Search results for: pumping photovoltaic system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17427

Search results for: pumping photovoltaic system

17157 Re-Analyzing Energy-Conscious Design

Authors: Svetlana Pushkar, Oleg Verbitsky

Abstract:

An energy-conscious design for a classroom in a hot-humid climate is reanalyzed. The hypothesis of this study is that use of photovoltaic (PV) electricity generation in building operation energy consumption will lead to re-analysis of the energy-conscious design. Therefore, the objective of this study is to reanalyze the energy-conscious design by evaluating the environmental impact of operational energy with PV electrical generation. Using the hierarchical design structure of Eco-indicator 99, the alternatives for energy-conscious variables are statistically evaluated by applying a two-stage nested (hierarchical) ANOVA. The recommendations for the preferred solutions for application of glazing types, wall insulation, roof insulation, window size, roof mass, and window shading design alternatives were changed (for example, glazing type recommendations were changed from low-emissivity glazing, green, and double- glazed windows to low-emissivity glazing only), whereas the applications for the lighting control system and infiltration are not changed. Such analysis of operational energy can be defined as environment-conscious analysis.

Keywords: ANOVA, Eco-Indicator 99, energy-conscious design, hot–humid climate, photovoltaic

Procedia PDF Downloads 159
17156 Analysis of Accurate Direct-Estimation of the Maximum Power Point and Thermal Characteristics of High Concentration Photovoltaic Modules

Authors: Yan-Wen Wang, Chu-Yang Chou, Jen-Cheng Wang, Min-Sheng Liao, Hsuan-Hsiang Hsu, Cheng-Ying Chou, Chen-Kang Huang, Kun-Chang Kuo, Joe-Air Jiang

Abstract:

Performance-related parameters of high concentration photovoltaic (HCPV) modules (e.g. current and voltage) are required when estimating the maximum power point using numerical and approximation methods. The maximum power point on the characteristic curve for a photovoltaic module varies when temperature or solar radiation is different. It is also difficult to estimate the output performance and maximum power point (MPP) due to the special characteristics of HCPV modules. Based on the p-n junction semiconductor theory, a brand new and simple method is presented in this study to directly evaluate the MPP of HCPV modules. The MPP of HCPV modules can be determined from an irradiated I-V characteristic curve, because there is a non-linear relationship between the temperature of a solar cell and solar radiation. Numerical simulations and field tests are conducted to examine the characteristics of HCPV modules during maximum output power tracking. The performance of the presented method is evaluated by examining the dependence of temperature and irradiation intensity on the MPP characteristics of HCPV modules. These results show that the presented method allows HCPV modules to achieve their maximum power and perform power tracking under various operation conditions. A 0.1% error is found between the estimated and the real maximum power point.

Keywords: energy performance, high concentrated photovoltaic, maximum power point, p-n junction semiconductor

Procedia PDF Downloads 544
17155 Neural Network Based Fluctuation Frequency Control in PV-Diesel Hybrid Power System

Authors: Heri Suryoatmojo, Adi Kurniawan, Feby A. Pamuji, Nursalim, Syaffaruddin, Herbert Innah

Abstract:

Photovoltaic (PV) system hybrid with diesel system is utilized widely for electrification in remote area. PV output power fluctuates due to uncertainty condition of temperature and sun irradiance. When the penetration of PV power is large, the reliability of the power utility will be disturbed and seriously impact the unstable frequency of system. Therefore, designing a robust frequency controller in PV-diesel hybrid power system is very important. This paper proposes new method of frequency control application in hybrid PV-diesel system based on artificial neural network (ANN). This method can minimize the frequency deviation without smoothing PV output power that controlled by maximum power point tracking (MPPT) method. The neural network algorithm controller considers average irradiance, change of irradiance and frequency deviation. In order the show the effectiveness of proposed algorithm, the addition of battery as energy storage system is also presented. To validate the proposed method, the results of proposed system are compared with the results of similar system using MPPT only. The simulation results show that the proposed method able to suppress frequency deviation smaller compared to the results of system using MPPT only.

Keywords: energy storage system, frequency deviation, hybrid power generation, neural network algorithm

Procedia PDF Downloads 467
17154 Application of Mobile Aluminium Light Structure Housing System in Sustainable Building Process

Authors: Wang Haining, Zhang Hong

Abstract:

In China, rapid urbanization needs more and more buildings constructed for the growing population in cities. With the help of the methodology which contains investigation, contrastive analysis, design based on component with BIM and experiment before real construction, this research based on mobile light structure system, trying to the sustainable problems partly in present China by systematic study. The system cannot replace the permanent heavy structure completely. So the goal is the improvement of the whole building system by the addition of light structure. This house system uses modularized envelopes and standardized connections, which are pre-fabricated and assembled in factories and transported like containers. Aluminum is used as the structural material in this system, and inorganic thermal insulation material used in the envelope, which have high fireproof properties. The relationship between manufactory and construction of the system is progressive hierarchy. They exist as First Industrial, Second Industrial, Third Industrial and Site Assembly Stage. It could maximize the land usage capacity by fully exploit the area where normal permanent architecture can't take advantage of. Not only the building system itself especially the thermal isolated materials used and active solar photovoltaic system equipped can save energy, but also the way of product development is sustainable.

