Search results for: pronunciation errors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 993

Search results for: pronunciation errors

123 Posterior Acetabular Fractures-Optimizing the Treatment by Enhancing Practical Skills

Authors: Olivera Lupescu, Taina Elena Avramescu, Mihail Nagea, Alexandru Dimitriu

Abstract:

Acetabular fractures represent a real challenge due to their impact upon the long term function of the hip joint, and due to the risk of intra- and peri-operative complications especially that they affect young, active people. That is why treating these fractures require certain skills which must be exercised, regarding the pre-operative planning, as well as the execution of surgery.The authors retrospectively analyse 38 cases with acetabular fractures operated using the posterior approach in our hospital between 01.01.2013- 01.01.2015 for which complete medical records ensure a follow-up of 24 months, in order to establish the main causes of potential errors and to underline the methods for preventing them. This target is included in the Erasmus + project ‘Collaborative learning for enhancing practical skills for patient-focused interventions in gait rehabilitation after orthopedic surgery COR-skills’. This paper analyses the pitfalls revealed by these cases, as well as the measures necessary to enhance the practical skills of the surgeons who perform acetabular surgery. Pre-op planning matched the intra and post-operative outcome in 88% of the analyzed points, from 72% at the beginning to 94% in the last case, meaning that experience is very important in treating this injury. The main problems detected for the posterior approach were: nervous complications - 3 cases, 1 of them a complete paralysis of the sciatic nerve, which recovered 6 months after surgery, and in other 2 cases intra-articular position of the screws was demonstrated by post-operative CT scans, so secondary screw removal was necessary in these cases. We analysed this incident, too, due to lack of information about the relationship between the screws and the joint secondary to this approach. Septic complications appeared in 3 cases, 2 superficial and 1 profound (requiring implant removal). The most important problems were the reduction of the fractures and the positioning of the screws so as not to interfere with the the articular space. In posterior acetabular fractures, pre-op complex planning is important in order to achieve maximum treatment efficacy with minimum of risk; an optimal training of the surgeons insisting on the main points of potential mistakes ensure the success of the procedure, as well as a favorable outcome for the patient.

Keywords: acetabular fractures, articular congruency, surgical skills, vocational training

Procedia PDF Downloads 184
122 Climate Related Variability and Stock-Recruitment Relationship of the North Pacific Albacore Tuna

Authors: Ashneel Ajay Singh, Naoki Suzuki, Kazumi Sakuramoto,

Abstract:

The North Pacific albacore (Thunnus alalunga) is a temperate tuna species distributed in the North Pacific which is of significant economic importance to the Pacific Island Nations and Territories. Despite its importance, the stock dynamics and ecological characteristics of albacore still, have gaps in knowledge. The stock-recruitment relationship of the North Pacific stock of albacore tuna was investigated for different density-dependent effects and a regime shift in the stock characteristics in response to changes in environmental and climatic conditions. Linear regression analysis for recruit per spawning biomass (RPS) and recruitment (R) against the female spawning stock biomass (SSB) were significant for the presence of different density-dependent effects and positive for a regime shift in the stock time series. Application of Deming regression to RPS against SSB with the assumption for the presence of observation and process errors in both the dependent and independent variables confirmed the results of simple regression. However, R against SSB results disagreed given variance level of < 3 and agreed with linear regression results given the assumption of variance ≥ 3. Assuming the presence of different density-dependent effects in the albacore tuna time series, environmental and climatic condition variables were compared with R, RPS, and SSB. The significant relationship of R, RPS and SSB were determined with the sea surface temperature (SST), Pacific Decadal Oscillation (PDO) and multivariate El Niño Southern Oscillation (ENSO) with SST being the principal variable exhibiting significantly similar trend with R and RPS. Recruitment is significantly influenced by the dynamics of the SSB as well as environmental conditions which demonstrates that the stock-recruitment relationship is multidimensional. Further investigation of the North Pacific albacore tuna age-class and structure is necessary for further support the results presented here. It is important for fishery managers and decision makers to be vigilant of regime shifts in environmental conditions relating to albacore tuna as it may possibly cause regime shifts in the albacore R and RPS which should be taken into account to effectively and sustainability formulate harvesting plans and management of the species in the North Pacific oceanic region.

