Search results for: proportional hazard model
17609 Frailty Models for Modeling Heterogeneity: Simulation Study and Application to Quebec Pension Plan
Authors: Souad Romdhane, Lotfi Belkacem
Abstract:
When referring to actuarial analysis of lifetime, only models accounting for observable risk factors have been developed. Within this context, Cox proportional hazards model (CPH model) is commonly used to assess the effects of observable covariates as gender, age, smoking habits, on the hazard rates. These covariates may fail to fully account for the true lifetime interval. This may be due to the existence of another random variable (frailty) that is still being ignored. The aim of this paper is to examine the shared frailty issue in the Cox proportional hazard model by including two different parametric forms of frailty into the hazard function. Four estimated methods are used to fit them. The performance of the parameter estimates is assessed and compared between the classical Cox model and these frailty models through a real-life data set from the Quebec Pension Plan and then using a more general simulation study. This performance is investigated in terms of the bias of point estimates and their empirical standard errors in both fixed and random effect parts. Both the simulation and the real dataset studies showed differences between classical Cox model and shared frailty model.Keywords: life insurance-pension plan, survival analysis, risk factors, cox proportional hazards model, multivariate failure-time data, shared frailty, simulations study
Procedia PDF Downloads 35917608 A Study on the Waiting Time for the First Employment of Arts Graduates in Sri Lanka
Authors: Imali T. Jayamanne, K. P. Asoka Ramanayake
Abstract:
Transition from tertiary level education to employment is one of the challenges that many fresh university graduates face after graduation. The transition period or the waiting time to obtain the first employment varies with the socio-economic factors and the general characteristics of a graduate. Compared to other fields of study, Arts graduates in Sri Lanka, have to wait a long time to find their first employment. The objective of this study is to identify the determinants of the transition from higher education to employment of these graduates using survival models. The study is based on a survey that was conducted in the year 2016 on a stratified random sample of Arts graduates from Sri Lankan universities who had graduated in 2012. Among the 469 responses, 36 (8%) waiting times were interval censored and 13 (3%) were right censored. Waiting time for the first employment varied between zero to 51 months. Initially, the log-rank and the Gehan-Wilcoxon tests were performed to identify the significant factors. Gender, ethnicity, GCE Advanced level English grade, civil status, university, class received, degree type, sector of first employment, type of first employment and the educational qualifications required for the first employment were significant at 10%. The Cox proportional hazards model was fitted to model the waiting time for first employment with these significant factors. All factors, except ethnicity and type of employment were significant at 5%. However, since the proportional hazard assumption was violated, the lognormal Accelerated failure time (AFT) model was fitted to model the waiting time for the first employment. The same factors were significant in the AFT model as in Cox proportional model.Keywords: AFT model, first employment, proportional hazard, survey design, waiting time
Procedia PDF Downloads 31217607 Application Difference between Cox and Logistic Regression Models
Authors: Idrissa Kayijuka
Abstract:
The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model.Keywords: logistic regression model, Cox regression model, survival analysis, hazard ratio
Procedia PDF Downloads 45717606 On Generalized Cumulative Past Inaccuracy Measure for Marginal and Conditional Lifetimes
Authors: Amit Ghosh, Chanchal Kundu
Abstract:
Recently, the notion of past cumulative inaccuracy (CPI) measure has been proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate as well as bivariate setup. In this paper, we introduce the notion of CPI of order α (alpha) and study the proposed measure for conditionally specified models of two components failed at different time instants called generalized conditional CPI (GCCPI). We provide some bounds using usual stochastic order and investigate several properties of GCCPI. The effect of monotone transformation on this proposed measure has also been examined. Furthermore, we characterize some bivariate distributions under the assumption of conditional proportional reversed hazard rate model. Moreover, the role of GCCPI in reliability modeling has also been investigated for a real-life problem.Keywords: cumulative past inaccuracy, marginal and conditional past lifetimes, conditional proportional reversed hazard rate model, usual stochastic order
Procedia PDF Downloads 25417605 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis
Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee
Abstract:
In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences
Procedia PDF Downloads 74417604 Machine Learning Methods for Flood Hazard Mapping
Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto
Abstract:
This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment
Procedia PDF Downloads 18117603 Moral Hazard under the Effect of Bailout and Bailin Events: A Markov Switching Model
Authors: Amira Kaddour
Abstract:
To curb the problem of liquidity in times of financial crises, two cases arise; the Bailout or Bailin, two opposite choices that elicit the analysis of their effect on moral hazard. This paper attempts to empirically analyze the effect of these two types of events on the behavior of investors. For this end, we use the Emerging Market Bonds Index (EMBI-JP Morgan), and its excess of return, to detect the change in the risk premia through a Markov switching model. The results showed the transition to two types of regime and an effect on moral hazard; Bailout is an incentive of moral hazard, Bailin effectiveness remains subject of credibility.Keywords: Bailout, Bailin, Moral hazard, financial crisis, Markov switching
Procedia PDF Downloads 46617602 Application and Verification of Regression Model to Landslide Susceptibility Mapping
Authors: Masood Beheshtirad
Abstract:
Identification of regions having potential for landslide occurrence is one of the basic measures in natural resources management. Different landslide hazard mapping models are proposed based on the environmental condition and goals. In this research landslide hazard map using multiple regression model were provided and applicability of this model is investigated in Baghdasht watershed. Dependent variable is landslide inventory map and independent variables consist of information layers as Geology, slope, aspect, distance from river, distance from road, fault and land use. For doing this, existing landslides have been identified and an inventory map made. The landslide hazard map is based on the multiple regression provided. The level of similarity potential hazard classes and figures of this model were compared with the landslide inventory map in the SPSS environments. Results of research showed that there is a significant correlation between the potential hazard classes and figures with area of the landslides. The multiple regression model is suitable for application in the Baghdasht Watershed.Keywords: landslide, mapping, multiple model, regression
Procedia PDF Downloads 32617601 Sparse Modelling of Cancer Patients’ Survival Based on Genomic Copy Number Alterations
Authors: Khaled M. Alqahtani
Abstract:
Copy number alterations (CNA) are variations in the structure of the genome, where certain regions deviate from the typical two chromosomal copies. These alterations are pivotal in understanding tumor progression and are indicative of patients' survival outcomes. However, effectively modeling patients' survival based on their genomic CNA profiles while identifying relevant genomic regions remains a statistical challenge. Various methods, such as the Cox proportional hazard (PH) model with ridge, lasso, or elastic net penalties, have been proposed but often overlook the inherent dependencies between genomic regions, leading to results that are hard to interpret. In this study, we enhance the elastic net penalty by incorporating an additional penalty that accounts for these dependencies. This approach yields smooth parameter estimates and facilitates variable selection, resulting in a sparse solution. Our findings demonstrate that this method outperforms other models in predicting survival outcomes, as evidenced by our simulation study. Moreover, it allows for a more meaningful interpretation of genomic regions associated with patients' survival. We demonstrate the efficacy of our approach using both real data from a lung cancer cohort and simulated datasets.Keywords: copy number alterations, cox proportional hazard, lung cancer, regression, sparse solution
Procedia PDF Downloads 4717600 Infant and Child Mortality among the Low Socio-Economic Households in India
Authors: Narendra Kumar
Abstract:
This study uses data from the ‘National Family Health Survey (NFHS-3) 2005-06’ to investigate the predictors of infant and child mortality among low economic households in East and Northeast region. The cross tabulation, life table survival estimates and Cox proportional hazard model techniques have been used to estimate the predictors of infant and child mortality. The life table survival estimates for infant and child mortality shows that infant mortality in female child is lower in comparison to male child but with child mortality, the rates are higher for female in comparison to male child and the Cox proportional hazard model also give highly significant in female in comparison to male child. The infant and child mortality rates among poor households highest in the Central region followed by North and Northeast region and the lowest in South region in comparison to all regions of India. Education of respondent has been found a significant characteristics in both analyzes, further birth interval, respondent occupation, caste/tribe and place of delivery has substantial impact on infant and child mortality among low economic households in East and Northeast region. Finally these findings specified that an increase in parents’ education, improve health care services and improve socioeconomic conditions of low economic households which should in turn raise infant and child survival and should decrease child mortality among low economic households in India.Keywords: infant, child, mortality, socio-economic, India