Keywords: aluminum house, light Structure, rapid assembly, repeat construction

Procedia PDF Downloads 454
17153 The Effect of Substrate Temperature on the Structural, Optical, and Electrical of Nano-Crystalline Tin Doped-Cadmium Telluride Thin Films for Photovoltaic Applications

Authors: Eman A. Alghamdi, A. M. Aldhafiri

Abstract:

It was found that the induce an isolated dopant close to the middle of the bandgap by occupying the Cd position in the CdTe lattice structure is an efficient factor in reducing the nonradiative recombination rate and increasing the solar efficiency. According to our laboratory results, this work has been carried out to obtain the effect of substrate temperature on the CdTe0.6Sn0.4 prepared by thermal evaporation technique for photovoltaic application. Various substrate temperature (25°C, 100°C, 150°C, 200°C, 250°C and 300°C) was applied. Sn-doped CdTe thin films on a glass substrate at a different substrate temperature were made using CdTe and SnTe powders by the thermal evaporation technique. The structural properties of the prepared samples were determined using Raman, x-Ray Diffraction. Spectroscopic ellipsometry and spectrophotometric measurements were conducted to extract the optical constants as a function of substrate temperature. The structural properties of the grown films show hexagonal and cubic mixed structures and phase change has been reported. Scanning electron microscopy (SEM) reviled that a homogenous with a bigger grain size was obtained at 250°C substrate temperature. The conductivity measurements were recorded as a function of substrate temperatures. The open-circuit voltage was improved by controlling the substrate temperature due to the improvement of the fundamental material issues such as recombination and low carrier concentration. All the result was explained and discussed on the biases of the influences of the Sn dopant and the substrate temperature on the structural, optical and photovoltaic characteristics.

Keywords: CdTe, conductivity, photovoltaic, ellipsometry

Procedia PDF Downloads 97
17152 Feasibility Study and Developing Appropriate Hybrid Energy Systems in Regional Level

Authors: Ahmad Rouhani

Abstract:

Iran has several potentials for using renewable energies, so use them could significantly contribute to energy supply. The purpose of this paper is to identify the potential of the country and select the appropriate DG technologies with consideration the potential and primary energy resources in the regions. In this context, hybrid energy systems proportionate with the potential of different regions will be determined based on technical, economic, and environmental aspect. In the following, the proposed structure will be optimized in terms of size and cost. DG technologies used in this project include the photovoltaic system, wind turbine, diesel generator, and battery bank. The HOMER software is applied for choosing the appropriate structure and the optimization of system sizing. The results have been analyzed in terms of technical and economic. The performance and the cost of each project demonstrate the appropriate structure of hybrid energy system in that region.

Keywords: feasibility, hybrid energy system, Iran, renewable energy

Procedia PDF Downloads 456
17151 Performance of the Photovoltaic Module under Different Shading Patterns

Authors: E. T. El Shenawy, O. N. A. Esmail, Adel A. Elbaset, Hesham F. A. Hamed

Abstract:

Generation of the electrical energy based on photovoltaic (PV) technology has been increased over the world due to either the continuous reduction in the traditional energy sources in addition to the pollution problems related to their usage, or the clean nature and safe usage of the PV technology. Also, PV systems can generate clean electricity in the site of use without any transmission, which can be considered cost effective than other generation systems. The performance of the PV system is highly affected by the amount of solar radiation incident on it. Completely or partially shaded PV systems can affect its output. The PV system can be shaded by trees, buildings, dust, incorrect system configuration, or other obstacles. The present paper studies the effect of the partial shading on the performance of a thin film PV module under climatic conditions of Cairo, Egypt. This effect was measured and evaluated according to practical measurement of the characteristic curves such as current-voltage and power-voltage for two identical PV modules (with and without shading) placed at the same time on one mechanical structure for comparison. The measurements have been carried out for the following shading patterns; half cell (bottom, middle, and top of the PV module); complete cell; and two adjacent cells. The results showed that partially shading the PV module changes the shapes of the I-V and P-V curves and produces more than one maximum power point, that can disturb the traditional maximum power point trackers. Also, the output power from the module decreased according to the incomplete solar radiation reaching the PV module due to shadow patterns. The power loss due shading was 7%, 22%, and 41% for shading of half-cell, one cell, and two adjacent cells of the PV module, respectively.

Keywords: I-V measurements, PV module characteristics, PV module power loss, PV module shading

Procedia PDF Downloads 107
17150 Design of a Small Mobile PV Driven RO Water Desalination Plant to be Deployed at the North West Coast of Egypt

Authors: Hosam A. Shawky, Amr A. Abdel Fatah, Moustafa M. S. Abo ElFad, Abdel Hameed M. El-Aassar

Abstract:

Water desalination projects based on reverse osmosis technology are being introduced in Egypt to combat drinking water shortage in remote areas. Reverse osmosis (RO) desalination is a pressure driven process. This paper focuses on the design of an integrated brackish water and seawater RO desalination and solar Photovoltaic (PV) technology. A small Mobile PV driven RO desalination plant prototype without batteries is designed and tested. Solar-driven reverse osmosis desalination can potentially break the dependence of conventional desalination on fossil fuels, reduce operational costs, and improve environmental sustainability. Moreover, the innovative features incorporated in the newly designed PV-RO plant prototype are focusing on improving the cost effectiveness of producing drinkable water in remote areas. This is achieved by maximizing energy yield through an integrated automatic single axis PV tracking system with programmed tilting angle adjustment. An autonomous cleaning system for PV modules is adopted for maximizing energy generation efficiency. RO plant components are selected so as to produce 4-5 m3/day of potable water. A basic criterion in the design of this PV-RO prototype is to produce a minimum amount of fresh water by running the plant during peak sun hours. Mobility of the system will provide potable water to isolated villages and population as well as ability to provide good drinking water to different number of people from any source that is not drinkable.