Keywords: Albacore tuna, Thunnus alalunga, recruitment, spawning stock biomass, recruits per spawning biomass, sea surface temperature, pacific decadal oscillation, El Niño southern oscillation, density-dependent effects, regime shift

Procedia PDF Downloads 274
121 Lexico-semantic and Morphosyntactic Analyses of Student-generated Paraphrased Academic Texts

Authors: Hazel P. Atilano

Abstract:

In this age of AI-assisted teaching and learning, there seems to be a dearth of research literature on the linguistic analysis of English as a Second Language (ESL) student-generated paraphrased academic texts. This study sought to examine the lexico-semantic, morphosyntactic features of paraphrased academic texts generated by ESL students. Employing a descriptive qualitative design, specifically linguistic analysis, the study involved a total of 85 students from senior high school, college, and graduate school enrolled in research courses. Data collection consisted of a 60-minute real-time, on-site paraphrasing practice exercise using excerpts from discipline-specific literature reviews of 150 to 200 words. A focus group discussion (FGD) was conducted to probe into the challenges experienced by the participants. The writing exercise yielded a total of 516 paraphrase pairs. A total of 176 paraphrase units (PUs) and 340 non-paraphrase pairs (NPPs) were detected. Findings from the linguistic analysis of PUs reveal that the modifications made to the original texts are predominantly syntax-based (Diathesis Alterations and Coordination Changes) and a combination of Miscellaneous Changes (Change of Order, Change of Format, and Addition/Deletion). Results of the analysis of paraphrase extremes (PE) show that Identical Structures resulting from the use of synonymous substitutions, with no significant change in the structural features of the original, is the most frequently occurring instance of PE. The analysis of paraphrase errors reveals that synonymous substitutions resulting in identical structures are the most frequently occurring error that leads to PE. Another type of paraphrasing error involves semantic and content loss resulting from the deletion or addition of meaning-altering content. Three major themes emerged from the FGD: (1) The Challenge of Preserving Semantic Content and Fidelity; (2) The Best Words in the Best Order: Grappling with the Lexico-semantic and Morphosyntactic Demands of Paraphrasing; and (3) Contending with Limited Vocabulary, Poor Comprehension, and Lack of Practice. A pedagogical paradigm was designed based on the major findings of the study for a sustainable instructional intervention.

Keywords: academic text, lexico-semantic analysis, linguistic analysis, morphosyntactic analysis, paraphrasing

Procedia PDF Downloads 30
120 Integrating Cyber-Physical System toward Advance Intelligent Industry: Features, Requirements and Challenges

Authors: V. Reyes, P. Ferreira

Abstract:

In response to high levels of competitiveness, industrial systems have evolved to improve productivity. As a consequence, a rapid increase in volume production and simultaneously, a customization process require lower costs, more variety, and accurate quality of products. Reducing time-cycle production, enabling customizability, and ensure continuous quality improvement are key features in advance intelligent industry. In this scenario, customers and producers will be able to participate in the ongoing production life cycle through real-time interaction. To achieve this vision, transparency, predictability, and adaptability are key features that provide the industrial systems the capability to adapt to customer demands modifying the manufacturing process through an autonomous response and acting preventively to avoid errors. The industrial system incorporates a diversified number of components that in advanced industry are expected to be decentralized, end to end communicating, and with the capability to make own decisions through feedback. The evolving process towards advanced intelligent industry defines a set of stages to empower components of intelligence and enhancing efficiency to achieve the decision-making stage. The integrated system follows an industrial cyber-physical system (CPS) architecture whose real-time integration, based on a set of enabler technologies, links the physical and virtual world generating the digital twin (DT). This instance allows incorporating sensor data from real to virtual world and the required transparency for real-time monitoring and control, contributing to address important features of the advanced intelligent industry and simultaneously improve sustainability. Assuming the industrial CPS as the core technology toward the latest advanced intelligent industry stage, this paper reviews and highlights the correlation and contributions of the enabler technologies for the operationalization of each stage in the path toward advanced intelligent industry. From this research, a real-time integration architecture for a cyber-physical system with applications to collaborative robotics is proposed. The required functionalities and issues to endow the industrial system of adaptability are identified.