Procedia PDF Downloads 30717599 Comparison of Two Maintenance Policies for a Two-Unit Series System Considering General Repair
Authors: Seyedvahid Najafi, Viliam Makis
Abstract:
In recent years, maintenance optimization has attracted special attention due to the growth of industrial systems complexity. Maintenance costs are high for many systems, and preventive maintenance is effective when it increases operations' reliability and safety at a reduced cost. The novelty of this research is to consider general repair in the modeling of multi-unit series systems and solve the maintenance problem for such systems using the semi-Markov decision process (SMDP) framework. We propose an opportunistic maintenance policy for a series system composed of two main units. Unit 1, which is more expensive than unit 2, is subjected to condition monitoring, and its deterioration is modeled using a gamma process. Unit 1 hazard rate is estimated by the proportional hazards model (PHM), and two hazard rate control limits are considered as the thresholds of maintenance interventions for unit 1. Maintenance is performed on unit 2, considering an age control limit. The objective is to find the optimal control limits and minimize the long-run expected average cost per unit time. The proposed algorithm is applied to a numerical example to compare the effectiveness of the proposed policy (policy Ⅰ) with policy Ⅱ, which is similar to policy Ⅰ, but instead of general repair, replacement is performed. Results show that policy Ⅰ leads to lower average cost compared with policy Ⅱ.Keywords: condition-based maintenance, proportional hazards model, semi-Markov decision process, two-unit series systems
Procedia PDF Downloads 12517598 Developing an Integrated Seismic Risk Model for Existing Buildings in Northern Algeria
Authors: R. Monteiro, A. Abarca
Abstract:
Large scale seismic risk assessment has become increasingly popular to evaluate the physical vulnerability of a given region to seismic events, by putting together hazard, exposure and vulnerability components. This study, developed within the scope of the EU-funded project ITERATE (Improved Tools for Disaster Risk Mitigation in Algeria), explains the steps and expected results for the development of an integrated seismic risk model for assessment of the vulnerability of residential buildings in Northern Algeria. For this purpose, the model foresees the consideration of an updated seismic hazard model, as well as ad-hoc exposure and physical vulnerability models for local residential buildings. The first results of this endeavor, such as the hazard model and a specific taxonomy to be used for the exposure and fragility components of the model are presented, using as starting point the province of Blida, in Algeria. Specific remarks and conclusions regarding the characteristics of the Northern Algerian in-built are then made based on these results.Keywords: Northern Algeria, risk, seismic hazard, vulnerability
Procedia PDF Downloads 20217597 A Discrete Logit Survival Model with a Smooth Baseline Hazard for Age at First Alcohol Intake among Students at Tertiary Institutions in Thohoyandou, South Africa
Authors: A. Bere, H. G. Sithuba, K. Kyei, C. Sigauke
Abstract:
We employ a discrete logit survival model to investigate the risk factors for early alcohol intake among students at two tertiary institutions in Thohoyandou, South Africa. Data were collected from a sample of 744 students using a self-administered questionnaire. Significant covariates were arrived at through a regularization algorithm implemented using the glmmLasso package. The tuning parameter was determined using a five-fold cross-validation algorithm. The baseline hazard was modelled as a smooth function of time through the use of spline functions. The results show that the hazard of initial alcohol intake peaks at the age of about 16 years and that at any given time, being of a male gender, prior use of other drugs, having drinking peers, having experienced negative life events and physical abuse are associated with a higher risk of alcohol intake debut.Keywords: cross-validation, discrete hazard model, LASSO, smooth baseline hazard
Procedia PDF Downloads 19217596 Preliminary Seismic Hazard Mapping of Papua New Guinea
Authors: Hadi Ghasemi, Mark Leonard, Spiliopoulos Spiro, Phil Cummins, Mathew Moihoi, Felix Taranu, Eric Buri, Chris Mckee
Abstract:
In this study the level of seismic hazard in terms of Peak Ground Acceleration (PGA) was calculated for return period of 475 years, using modeled seismic sources and assigned ground-motion equations. The calculations were performed for bedrock site conditions (Vs30=760 m/s). From the results it is evident that the seismic hazard reaches its maximum level (i.e. PGA≈1g for 475 yr return period) at the Huon Peninsula and southern New Britain regions. Disaggregation analysis revealed that moderate to large earthquakes occurring along the New Britain Trench mainly control the level of hazard at these locations. The open-source computer program OpenQuake developed by Global Earthquake Model foundation was used for the seismic hazard computations. It should be emphasized that the presented results are still preliminary and should not be interpreted as our final assessment of seismic hazard in PNG.Keywords: probabilistic seismic hazard assessment, Papua New Guinea, building code, OpenQuake
Procedia PDF Downloads 55717595 Application of Griddization Management to Construction Hazard Management
Authors: Lingzhi Li, Jiankun Zhang, Tiantian Gu
Abstract:
Hazard management that can prevent fatal accidents and property losses is a fundamental process during the buildings’ construction stage. However, due to lack of safety supervision resources and operational pressures, the conduction of hazard management is poor and ineffective in China. In order to improve the quality of construction safety management, it is critical to explore the use of information technologies to ensure that the process of hazard management is efficient and effective. After exploring the existing problems of construction hazard management in China, this paper develops the griddization management model for construction hazard management. First, following the knowledge grid infrastructure, the griddization computing infrastructure for construction hazards management is designed which includes five layers: resource entity layer, information management layer, task management layer, knowledge transformation layer and application layer. This infrastructure will be as the technical support for realizing grid management. Second, this study divides the construction hazards into grids through city level, district level and construction site level according to grid principles. Last, a griddization management process including hazard identification, assessment and control is developed. Meanwhile, all stakeholders of construction safety management, such as owners, contractors, supervision organizations and government departments, should take the corresponding responsibilities in this process. Finally, a case study based on actual construction hazard identification, assessment and control is used to validate the effectiveness and efficiency of the proposed griddization management model. The advantage of this designed model is to realize information sharing and cooperative management between various safety management departments.Keywords: construction hazard, griddization computing, grid management, process
Procedia PDF Downloads 27817594 Survival Analysis Based Delivery Time Estimates for Display FAB
Authors: Paul Han, Jun-Geol Baek
Abstract:
In the flat panel display industry, the scheduler and dispatching system to meet production target quantities and the deadline of production are the major production management system which controls each facility production order and distribution of WIP (Work in Process). In dispatching system, delivery time is a key factor for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors and a forecasting model of delivery time. Of survival analysis techniques to select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the Accelerated Failure Time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the Mean Square Error (MSE) criteria, the AFT model decreased by 33.8% compared to the existing prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing a delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.Keywords: delivery time, survival analysis, Cox PH model, accelerated failure time model
Procedia PDF Downloads 54417593 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence
Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar
Abstract:
This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves
Procedia PDF Downloads 19717592 Development and Validation of a Coronary Heart Disease Risk Score in Indian Type 2 Diabetes Mellitus Patients
Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad
Abstract:
Diabetes in India is growing at an alarming rate and the complications caused by it need to be controlled. Coronary heart disease (CHD) is one of the complications that will be discussed for prediction in this study. India has the second most number of diabetes patients in the world. To the best of our knowledge, there is no CHD risk score for Indian type 2 diabetes patients. Any form of CHD has been taken as the event of interest. A sample of 750 was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of CHD. Predictive risk scores of CHD events are designed by cox proportional hazard regression. Model calibration and discrimination is assessed from Hosmer Lemeshow and area under receiver operating characteristic (ROC) curve. Overfitting and underfitting of the model is checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Youden’s index is used to choose the optimal cut off point from the scores. Five year probability of CHD is predicted by both survival function and Markov chain two state model and the better technique is concluded. The risk scores for CHD developed can be calculated by doctors and patients for self-control of diabetes. Furthermore, the five-year probabilities can be implemented as well to forecast and maintain the condition of patients.Keywords: coronary heart disease, cox proportional hazard regression, ROC curve, type 2 diabetes Mellitus
Procedia PDF Downloads 22017591 Optimal Hedging of a Portfolio of European Options in an Extended Binomial Model under Proportional Transaction Costs
Authors: Norm Josephy, Lucy Kimball, Victoria Steblovskaya
Abstract:
Hedging of a portfolio of European options under proportional transaction costs is considered. Our discrete time financial market model extends the binomial market model with transaction costs to the case where the underlying stock price ratios are distributed over a bounded interval rather than over a two-point set. An optimal hedging strategy is chosen from a set of admissible non-self-financing hedging strategies. Our approach to optimal hedging of a portfolio of options is based on theoretical foundation that includes determination of a no-arbitrage option price interval as well as on properties of the non-self-financing strategies and their residuals. A computational algorithm for optimizing an investor relevant criterion over the set of admissible non-self-financing hedging strategies is developed. Applicability of our approach is demonstrated using both simulated data and real market data.Keywords: extended binomial model, non-self-financing hedging, optimization, proportional transaction costs
Procedia PDF Downloads 25217590 Modal Density Influence on Modal Complexity Quantification in Dynamic Systems
Authors: Fabrizio Iezzi, Claudio Valente
Abstract:
The viscous damping in dynamic systems can be proportional or non-proportional. In the first case, the mode shapes are real whereas in the second case they are complex. From an engineering point of view, the complexity of the mode shapes is important in order to quantify the non-proportional damping. Different indices exist to provide estimates of the modal complexity. These indices are or not zero, depending whether the mode shapes are not or are complex. The modal density problem arises in the experimental identification when the dynamic systems have close modal frequencies. Depending on the entity of this closeness, the mode shapes can hold fictitious imaginary quantities that affect the values of the modal complexity indices. The results are the failing in the identification of the real or complex mode shapes and then of the proportional or non-proportional damping. The paper aims to show the influence of the modal density on the values of these indices in case of both proportional and non-proportional damping. Theoretical and pseudo-experimental solutions are compared to analyze the problem according to an appropriate mechanical system.Keywords: complex mode shapes, dynamic systems identification, modal density, non-proportional damping
Procedia PDF Downloads 38917589 Survival and Hazard Maximum Likelihood Estimator with Covariate Based on Right Censored Data of Weibull Distribution
Authors: Al Omari Mohammed Ahmed
Abstract:
This paper focuses on Maximum Likelihood Estimator with Covariate. Covariates are incorporated into the Weibull model. Under this regression model with regards to maximum likelihood estimator, the parameters of the covariate, shape parameter, survival function and hazard rate of the Weibull regression distribution with right censored data are estimated. The mean square error (MSE) and absolute bias are used to compare the performance of Weibull regression distribution. For the simulation comparison, the study used various sample sizes and several specific values of the Weibull shape parameter.Keywords: weibull regression distribution, maximum likelihood estimator, survival function, hazard rate, right censoring
Procedia PDF Downloads 44117588 Identifying Diabetic Retinopathy Complication by Predictive Techniques in Indian Type 2 Diabetes Mellitus Patients
Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad
Abstract:
Predicting the risk of diabetic retinopathy (DR) in Indian type 2 diabetes patients is immensely necessary. India, being the second largest country after China in terms of a number of diabetic patients, to the best of our knowledge not a single risk score for complications has ever been investigated. Diabetic retinopathy is a serious complication and is the topmost reason for visual impairment across countries. Any type or form of DR has been taken as the event of interest, be it mild, back, grade I, II, III, and IV DR. A sample was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of DR. Cox proportional hazard regression is used to design risk scores for the prediction of retinopathy. Model calibration and discrimination are assessed from Hosmer Lemeshow and area under receiver operating characteristic curve (ROC). Overfitting and underfitting of the model are checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Optimal cut off point is chosen by Youden’s index. Five-year probability of DR is predicted by both survival function, and Markov chain two state model and the better technique is concluded. The risk scores developed can be applied by doctors and patients themselves for self evaluation. Furthermore, the five-year probabilities can be applied as well to forecast and maintain the condition of patients. This provides immense benefit in real application of DR prediction in T2DM.Keywords: Cox proportional hazard regression, diabetic retinopathy, ROC curve, type 2 diabetes mellitus
Procedia PDF Downloads 18617587 Estimation of the Effect of Initial Damping Model and Hysteretic Model on Dynamic Characteristics of Structure
Authors: Shinji Ukita, Naohiro Nakamura, Yuji Miyazu
Abstract:
In considering the dynamic characteristics of structure, natural frequency and damping ratio are useful indicator. When performing dynamic design, it's necessary to select an appropriate initial damping model and hysteretic model. In the linear region, the setting of initial damping model influences the response, and in the nonlinear region, the combination of initial damping model and hysteretic model influences the response. However, the dynamic characteristics of structure in the nonlinear region remain unclear. In this paper, we studied the effect of setting of initial damping model and hysteretic model on the dynamic characteristics of structure. On initial damping model setting, Initial stiffness proportional, Tangent stiffness proportional, and Rayleigh-type were used. On hysteretic model setting, TAKEDA model and Normal-trilinear model were used. As a study method, dynamic analysis was performed using a lumped mass model of base-fixed. During analysis, the maximum acceleration of input earthquake motion was gradually increased from 1 to 600 gal. The dynamic characteristics were calculated using the ARX model. Then, the characteristics of 1st and 2nd natural frequency and 1st damping ratio were evaluated. Input earthquake motion was simulated wave that the Building Center of Japan has published. On the building model, an RC building with 30×30m planes on each floor was assumed. The story height was 3m and the maximum height was 18m. Unit weight for each floor was 1.0t/m2. The building natural period was set to 0.36sec, and the initial stiffness of each floor was calculated by assuming the 1st mode to be an inverted triangle. First, we investigated the difference of the dynamic characteristics depending on the difference of initial damping model setting. With the increase in the maximum acceleration of the input earthquake motions, the 1st and 2nd natural frequency decreased, and the 1st damping ratio increased. Then, in the natural frequency, the difference due to initial damping model setting was small, but in the damping ratio, a significant difference was observed (Initial stiffness proportional≒Rayleigh type>Tangent stiffness proportional). The acceleration and the displacement of the earthquake response were largest in the tangent stiffness proportional. In the range where the acceleration response increased, the damping ratio was constant. In the range where the acceleration response was constant, the damping ratio increased. Next, we investigated the difference of the dynamic characteristics depending on the difference of hysteretic model setting. With the increase in the maximum acceleration of the input earthquake motions, the natural frequency decreased in TAKEDA model, but in Normal-trilinear model, the natural frequency didn’t change. The damping ratio in TAKEDA model was higher than that in Normal-trilinear model, although, both in TAKEDA model and Normal-trilinear model, the damping ratio increased. In conclusion, in initial damping model setting, the tangent stiffness proportional was evaluated the most. In the hysteretic model setting, TAKEDA model was more appreciated than the Normal-trilinear model in the nonlinear region. Our results would provide useful indicator on dynamic design.Keywords: initial damping model, damping ratio, dynamic analysis, hysteretic model, natural frequency
Procedia PDF Downloads 17817586 Modeling and Controlling the Rotational Degree of a Quadcopter Using Proportional Integral and Derivative Controller
Authors: Sanjay Kumar, Lillie Dewan
Abstract:
The study of complex dynamic systems has advanced through various scientific approaches with the help of computer modeling. The common design trends in aerospace system design can be applied to quadcopter design. A quadcopter is a nonlinear, under-actuated system with complex aerodynamics parameters and creates challenges that demand new, robust, and effective control approaches. The flight control stability can be improved by planning and tracking the trajectory and reducing the effect of sensors and the operational environment. This paper presents a modern design Simmechanics visual modeling approach for a mechanical model of a quadcopter with three degrees of freedom. The Simmechanics model, considering inertia, mass, and geometric properties of a dynamic system, produces multiple translation and rotation maneuvers. The proportional, integral, and derivative (PID) controller is integrated with the Simmechanics model to follow a predefined quadcopter rotational trajectory for a fixed time interval. The results presented are satisfying. The simulation of the quadcopter control performed operations successfully.Keywords: nonlinear system, quadcopter model, simscape modelling, proportional-integral-derivative controller
Procedia PDF Downloads 19617585 Deterioration Prediction of Pavement Load Bearing Capacity from FWD Data
Authors: Kotaro Sasai, Daijiro Mizutani, Kiyoyuki Kaito
Abstract:
Expressways in Japan have been built in an accelerating manner since the 1960s with the aid of rapid economic growth. About 40 percent in length of expressways in Japan is now 30 years and older and has become superannuated. Time-related deterioration has therefore reached to a degree that administrators, from a standpoint of operation and maintenance, are forced to take prompt measures on a large scale aiming at repairing inner damage deep in pavements. These measures have already been performed for bridge management in Japan and are also expected to be embodied for pavement management. Thus, planning methods for the measures are increasingly demanded. Deterioration of layers around road surface such as surface course and binder course is brought about at the early stages of whole pavement deterioration process, around 10 to 30 years after construction. These layers have been repaired primarily because inner damage usually becomes significant after outer damage, and because surveys for measuring inner damage such as Falling Weight Deflectometer (FWD) survey and open-cut survey are costly and time-consuming process, which has made it difficult for administrators to focus on inner damage as much as they have been supposed to. As expressways today have serious time-related deterioration within them deriving from the long time span since they started to be used, it is obvious the idea of repairing layers deep in pavements such as base course and subgrade must be taken into consideration when planning maintenance on a large scale. This sort of maintenance requires precisely predicting degrees of deterioration as well as grasping the present situations of pavements. Methods for predicting deterioration are determined to be either mechanical or statistical. While few mechanical models have been presented, as far as the authors know of, previous studies have presented statistical methods for predicting deterioration in pavements. One describes deterioration process by estimating Markov deterioration hazard model, while another study illustrates it by estimating Proportional deterioration hazard model. Both of the studies analyze deflection data obtained from FWD surveys and present statistical methods for predicting deterioration process of layers around road surface. However, layers of base course and subgrade remain unanalyzed. In this study, data collected from FWD surveys are analyzed to predict deterioration process of layers deep in pavements in addition to surface layers by a means of estimating a deterioration hazard model using continuous indexes. This model can prevent the loss of information of data when setting rating categories in Markov deterioration hazard model when evaluating degrees of deterioration in roadbeds and subgrades. As a result of portraying continuous indexes, the model can predict deterioration in each layer of pavements and evaluate it quantitatively. Additionally, as the model can also depict probability distribution of the indexes at an arbitrary point and establish a risk control level arbitrarily, it is expected that this study will provide knowledge like life cycle cost and informative content during decision making process referring to where to do maintenance on as well as when.Keywords: deterioration hazard model, falling weight deflectometer, inner damage, load bearing capacity, pavement
Procedia PDF Downloads 39017584 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings
Authors: Ayhan Ince
Abstract:
In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to non-proportional loading paths.Keywords: elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue
Procedia PDF Downloads 46617583 Investigation of the Effect of Pressure Changes on the Gas Proportional Detector
Authors: S. M. Golgoun, S. M. Taheri
Abstract:
Investigation of radioactive contamination of personnel working in radiation centers to identify radioactive materials and then measure the potential contamination and eliminate it has always been considered. For this purpose, various ways have been proposed so far and different devices have been designed and built. Gas sealed proportional counter has special working conditions. In this research, a gas sealed detector of proportional counter type was made and then its various parameters were investigated. Some parameters are influential on their working conditions and one of these most important parameters is the internal pressure of the proportional gas-filled detector. In this experimental research, we produced software for examination and altering high voltage, registering data, and calculating efficiency. By this, we investigated different gas pressure effects on detector efficiency and proposed optimizing working conditions of this detector. After reviewing the results, we suggested a range between 20-30 mbar pressure for this gas sealed detector.Keywords: gas sealed, proportional detector, pressure, counter
Procedia PDF Downloads 12017582 Coupled Analysis for Hazard Modelling of Debris Flow Due to Extreme Rainfall
Authors: N. V. Nikhil, S. R. Lee, Do Won Park
Abstract:
Korean peninsula receives about two third of the annual rainfall during summer season. The extreme rainfall pattern due to typhoon and heavy rainfall results in severe mountain disasters among which 55% of them are debris flows, a major natural hazard especially when occurring around major settlement areas. The basic mechanism underlined for this kind of failure is the unsaturated shallow slope failure by reduction of matric suction due to infiltration of water and liquefaction of the failed mass due to generation of positive pore water pressure leading to abrupt loss of strength and commencement of flow. However only an empirical model cannot simulate this complex mechanism. Hence, we have employed an empirical-physical based approach for hazard analysis of debris flow using TRIGRS, a debris flow initiation criteria and DAN3D in mountain Woonmyun, South Korea. Debris flow initiation criteria is required to discern the potential landslides which can transform into debris flow. DAN-3D, being a new model, does not have the calibrated values of rheology parameters for Korean conditions. Thus, in our analysis we have used the recent 2011 debris flow event in mountain Woonmyun san for calibration of both TRIGRS model and DAN-3D, thereafter identifying and predicting the debris flow initiation points, path, run out velocity, and area of spreading for future extreme rainfall based scenarios.Keywords: debris flow, DAN-3D, extreme rainfall, hazard analysis
Procedia PDF Downloads 24717581 Parametric Modeling for Survival Data with Competing Risks Using the Generalized Gompertz Distribution
Authors: Noora Al-Shanfari, M. Mazharul Islam
Abstract:
The cumulative incidence function (CIF) is a fundamental approach for analyzing survival data in the presence of competing risks, which estimates the marginal probability for each competing event. Parametric modeling of CIF has the advantage of fitting various shapes of CIF and estimates the impact of covariates with maximum efficiency. To calculate the total CIF's covariate influence using a parametric model., it is essential to parametrize the baseline of the CIF. As the CIF is an improper function by nature, it is necessary to utilize an improper distribution when applying parametric models. The Gompertz distribution, which is an improper distribution, is limited in its applicability as it only accounts for monotone hazard shapes. The generalized Gompertz distribution, however, can adapt to a wider range of hazard shapes, including unimodal, bathtub, and monotonic increasing or decreasing hazard shapes. In this paper, the generalized Gompertz distribution is used to parametrize the baseline of the CIF, and the parameters of the proposed model are estimated using the maximum likelihood approach. The proposed model is compared with the existing Gompertz model using the Akaike information criterion. Appropriate statistical test procedures and model-fitting criteria will be used to test the adequacy of the model. Both models are applied to the ‘colon’ dataset, which is available in the “biostat3” package in R.Keywords: competing risks, cumulative incidence function, improper distribution, parametric modeling, survival analysis
Procedia PDF Downloads 10717580 A Bathtub Curve from Nonparametric Model
Authors: Eduardo C. Guardia, Jose W. M. Lima, Afonso H. M. Santos
Abstract:
This paper presents a nonparametric method to obtain the hazard rate “Bathtub curve” for power system components. The model is a mixture of the three known phases of a component life, the decreasing failure rate (DFR), the constant failure rate (CFR) and the increasing failure rate (IFR) represented by three parametric Weibull models. The parameters are obtained from a simultaneous fitting process of the model to the Kernel nonparametric hazard rate curve. From the Weibull parameters and failure rate curves the useful lifetime and the characteristic lifetime were defined. To demonstrate the model the historic time-to-failure of distribution transformers were used as an example. The resulted “Bathtub curve” shows the failure rate for the equipment lifetime which can be applied in economic and replacement decision models.Keywords: bathtub curve, failure analysis, lifetime estimation, parameter estimation, Weibull distribution
Procedia PDF Downloads 446