Keywords: design, reverse osmosis, photovoltaic, energy, desalination, Egypt

Procedia PDF Downloads 538
17149 Simulation of Maximum Power Point Tracking in a Photovoltaic System: A Circumstance Using Pulse Width Modulation Analysis

Authors: Asowata Osamede

Abstract:

Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers in general does not promote development to the public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0o north, with a corresponding tilt angle of 36 o, 26o and 16o. The load employed in this set-up are three Lead Acid Batteries (LAB). The percentage fully charged, charging and not charging conditions are observed for all three batteries. The results obtained in this research is used to draw the conclusion that would provide a benchmark for researchers and scientist worldwide. This is done so as to have an idea of the best tilt and orientation angles for maximum power point in a basic off-grid PV system. A quantitative analysis would be employed in this research. Quantitative research tends to focus on measurement and proof. Inferential statistics are frequently used to generalize what is found about the study sample to the population as a whole. This would involve: selecting and defining the research question, deciding on a study type, deciding on the data collection tools, selecting the sample and its size, analyzing, interpreting and validating findings Preliminary results which include regression analysis (normal probability plot and residual plot using polynomial 6) showed the maximum power point in the system. The best tilt angle for maximum power point tracking proves that the 36o tilt angle provided the best average on time which in turns put the system into a pulse width modulation stage.

Keywords: power-conversion, meteonorm, PV panels, DC-DC converters

Procedia PDF Downloads 121
17148 Distributed Energy System - Microgrid Integration of Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Planning a hybrid power system (HPS) that integrates renewable generation sources, non-renewable generation sources and energy storage, involves determining the capacity and size of various components to be used in the system to be able to supply reliable electricity to the connected load as required. Nowadays it is very common to integrate solar photovoltaic (PV) power plants for renewable generation as part of HPS. The solar PV system is usually balanced via a second form of generation (renewable such as wind power or using fossil fuels such as a diesel generator) or an energy storage system (such as a battery bank). Hybrid power systems can also provide other forms of power such as heat for some applications. Modern hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, grid code compliance

Procedia PDF Downloads 116
17147 Integrating Insulated Concrete Form (ICF) with Solar-Driven Reverse Osmosis Desalination for Building Integrated Energy Storage in Cold Climates

Authors: Amirhossein Eisapour, Mohammad Emamjome Kashan, Alan S. Fung

Abstract:

This research addresses the pressing global challenges of clean energy and water supplies, emphasizing the need for sustainable solutions for the building sector. The research centers on integrating Reverse Osmosis (RO) systems with building energy systems, incorporating Solar Thermal Collectors (STC)/Photovoltaic Thermal (PVT), water-to-water heat pumps, and an Insulated Concrete Form (ICF) based building foundation wall thermal energy storage. The study explores an innovative configuration’s effectiveness in addressing water and heating demands through clean energy sources while addressing ICF-based thermal storage challenges, which could overheat in the cooling season. Analyzing four configurations—STC-ICF, STC-ICF-RO, PVT-ICF, and PVT-ICF-RO, the study conducts a sensitivity analysis on collector area (25% and 50% increase) and weather data (evaluating five Canadian cities, Winnipeg, Toronto, Edmonton, Halifax and Vancouver). Key outcomes highlight the benefits of integrated RO scenarios, showcasing reduced ICF wall temperature, diminished unwanted heat in the cooling season, reduced RO pump consumption and enhanced solar energy production. The STC-ICF-RO and PVT-ICF-RO systems achieved energy savings of 653 kWh and 131 kWh, respectively, in comparison to their non-integrated RO counterparts. Additionally, both systems successfully contributed to lowering the CO2 production level of the energy system. The calculated payback period of STC-ICF-RO (2 years) affirms the proposed systems’ economic viability. Compared to the base system, which does not benefit from the ICF and RO integration with the building energy system, the STC-ICF-RO and PVT-ICF-RO demonstrate a dramatic energy consumption reduction of 20% and 32%, respectively. The sensitivity analysis suggests potential system improvements under specific conditions, especially when implementing the introduced energy system in communities of buildings.

Keywords: insulated concrete form, thermal energy storage, reverse osmosis, building energy systems, solar thermal collector, photovoltaic thermal, heat pump

Procedia PDF Downloads 22
17146 Cellular Targeting to Dual Gaseous Microenvironments by Polydimethylsiloxane Microchip

Authors: Samineh Barmaki, Ville Jokinen, Esko Kankuri

Abstract:

We report a microfluidic chip that can be used to modify the gaseous microenvironment of a cell-culture in ambient atmospheric conditions. The aim of the study is to show the cellular response to nitric oxide (NO) under hypoxic (oxygen < 5%) condition. Simultaneously targeting to hypoxic and nitric oxide will provide an opportunity for NO‑based therapeutics. Studies on cellular responses to lowered oxygen concentration or to gaseous mediators are usually carried out under a specific macro environment, such as hypoxia chambers, or with specific NO donor molecules that may have additional toxic effects. In our study, the chip consists of a microfluidic layer and a cell culture well, separated by a thin gas permeable polydimethylsiloxane (PDMS) membrane. The main design goal is to separate the gas oxygen scavenger and NO donor solutions, which are often toxic, from the cell media. Two different types of gas exchangers, titled 'pool' and 'meander' were tested. We find that the pool design allows us to reach a higher level of oxygen depletion than meander (24.32 ± 19.82 %vs -3.21 ± 8.81). Our microchip design can make the cells culture more simple and makes it easy to adapt existing cell culture protocols. Our first application is utilizing the chip to create hypoxic conditions on targeted areas of cell culture. In this study, oxygen scavenger sodium sulfite generates hypoxia and its effect on human embryonic kidney cells (HEK-293). The PDMS membrane was coated with fibronectin before initiating cell cultures, and the cells were grown for 48h on the chips before initiating the gas control experiments. The hypoxia experiments were performed by pumping of O₂-depleted H₂O into the microfluidic channel with a flow-rate of 0.5 ml/h. Image-iT® reagent as an oxygen level responser was mixed with HEK-293 cells. The fluorescent signal appears on cells stained with Image-iT® hypoxia reagent (after 6h of pumping oxygen-depleted H₂O through the microfluidic channel in pool area). The exposure to different levels of O₂ can be controlled by varying the thickness of the PDMS membrane. Recently, we improved the design of the microfluidic chip, which can control the microenvironment of two different gases at the same time. The hypoxic response was also improved from the new design of microchip. The cells were grown on the thin PDMS membrane for 30 hours, and with a flowrate of 0.1 ml/h; the oxygen scavenger was pumped into the microfluidic channel. We also show that by pumping sodium nitroprusside (SNP) as a nitric oxide donor activated under light and can generate nitric oxide on top of PDMS membrane. We are aiming to show cellular microenvironment response of HEK-293 cells to both nitric oxide (by pumping SNP) and hypoxia (by pumping oxygen scavenger solution) in separated channels in one microfluidic chip.

Keywords: hypoxia, nitric oxide, microenvironment, microfluidic chip, sodium nitroprusside, SNP

Procedia PDF Downloads 109
17145 Study of Laminar Convective Heat Transfer, Friction Factor, and Pumping Power Advantage of Aluminum Oxide-Water Nanofluid through a Channel

Authors: M. Insiat Islam Rabby, M. Mahbubur Rahman, Eshanul Islam, A. K. M. Sadrul Islam

Abstract:

The numerical and simulative analysis of laminar heat exchange convection of aluminum oxide (Al₂O₃) - water nanofluid for the developed region through two parallel plates is presented in this present work. The second order single phase energy equation, mass and momentum equation are solved by using finite volume method with the ANSYS FLUENT 16 software. The distance between two parallel plates is 4 mm and length is 600 mm. Aluminum oxide (Al₂O₃) is used as nanoparticle and water is used as the base/working fluid for the investigation. At the time of simulation 1% to 5% volume concentrations of the Al₂O₃ nanoparticles are used for mixing with water to produce nanofluid and a wide range of interval of Reynolds number from 500 to 1100 at constant heat flux 500 W/m² at the channel wall has also been introduced. The result reveals that for increasing the Reynolds number the Nusselt number and heat transfer coefficient are increased linearly and friction factor decreased linearly in the developed region for both water and Al₂O₃-H₂O nanofluid. By increasing the volume fraction of Al₂O₃-H₂O nanofluid from 1% to 5% the value of Nusselt number increased rapidly from 0.7 to 7.32%, heat transfer coefficient increased 7.14% to 31.5% and friction factor increased very little from 0.1% to 4% for constant Reynolds number compared to pure water. At constant heat transfer coefficient 700 W/m2-K the pumping power advantages have been achieved 20% for 1% volume concentration and 62% for 3% volume concentration of nanofluid compared to pure water.

Keywords: convective heat transfer, pumping power, constant heat flux, nanofluid, nanoparticles, volume concentration, thermal conductivity

Procedia PDF Downloads 134
17144 Intelligent Platform for Photovoltaic Park Operation and Maintenance

Authors: Andreas Livera, Spyros Theocharides, Michalis Florides, Charalambos Anastassiou

Abstract:

A main challenge in the quest for ensuring the quality of operation, especially for photovoltaic (PV) systems, is to safeguard the reliability and optimal performance by detecting and diagnosing potential failures and performance losses at early stages or before occurrence through real-time monitoring, supervision, fault detection and predictive maintenance. The purpose of this work is to present the functionalities and results related to the development and validation of a software platform for PV assets diagnosis and maintenance. The platform brings together proprietary hardware sensors and software algorithms to enable the early detection and prediction of the most common and critical faults in PV systems. It was validated using field measurements from operating PV systems. The results showed the effectiveness of the platform for detecting faults and losses (e.g., inverter failures, string disconnections and potential induced degradation) at early stages, forecasting the PV power production while also providing recommendations for maintenance actions. Increased PV energy yield production and revenue can be thus achieved while also minimizing operation and maintenance (O&M) costs.

Keywords: failure detection and prediction, operation and maintenance, performance monitoring, photovoltaic, platform, recommendations, predictive maintenance

Procedia PDF Downloads 3
17143 Analysis on Solar Panel Performance and PV-Inverter Configuration for Tropical Region

Authors: Eko Adhi Setiawan, Duli Asih Siregar, Aiman Setiawan

Abstract:

Solar energy is abundant in nature, particularly in the tropics which have peak sun hour that can reach 8 hours per day. In the fabrication process, Photovoltaic’s (PV) performance are tested in standard test conditions (STC). It specifies a module temperature of 25°C, an irradiance of 1000 W/ m² with an air mass 1.5 (AM1.5) spectrum and zero wind speed. Thus, the results of the performance testing of PV at STC conditions cannot fully represent the performance of PV in the tropics. For example Indonesia, which has a temperature of 20-40°C. In this paper, the effect of temperature on the choice of the 5 kW AC inverter topology on the PV system such as the Central Inverter, String Inverter and AC-Module specifically for the tropics will be discussed. The proper inverter topology can be determined by analysis of the effect of temperature and irradiation on the PV panel. The effect of temperature and irradiation will be represented in the characteristics of I-V and P-V curves. PV’s characteristics on high temperature would be analyzed using Solar panel modeling through MATLAB Simulink based on mathematical equations that form Solar panel’s characteristic curve. Based on PV simulation, it is known then that temperature coefficients of short circuit current (ISC), open circuit voltage (VOC), and maximum output power (PMAX) consecutively as high as 0.56%/oC, -0.31%/oC and -0.4%/oC. Those coefficients can be used to calculate PV’s electrical parameters such as ISC, VOC, and PMAX in certain earth’s surface’s certain point. Then, from the parameters, the utility of the 5 kW AC inverter system can be determined. As the result, for tropical area, string inverter topology has the highest utility rates with 98, 80 %. On the other hand, central inverter and AC-Module Topology has utility rates of 92.69 % and 87.7 % eventually.

Keywords: Photovoltaic, PV-Inverter Configuration, PV Modeling, Solar Panel Characteristics.

Procedia PDF Downloads 351
17142 Small Scale Solar-Photovoltaic and Wind Pump-Storage Hydroelectric System for Remote Residential Applications

Authors: Seshi Reddy Kasu, Florian Misoc

Abstract:

The use of hydroelectric pump-storage system at large scale, MW-size systems, is already widespread around the world. Designed for large scale applications, pump-storage station can be scaled-down for small, remote residential applications. Given the cost and complexity associated with installing a substation further than 100 miles from the main transmission lines, a remote, independent and self-sufficient system is by far the most feasible solution. This article is aiming at the design of wind and solar power generating system, by means of pumped-storage to replace the wind and/or solar power systems with a battery bank energy storage. Wind and solar pumped-storage power generating system can reduce the cost of power generation system, according to the user's electricity load and resource condition and also can ensure system reliability of power supply. Wind and solar pumped-storage power generation system is well suited for remote residential applications with intermittent wind and/or solar energy. This type of power systems, installed in these locations, could be a very good alternative, with economic benefits and positive social effects. The advantage of pumped storage power system, where wind power regulation is calculated, shows that a significant smoothing of the produced power is obtained, resulting in a power-on-demand system’s capability, concomitant to extra economic benefits.

Keywords: battery bank, photo-voltaic, pump-storage, wind energy

Procedia PDF Downloads 567
17141 Optimal Design of InGaP/GaAs Heterojonction Solar Cell

Authors: Djaafar F., Hadri B., Bachir G.

Abstract:

We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300°K led to the following result Icc =14.22 mA/cm2, Voc =2.42V, FF =91.32 %, η = 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η =23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell. This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.

Keywords: modeling, simulation, multijunction, optimization, silvaco ATLAS

Procedia PDF Downloads 599
17140 Cavity-Type Periodically-Poled LiNbO3 Device for Highly-Efficient Third-Harmonic Generation

Authors: Isao Tomita

Abstract:

We develop a periodically-poled LiNbO3 (PPLN) device for highly-efficient third-harmonic generation (THG), where the THG efficiency is enhanced with a cavity. THG can usually be produced via χ(3)-nonlinear materials by optical pumping with very high pump-power. Instead, we here propose THG by moderate-power pumping through a specially-designed PPLN device containing only χ(2)-nonlinearity, where sum-frequency generation in the χ(2) process is employed for the mixing of a pump beam and a second-harmonic-generation (SHG) beam produced from the pump beam. The cavity is designed to increase the SHG power with dichroic mirrors attached to both ends of the device that perfectly reflect the SHG beam back to the device and yet let the pump and THG beams pass through the mirrors. This brings about a THG-power enhancement because of THG power proportional to the enhanced SHG power. We examine the THG-efficiency dependence on the mirror reflectance and show that very high THG-efficiency is obtained at moderate pump-power when compared with that of a cavity-free PPLN device.

Keywords: cavity, periodically-poled LiNbO₃, sum-frequency generation, third-harmonic generation

Procedia PDF Downloads 234
17139 Impact of Nanoparticles in Enhancement of Thermal Conductivity of Phase Change Materials in Thermal Energy Storage and Cooling of Concentrated Photovoltaics

Authors: Ismaila H. Zarma, Mahmoud Ahmed, Shinichi Ookawara, Hamdi Abo-Ali

Abstract:

Phase change materials (PCM) are an ideal thermal storage medium. They are characterized by a high latent heat, which allows them to store large amounts of energy when the material transitions into different physical states. Concentrated photovoltaic (CPV) systems are widely recognized as the most efficient form of Photovoltaic (PV) for thermal energy which can be stored in Phase Change Materials (PCM). However, PCMs often have a low thermal conductivity which leads to a slow transient response. This makes it difficult to quickly store and access the energy stored within the PCM based systems, so there is need to improve transient responses and increase the thermal conductivity. The present study aims to investigate and analyze the melting and solidification process of phase change materials (PCMs) enhanced by nanoparticle contained in a container. Heat flux from concentrated photovoltaic is applied in an attempt to analyze the thermal performance and the impact of nanoparticles. The work will be realized by using a two dimensional model which take into account the phase change phenomena based on the principle of enthalpy method. Numerical simulations have been performed to investigate heat and flow characteristics by using governing equations, to ascertain the impacts of the nanoparticle loading. The Rayleigh number, sub-cooling as well as the unsteady evolution of the melting front and the velocity and temperature fields were also observed. The predicted results exhibited a good agreement, showing thermal enhancement due to present of nanoparticle which leads to decreasing the melting time.