Keywords: cyber-physical systems, digital twin, sensor data, system integration, virtual model

Procedia PDF Downloads 87
119 Evaluation of the CRISP-DM Business Understanding Step: An Approach for Assessing the Predictive Power of Regression versus Classification for the Quality Prediction of Hydraulic Test Results

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Digitalisation in production technology is a driver for the application of machine learning methods. Through the application of predictive quality, the great potential for saving necessary quality control can be exploited through the data-based prediction of product quality and states. However, the serial use of machine learning applications is often prevented by various problems. Fluctuations occur in real production data sets, which are reflected in trends and systematic shifts over time. To counteract these problems, data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets to extract stable features. Successful process control of the target variables aims to centre the measured values around a mean and minimise variance. Competitive leaders claim to have mastered their processes. As a result, much of the real data has a relatively low variance. For the training of prediction models, the highest possible generalisability is required, which is at least made more difficult by this data availability. The implementation of a machine learning application can be interpreted as a production process. The CRoss Industry Standard Process for Data Mining (CRISP-DM) is a process model with six phases that describes the life cycle of data science. As in any process, the costs to eliminate errors increase significantly with each advancing process phase. For the quality prediction of hydraulic test steps of directional control valves, the question arises in the initial phase whether a regression or a classification is more suitable. In the context of this work, the initial phase of the CRISP-DM, the business understanding, is critically compared for the use case at Bosch Rexroth with regard to regression and classification. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. Suitable methods for leakage volume flow regression and classification for inspection decision are applied. Impressively, classification is clearly superior to regression and achieves promising accuracies.

Keywords: classification, CRISP-DM, machine learning, predictive quality, regression

Procedia PDF Downloads 114
118 Detailed Analysis of Multi-Mode Optical Fiber Infrastructures for Data Centers

Authors: Matej Komanec, Jan Bohata, Stanislav Zvanovec, Tomas Nemecek, Jan Broucek, Josef Beran

Abstract:

With the exponential growth of social networks, video streaming and increasing demands on data rates, the number of newly built data centers rises proportionately. The data centers, however, have to adjust to the rapidly increased amount of data that has to be processed. For this purpose, multi-mode (MM) fiber based infrastructures are often employed. It stems from the fact, the connections in data centers are typically realized within a short distance, and the application of MM fibers and components considerably reduces costs. On the other hand, the usage of MM components brings specific requirements for installation service conditions. Moreover, it has to be taken into account that MM fiber components have a higher production tolerance for parameters like core and cladding diameters, eccentricity, etc. Due to the high demands for the reliability of data center components, the determination of properly excited optical field inside the MM fiber core belongs to the key parameters while designing such an MM optical system architecture. Appropriately excited mode field of the MM fiber provides optimal power budget in connections, leads to the decrease of insertion losses (IL) and achieves effective modal bandwidth (EMB). The main parameter, in this case, is the encircled flux (EF), which should be properly defined for variable optical sources and consequent different mode-field distribution. In this paper, we present detailed investigation and measurements of the mode field distribution for short MM links purposed in particular for data centers with the emphasis on reliability and safety. These measurements are essential for large MM network design. The various scenarios, containing different fibers and connectors, were tested in terms of IL and mode-field distribution to reveal potential challenges. Furthermore, we focused on estimation of particular defects and errors, which can realistically occur like eccentricity, connector shifting or dust, were simulated and measured, and their dependence to EF statistics and functionality of data center infrastructure was evaluated. The experimental tests were performed at two wavelengths, commonly used in MM networks, of 850 nm and 1310 nm to verify EF statistics. Finally, we provide recommendations for data center systems and networks, using OM3 and OM4 MM fiber connections.

Keywords: optical fiber, multi-mode, data centers, encircled flux

Procedia PDF Downloads 346
117 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 23
116 Performance Analysis of the Precise Point Positioning Data Online Processing Service and Using for Monitoring Plate Tectonic of Thailand

Authors: Nateepat Srivarom, Weng Jingnong, Serm Chinnarat

Abstract:

Precise Point Positioning (PPP) technique is use to improve accuracy by using precise satellite orbit and clock correction data, but this technique is complicated methods and high costs. Currently, there are several online processing service providers which offer simplified calculation. In the first part of this research, we compare the efficiency and precision of four software. There are three popular online processing service providers: Australian Online GPS Processing Service (AUSPOS), CSRS-Precise Point Positioning and CenterPoint RTX post processing by Trimble and 1 offline software, RTKLIB, which collected data from 10 the International GNSS Service (IGS) stations for 10 days. The results indicated that AUSPOS has the least distance root mean square (DRMS) value of 0.0029 which is good enough to be calculated for monitoring the movement of tectonic plates. The second, we use AUSPOS to process the data of geodetic network of Thailand. In December 26, 2004, the earthquake occurred a 9.3 MW at the north of Sumatra that highly affected all nearby countries, including Thailand. Earthquake effects have led to errors of the coordinate system of Thailand. The Royal Thai Survey Department (RTSD) is primarily responsible for monitoring of the crustal movement of the country. The difference of the geodetic network movement is not the same network and relatively large. This result is needed for survey to continue to improve GPS coordinates system in every year. Therefore, in this research we chose the AUSPOS to calculate the magnitude and direction of movement, to improve coordinates adjustment of the geodetic network consisting of 19 pins in Thailand during October 2013 to November 2017. Finally, results are displayed on the simulation map by using the ArcMap program with the Inverse Distance Weighting (IDW) method. The pin with the maximum movement is pin no. 3239 (Tak) in the northern part of Thailand. This pin moved in the south-western direction to 11.04 cm. Meanwhile, the directional movement of the other pins in the south gradually changed from south-west to south-east, i.e., in the direction noticed before the earthquake. The magnitude of the movement is in the range of 4 - 7 cm, implying small impact of the earthquake. However, the GPS network should be continuously surveyed in order to secure accuracy of the geodetic network of Thailand.

Keywords: precise point positioning, online processing service, geodetic network, inverse distance weighting

Procedia PDF Downloads 166
115 Investigating the Role of Supplier Involvement in the Design Process as an Approach for Enhancing Building Maintainability

Authors: Kamal Ahmed, Othman Ayman, Refat Mostafa

Abstract:

The post-construction phase represents a critical milestone in the project lifecycle. This is because design errors and omissions, as well as construction defects, are examined during this phase. The traditional procurement approaches that are commonly adopted in construction projects separate design from construction, which ultimately inhibits contractors, suppliers and other parties from providing the design team with constructive comments and feedback to improve the project design. As a result, a lack of considering maintainability aspects during the design process results in increasing maintenance and operation costs as well as reducing building performance. This research aims to investigate the role of Early Supplier Involvement (ESI) in the design process as an approach to enhancing building maintainability. In order to achieve this aim, a research methodology consisting of a literature review, case studies and a survey questionnaire was designed to accomplish four objectives. Firstly, a literature review was used to examine the concepts of building maintenance, maintainability, the design process and ESI. Secondly, three case studies were presented and analyzed to investigate the role of ESI in enhancing building maintainability during the design process. Thirdly, a survey questionnaire was conducted with a representative sample of Architectural Design Firms (ADFs) in Egypt to investigate their perception and application of ESI towards enhancing building maintainability during the design process. Finally, the research developed a framework to facilitate ESI in the design process in ADFs in Egypt. Data analysis showed that the ‘Difficulty of trusting external parties and sharing information with transparency’ was ranked the highest challenge of ESI in ADFs in Egypt, followed by ‘Legal competitive advantage restrictions’. Moreover, ‘Better estimation for operation and maintenance costs’ was ranked the highest contribution of ESI towards enhancing building maintainability, followed by ‘Reduce the number of operation and maintenance problems or reworks’. Finally, ‘Innovation, technical expertise, and competence’ was ranked the highest supplier’s selection criteria, while ‘paying consultation fees for offering advice and recommendations to the design team’ was ranked the highest form of supplier’s remuneration. The proposed framework represents a synthesis that is creative in thought and adds value to the knowledge in a manner that has not previously occurred.

Keywords: maintenance, building maintainability, building life cycle cost (ICC), material supplier

Procedia PDF Downloads 11
114 Lessons Learned from Interlaboratory Noise Modelling in Scope of Environmental Impact Assessments in Slovenia

Authors: S. Cencek, A. Markun

Abstract:

Noise assessment methods are regularly used in scope of Environmental Impact Assessments for planned projects to assess (predict) the expected noise emissions of these projects. Different noise assessment methods could be used. In recent years, we had an opportunity to collaborate in some noise assessment procedures where noise assessments of different laboratories have been performed simultaneously. We identified some significant differences in noise assessment results between laboratories in Slovenia. We estimate that despite good input Georeferenced Data to set up acoustic model exists in Slovenia; there is no clear consensus on methods for predictive noise methods for planned projects. We analyzed input data, methods and results of predictive noise methods for two planned industrial projects, both were done independently by two laboratories. We also analyzed the data, methods and results of two interlaboratory collaborative noise models for two existing noise sources (railway and motorway). In cases of predictive noise modelling, the validations of acoustic models were performed by noise measurements of surrounding existing noise sources, but in varying durations. The acoustic characteristics of existing buildings were also not described identically. The planned noise sources were described and digitized differently. