic radiation force (ARF) caused by a plane travelling Surface Acoustic Wave (tSAW). In literature the ARF is described by a dimensionless parameter κ, depending on the wavelength and the particle diameter. To our knowledge research was done for values 0.2 < κ < 5.8 showing that the ARF is dominating the acoustic streaming force (ASF) for κ > 1.2. As a consequence the particle separation is limited by κ. In addition the dependence on the electrical power level was examined but only for κ > 1 pointing out an increased particle deflection for higher electrical power levels. Nevertheless a detailed study on the ASF and ARF especially for κ < 1 is still missing. In our setup we used a tSAW with a wavelength λ = 90 µm and 3 µm PS particles corresponding to κ = 0.3. Herewith the influence of the applied electrical power level on the particle deflection in a polydimethylsiloxan micro channel was investigated. Our results show an increased particle deflection for an increased electrical power level, which coincides with the reported results for κ > 1. Therefore particle separation is in contrast to literature also possible for lower κ values. Thereby the experimental setup can be generally simplified by a coordinated electrical power level for the specific particle size. Furthermore this raises the question of whether this particle deflection is caused only by the ARF as adopted so far or by the ASF or the sum of both forces. To investigate this fact a 0% - 24% saline solution was used and thus the mismatch between the compressibility of the PS particle and the working fluid could be changed. Therefore it is possible to change the relative strength between ARF and ASF and consequently the particle deflection. We observed a decreasing in the particle deflection for an increased NaCl content up to a 12% saline solution and subsequently an increasing of the particle deflection. Our observation could be explained by the acoustic contrast factor Φ, which depends on the compressibility mismatch. The compressibility of water is increased by the NaCl and the range of a 0% - 24% saline solution covers the PS particle compressibility. Hence the particle deflection reaches a minimum value for the accordance between compressibility of PS particle and saline solution. This minimum value can be estimated as the particle deflection only caused by the ASF. Knowing the particle deflection due to the ASF the particle deflection caused by the ARF can be calculated and thus finally the relation between both forces. Concluding, the particle deflection and therefore the size selective particle separation generated by a tSAW can be achieved for values κ < 1, simplifying actual setups by adjusting the electrical power level. Beyond we studied for the first time the relative strength between ARF and ASF to characterise the particle deflection in a microchannel.

Keywords: ARF, ASF, particle separation, saline solution, tSAW

Procedia PDF Downloads 233
538 Effect of Papaverine on Developmental Neurotoxicity: Neurosphere as in vitro Model

Authors: Mohammed Y. Elsherbeny, Mohamed Salama, Ahmed Lotfy, Hossam Fareed, Nora Mohammed

Abstract:

Background: Developmental neurotoxicity (DNT) entails the toxic effects imparted by various chemicals on brain during the early childhood when human brains are vulnerable during this period. DNT study in vivo cannot determine the effect of the neurotoxins, as it is not applicable, so using the neurosphere cells of lab animals as an alternative is applicable and time saving. Methods: Cell culture: Rat neural progenitor cells were isolated from rat embryos’ brain. The cortices were aseptically dissected out and the tissues were triturated. The dispersed tissues were allowed to settle. The supernatant was then transferred to a fresh tube and centrifuged. The pellet was placed in Hank’s balanced salt solution and cultured as free-floating neurospheres in proliferation medium. Differentiation was initiated by growth factor withdrawal in differentiation medium and plating onto a poly-d-lysine/ laminin matrix. Chemical Exposure: Neurospheres were treated for 2 weeks with papaverine in proliferation medium. Proliferation analyses: Spheres were cultured. After 0, 4, 5, 11 and 14 days, sphere size was determined by software analyses (CellProfiler, version 2.1; Broad Institute). Diameter of each neurosphere was measured and exported to excel file further to statistical analysis. Viability test: Trypsin-EDTA solution was added to neurospheres to dissociate neurospheres into single cells suspension, then viability evaluated by the Trypan Blue exclusion test. Result: As regards proliferation analysis and percentage of viable cells of papaverin treated groups: There was no significant change in cells proliferation compared to control at 0, 4, 5, 11 and 14 days with concentrations 1, 5 and 10 µM of papaverine, but there is a significant change in cell viability compared to control after 1 week and 2 weeks with the same concentrations of papaverine. Conclusion: Papaverine has toxic effect on viability of neural cell, not on their proliferation, so it may produce focal neural lesions not growth morphological changes.

Keywords: developmental neurotoxicity, neurotoxin, papaverine, neuroshperes

Procedia PDF Downloads 357
537 Regulatory Measures on Effective Nuclear Security and Safeguards System in Nigeria

Authors: Nnodi Chinweikpe Akelachi, Adebayo Oladini Kachollom Ifeoma

Abstract:

Insecurity and the possession of nuclear weapons for non-peaceful purposes constitute a major threat to global peace and security, and this undermines the capacity for sustainable development. In Nigeria, the threat of terrorism is a challenge to national stability. For over a decade, Nigeria has been faced with insecurity ranging from Boko-Haram terrorist groups, kidnapping and banditry. The threat exhibited by this non-state actor poses a huge challenge to nuclear and radiological high risks facilities in Nigeria. This challenge has resulted in the regulatory authority and International stakeholders formulating policies for a good mitigation strategy. This strategy is enshrined in formulated laws, regulations and guides like the repealed Nuclear Safety and Radiation Protection Act 19 of 1995 (Nuclear safety, Physical Security and Safeguards Bill), the Nigerian Physical Protection of Nuclear Material and Nuclear Facilities, and Nigerian Nuclear Safeguards Regulations of 2021. All this will help Nigeria’s effort to meet its national nuclear security and safeguards obligations. To further enhance the implementation of nuclear security and safeguards system, Nigeria has signed the Non-Proliferation Treaty (NPT) in 1970, the Comprehensive Safeguards Agreement (INFCIRC/358) in 1988, Additional Protocol in 2007 as well as the Convention on Physical Protection of Nuclear Material and its amendment in 2005. In view of the evolving threats by non-state actors in Nigeria, physical protection security upgrades are being implemented in nuclear and all high-risk radiological facilities through the support of the United States Department of Energy (US-DOE). Also, the IAEA has helped strengthen nuclear security and safeguard systems through the provision of technical assistance and capacity development. Efforts are being made to address some of the challenges identified in the cause of implementing the measures for effective nuclear security and safeguards systems in Nigeria. However, there are eminent challenges in the implementation of the measures within the security and systems in Nigeria. These challenges need to be addressed for an effective security and safeguard regime in Nigeria. This paper seeks to address the challenges encountered in implementing the regulatory and stakeholder measures for effective security and safeguards regime in Nigeria, amongst others.

Keywords: nuclear regulatory body, nuclear facilities and activities, international stakeholders, security and safeguards measures

Procedia PDF Downloads 88
536 Hexavalent Chromium-Induced Changes in Biochemical Parameters of Wistar Albino Rats

Authors: Ounassa Adjroud

Abstract:

Potassium dichromate (K2Cr2O7) is one of the most toxic elements to which man can be exposed at work or in the environment. The purpose of the current work is to compare the effect of K2Cr2O7 using variations in the dose, route of administration and duration of exposure in male and female Wistar albino rats with a special focus on biochemical parameters. K2Cr2O7 was subcutaneously administered alone (10, 50 and 100 mg/kg body weight) to female Wistar albino rats. Male rats received in their drinking water K2Cr2O7 30 mg/L/day) for 20 consecutive days. The Biochemical parameters were evaluated on days 3, 6 and 21 after subcutaneous (sc.) treatment in female rats and on days 10 and 20 after oral administration in male rats. The subcutaneous (s.c.) administration of 25 mg/kg of K2Cr2O7 to Wistar albino rats induced a slight change in plasma glucose levels during the experiment period. On the contrary, a significant decrease in plasma glucose levels was observed with 50 mg/kg mainly on days 3 (-26%) and 21 (-48%) after treatment compared to controls females rats. On the other hand, the higher dose provoked a significant increase in plasma glucose concentrations on days 6 (+31%) and 21 (+60%). similarly, the lower dose of chromium had no effect on the plasma urea levels. Conversely, a significant increase (122%) in this parameter was obtained during the first three days after treatment. In addition, a significant decrease in plasma glucose levels was observed with 50 mg/kg mainly on days 3 (-26%) and 21 (-48%) after treatment. On the other hand, the higher dose provoked a significant increase in plasma glucose concentrations on days 6 (+31%) and 21 (+60%). similarly, the lower dose of chromium had no effect on the plasma urea levels. Conversely, a significant increase in this parameter (122%) was obtained during the first three days after treatment. In addition, administration of 100 mg/kg of K2Cr2O7 by s.c markedly augmented the levels of plasma urea on days 3 (62%) and 6 (121%). Administration of 30 mg/L/day of K2Cr2O7 in the drinking water induced a significant augmentation in both of plasma glucose (27%) and urea (126%) during the first ten days of treatment. These results suggested that K2Cr2O7 administered subcutaneously or in the drinking water may induce harmful effects on biochemical parameters.

Keywords: glucose, potassium dichromate, Wistar albino rat, urea

Procedia PDF Downloads 250
535 Occupational Heat Stress Condition According to Wet Bulb Globe Temperature Index in Textile Processing Unit: A Case Study of Surat, Gujarat, India

Authors: Dharmendra Jariwala, Robin Christian

Abstract:

Thermal exposure is a common problem in every manufacturing industry where heat is used in the manufacturing process. In developing countries like India, a lack of awareness regarding the proper work environmental condition is observed among workers. Improper planning of factory building, arrangement of machineries, ventilation system, etc. play a vital role in the rise of temperature within the manufacturing areas. Due to the uncontrolled thermal stress, workers may be subjected to various heat illnesses from mild disorder to heat stroke. Heat stress is responsible for the health risk and reduction in production. Wet Bulb Globe Temperature (WBGT) index and relative humidity are used to evaluate heat stress conditions. WBGT index is a weighted average of natural wet bulb temperature, globe temperature, dry bulb temperature, which are measured with standard instrument QuestTemp 36 area stress monitor. In this study textile processing units have been selected in the industrial estate in the Surat city. Based on the manufacturing process six locations were identified within the plant at which process was undertaken at 120°C to 180°C. These locations were jet dying machine area, stenter machine area, printing machine, looping machine area, washing area which generate process heat. Office area was also selected for comparision purpose as a sixth location. Present Study was conducted in the winter season and summer season for day and night shift. The results shows that average WBGT index was found above Threshold Limiting Value (TLV) during summer season for day and night shift in all three industries except office area. During summer season highest WBGT index of 32.8°C was found during day shift and 31.5°C was found during night shift at printing machine area. Also during winter season highest WBGT index of 30°C and 29.5°C was found at printing machine area during day shift and night shift respectively.

Keywords: relative humidity, textile industry, thermal stress, WBGT

Procedia PDF Downloads 144