Keywords: thermal energy storage, phase-change material, nanoparticle, concentrated photovoltaic

Procedia PDF Downloads 172
17138 Efficiency Improvement of Ternary Nanofluid Within a Solar Photovoltaic Unit Combined with Thermoelectric Considering Environmental Analysis

Authors: Mohsen Sheikholeslami, Zahra Khalili, Ladan Momayez

Abstract:

Impacts of environmental parameters and dust deposition on the efficiency of solar panel have been scrutinized in this article. To gain thermal output, trapezoidal cooling channel has been attached in the bottom of the panel incorporating ternary nanofluid. To produce working fluid, water has been mixed with Fe₃O₄-TiO₂-GO nanoparticles. Also, the arrangement of fins has been considered to grow the cooling rate of the silicon layer. The existence of a thermoelectric layer above the cooling channel leads to higher electrical output. Efficacy of ambient temperature (Ta), speed of wind (V𝓌ᵢₙ𝒹) and inlet temperature (Tᵢₙ) and velocity (Vin) of ternary nanofluid on performance of PVT has been assessed. As Tin increases, electrical efficiency declines about 3.63%. Increase of ambient temperature makes thermal performance enhance about 33.46%. The PVT efficiency decreases about 13.14% and 16.6% with augment of wind speed and dust deposition. CO₂ mitigation has been reduced about 15.49% in presence of dust while it increases about 17.38% with growth of ambient temperature.

Keywords: photovoltaic system, CO₂ mitigation, ternary nanofluid, thermoelectric generator, environmental parameters, trapezoidal cooling channel

Procedia PDF Downloads 47
17137 Developing Soil Accumulation Effect Correction Factor for Solar Photovoltaic Module

Authors: Kelebaone Tsamaase, Rapelang Kemoabe, Japhet Sakala, Edward Rakgati, Ishmael Zibani

Abstract:

Increasing demand for energy, depletion of non-renewable energy, effects of climate change, the abundance of renewable energy such as solar energy have increased the interest in investing in renewable energies, in particular solar photovoltaic (PV) energy. Solar photovoltaic energy systems as part of clean technology are considered to be environmentally friendly, freely available, offer clean production systems, long term costs benefits as opposed to conventional sources, and are the attractive power source for a wide range of applications in remote areas where there is no easy access to the national grid. To get maximum electrical power, maximum solar power should penetrate the module and be converted accordingly. However, some environmental and other geographical related factors reduce the electrical power. One of them is dust which accumulates on the surface of the module and forming a dust layer and in the process obstructing the solar power from penetrating PV module. This study intends to improve the performance of solar photovoltaic (PV) energy modules by establishing soil accumulation effects correction factor from dust characteristics and properties, and also from dust accumulation and retention pattern on PV module surface. The non-urban dry deposition flux model was adapted to determine monthly and yearly dust accumulation pattern. Consideration was done on prevailing environmental and other geographical conditions. Preliminary results showed that cumulative dust settlement increased during the months of July to October leading to a higher drop in module electrical output power.

Keywords: dust, electrical power output, PV module, soil correction factor

Procedia PDF Downloads 108
17136 Study of the Hydrodynamic of Electrochemical Ion Pumping for Lithium Recovery

Authors: Maria Sofia Palagonia, Doriano Brogioli, Fabio La Mantia

Abstract:

In the last decade, lithium has become an important raw material in various sectors, in particular for rechargeable batteries. Its production is expected to grow more and more in the future, especially for mobile energy storage and electromobility. Until now it is mostly produced by the evaporation of water from salt lakes, which led to a huge water consumption, a large amount of waste produced and a strong environmental impact. A new, clean and faster electrochemical technique to recover lithium has been recently proposed: electrochemical ion pumping. It consists in capturing lithium ions from a feed solution by intercalation in a lithium-selective material, followed by releasing them into a recovery solution; both steps are driven by the passage of a current. In this work, a new configuration of the electrochemical cell is presented, used to study and optimize the process of the intercalation of lithium ions through the hydrodynamic condition. Lithium Manganese Oxide (LiMn₂O₄) was used as a cathode to intercalate lithium ions selectively during the reduction, while Nickel Hexacyano Ferrate (NiHCF), used as an anode, releases positive ion. The effect of hydrodynamics on the process has been studied by conducting the experiments at various fluxes of the electrolyte through the electrodes, in terms of charge circulated through the cell, captured lithium per unit mass of material and overvoltage. The result shows that flowing the electrolyte inside the cell improves the lithium capture, in particular at low lithium concentration. Indeed, in Atacama feed solution, at 40 mM of lithium, the amount of lithium captured does not increase considerably with the flux of the electrolyte. Instead, when the concentration of the lithium ions is 5 mM, the amount of captured lithium in a single capture cycle increases by increasing the flux, thus leading to the conclusion that the slowest step in the process is the transport of the lithium ion in the liquid phase. Furthermore, an influence of the concentration of other cations in solution on the process performance was observed. In particular, the capturing of the lithium using a different concentration of NaCl together with 5 mM of LiCl was performed, and the results show that the presence of NaCl limits the amount of the captured lithium. Further studies can be performed in order to understand why the full capacity of the material is not reached at the highest flow rate. This is probably due to the porous structure of the material since the liquid phase is likely not affected by the convection flow inside the pores. This work proves that electrochemical ion pumping, with a suitable hydrodynamic design, enables the recovery of lithium from feed solutions at the lower concentration than the sources that are currently exploited, down to 1 mM.

Keywords: desalination battery, electrochemical ion pumping, hydrodynamic, lithium

Procedia PDF Downloads 185
17135 Life Cycle Assessment Applied to Supermarket Refrigeration System: Effects of Location and Choice of Architecture

Authors: Yasmine Salehy, Yann Leroy, Francois Cluzel, Hong-Minh Hoang, Laurence Fournaison, Anthony Delahaye, Bernard Yannou

Abstract:

Taking into consideration all the life cycle of a product is now an important step in the eco-design of a product or a technology. Life cycle assessment (LCA) is a standard tool to evaluate the environmental impacts of a system or a process. Despite the improvement in refrigerant regulation through protocols, the environmental damage of refrigeration systems remains important and needs to be improved. In this paper, the environmental impacts of refrigeration systems in a typical supermarket are compared using the LCA methodology under different conditions. The system is used to provide cold at two levels of temperature: medium and low temperature during a life period of 15 years. The most commonly used architectures of supermarket cold production systems are investigated: centralized direct expansion systems and indirect systems using a secondary loop to transport the cold. The variation of power needed during seasonal changes and during the daily opening/closure periods of the supermarket are considered. R134a as the primary refrigerant fluid and two types of secondary fluids are considered. The composition of each system and the leakage rate of the refrigerant through its life cycle are taken from the literature and industrial data. Twelve scenarios are examined. They are based on the variation of three parameters, 1. location: France (Paris), Spain (Toledo) and Sweden (Stockholm), 2. different sources of electric consumption: photovoltaic panels and low voltage electric network and 3. architecture: direct and indirect refrigeration systems. OpenLCA, SimaPro softwares, and different impact assessment methods were compared; CML method is used to evaluate the midpoint environmental indicators. This study highlights the significant contribution of electric consumption in environmental damages compared to the impacts of refrigerant leakage. The secondary loop allows lowering the refrigerant amount in the primary loop which results in a decrease in the climate change indicators compared to the centralized direct systems. However, an exhaustive cost evaluation (CAPEX and OPEX) of both systems shows more important costs related to the indirect systems. A significant difference between the countries has been noticed, mostly due to the difference in electric production. In Spain, using photovoltaic panels helps to reduce efficiently the environmental impacts and the related costs. This scenario is the best alternative compared to the other scenarios. Sweden is a country with less environmental impacts. For both France and Sweden, the use of photovoltaic panels does not bring a significant difference, due to a less sunlight exposition than in Spain. Alternative solutions exist to reduce the impact of refrigerating systems, and a brief introduction is presented.

Keywords: eco-design, industrial engineering, LCA, refrigeration system

Procedia PDF Downloads 141
17134 Randomly Casted Single-Wall Carbon Nanotubes Films for High Performance Hybrid Photovoltaic Devices

Authors: My Ali El Khakani

Abstract:

Single-wall Carbon nanotubes (SWCNTs) possess an unprecedented combination of unique properties that make them highly promising for suitable for a new generation of photovoltaic (PV) devices. Prior to discussing the integration of SWCNTs films into effective PV devices, we will briefly highlight our work on the synthesis of SWCNTs by means of the KrF pulsed laser deposition technique, their purification and transfer onto n-silicon substrates to form p-n junctions. Some of the structural and optoelectronic properties of SWCNTs relevant to PV applications will be emphasized. By varying the SWCNTs film density (µg/cm2), we were able to point out the existence of an optimum value that yields the highest photoconversion efficiency (PCE) of ~10%. Further control of the doping of the p-SWCNTs films, through their exposure to nitric acid vapors, along with the insertion of an optimized hole-extraction-layer in the p-SWCNTs/n-Si hybrid devices permitted to achieve a PCE value as high as 14.2%. Such a high PCE value demonstrates the full potential of these p-SWCNTs/n-Si devices for sunlight photoconversion. On the other hand, by examining both the optical transmission and electrical conductance of the SWCNTs’ films, we established a figure of merit (FOM) that was shown to correlate well with the PCE performance. Such a direct relationship between the FOM and the PCE can be used as a guide for further PCE enhancement of these novel p-SWCNTs/n-Si PV devices.

Keywords: carbon nanotubes (CNTs), CNTs-silicon hybrid devices, photoconversion, photovoltaic devices, pulsed laser deposition

Procedia PDF Downloads 93
17133 The Choicest Design of InGaP/GaAs Heterojunction Solar Cell

Authors: Djaafar Fatiha, Ghalem Bachir, Hadri Bagdad

Abstract:

We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300 °K led to the following result: Icc =14.22 mA/cm2, Voc =2.42V, FF=91.32 %, η= 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η=23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell .This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.

Keywords: modeling, simulation, multijunction, optimization, Silvaco ATLAS

Procedia PDF Downloads 476
17132 Climate Adaptive Building Shells for Plus-Energy-Buildings, Designed on Bionic Principles

Authors: Andreas Hammer

Abstract:

Six peculiar architecture designs from the Frankfurt University will be discussed within this paper and their future potential of the adaptable and solar thin-film sheets implemented facades will be shown acting and reacting on climate/solar changes of their specific sites. The different aspects, as well as limitations with regard to technical and functional restrictions, will be named. The design process for a “multi-purpose building”, a “high-rise building refurbishment” and a “biker’s lodge” on the river Rheine valley, has been critically outlined and developed step by step from an international studentship towards an overall energy strategy, that firstly had to push the design to a plus-energy building and secondly had to incorporate bionic aspects into the building skins design. Both main parameters needed to be reviewed and refined during the whole design process. Various basic bionic approaches have been given [e.g. solar ivyᵀᴹ, flectofinᵀᴹ or hygroskinᵀᴹ, which were to experiment with, regarding the use of bendable photovoltaic thin film elements being parts of a hybrid, kinetic façade system.

Keywords: bionic and bioclimatic design, climate adaptive building shells [CABS], energy-strategy, harvesting façade, high-efficiency building skin, photovoltaic in building skins, plus-energy-buildings, solar gain, sustainable building concept

Procedia PDF Downloads 400
17131 Perovskite Nanocrystals and Quantum Dots: Advancements in Light-Harvesting Capabilities for Photovoltaic Technologies

Authors: Mehrnaz Mostafavi

Abstract:

Perovskite nanocrystals and quantum dots have emerged as leaders in the field of photovoltaic technologies, demonstrating exceptional light-harvesting abilities and stability. This study investigates the substantial progress and potential of these nano-sized materials in transforming solar energy conversion. The research delves into the foundational characteristics and production methods of perovskite nanocrystals and quantum dots, elucidating their distinct optical and electronic properties that render them well-suited for photovoltaic applications. Specifically, it examines their outstanding light absorption capabilities, enabling more effective utilization of a wider solar spectrum compared to traditional silicon-based solar cells. Furthermore, this paper explores the improved durability achieved in perovskite nanocrystals and quantum dots, overcoming previous challenges related to degradation and inconsistent performance. Recent advancements in material engineering and techniques for surface passivation have significantly contributed to enhancing the long-term stability of these nanomaterials, making them more commercially feasible for solar cell usage. The study also delves into the advancements in device designs that incorporate perovskite nanocrystals and quantum dots. Innovative strategies, such as tandem solar cells and hybrid structures integrating these nanomaterials with conventional photovoltaic technologies, are discussed. These approaches highlight synergistic effects that boost efficiency and performance. Additionally, this paper addresses ongoing challenges and research endeavors aimed at further improving the efficiency, stability, and scalability of perovskite nanocrystals and quantum dots in photovoltaics. Efforts to mitigate concerns related to material degradation, toxicity, and large-scale production are actively pursued, paving the way for broader commercial application. In conclusion, this paper emphasizes the significant role played by perovskite nanocrystals and quantum dots in advancing photovoltaic technologies. Their exceptional light-harvesting capabilities, combined with increased stability, promise a bright future for next-generation solar cells, ushering in an era of highly efficient and cost-effective solar energy conversion systems.

Keywords: perovskite nanocrystals, quantum dots, photovoltaic technologies, light-harvesting, solar energy conversion, stability, device designs

Procedia PDF Downloads 39
17130 Risk Aversion and Dynamic Games between Hydroelectric Operators under Uncertainty

Authors: Abdessalem Abbassi, Ahlem Dakhlaoui, Lota D. Tamini

Abstract:

This article analyses management of hydropower dams within two different industrial structures: monopolistic and oligopolistic; when hydroelectricity producers are risk averse and face demand uncertainty. In each type of market structure we determine the water release path in closed-loop equilibrium. We show how a monopoly can manage its hydropower dams by additional pumping or storage depending on the relative abundance of water between different regions to smooth the effect of uncertainty on electricity prices. In the oligopolistic case with symmetric rates of risk aversion, we determine the conditions under which the relative scarcity (abundance) of water in the dam of a hydroelectric operator can favor additional strategic pumping (storage) in its competitor’s dams. When there is asymmetry of the risk aversion coefficient, the firm’s hydroelectricity production increases as its competitor’s risk aversion increases, if and only if the average recharge speed of the competitor’s dam exceeds a certain threshold, which is an increasing function of its average water inflows.

Keywords: asymmetric risk aversion, closed-loop Cournot competition, electricity wholesale market, hydropower dams

Procedia PDF Downloads 332
17129 MPC of Single Phase Inverter for PV System

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: phase locked loop, voltage source inverter, single phase inverter, model predictive control, Matlab/Simulink

Procedia PDF Downloads 500
17128 Piaui Solar: State Development Impulsed by Solar Photovoltaic Energy

Authors: Amanda Maria Rodrigues Barroso, Ary Paixao Borges Santana Junior, Caio Araujo Damasceno

Abstract:

In Piauí, the Brazilian state, solar energy has become one of the renewable sources targeted by internal and external investments, with the intention of leveraging the development of society. However, for a residential or business consumer to be able to deploy this source, there is usually a need for a high initial investment due to its high cost. The countless high taxes on equipment and services are one of the factors that contribute to this cost and ultimately fall on the consumer. Through analysis, a way of reducing taxes is sought in order to encourage consumer adhesion to the use of photovoltaic solar energy. Thus, the objective is to implement the Piauí Solar Program in the state of Piauí in order to stimulate the deployment of photovoltaic solar energy, through benefits granted to users, providing state development by boosting the diversification of the state's energy matrix. The research method adopted was based on the analysis of data provided by the Teresina City Hall, by the Brazilian Institute of Geography and Statistics and by a private company in the capital of Piauí. The account was taken of the total amount paid in Property and Urban Territorial Property Tax (IPTU), in electricity and in the service of installing photovoltaic panels in a residence with 6 people. Through Piauí Solar, a discount of 80% would be applied to the taxes present in the budgets regarding the implementation of these photovoltaic plates in homes and businesses, as well as in the IPTU. In addition, another factor also taken into account is the energy savings generated after the implementation of these boards. In the studied residence, the annual payment of IPTU went from R $ 99.83 reais to R $ 19.96, the reduction of taxes present in the budget for the implantation of solar panels, caused the value to increase from R $ 42,744.22 to R $ 37,241.98. The annual savings in electricity bills were estimated at around R $ 6,000. Therefore, there is a reduction of approximately 24% in the total invested. The trend of the Piauí Solar program, then, is to bring benefits to the state, providing an improvement in the living conditions of the population, through the savings generated by this program. In addition, an increase in the diversification of the Piauí energy matrix can be seen with the advancement of the use of this renewable energy.

Keywords: development, economy, energy, taxes

Procedia PDF Downloads 98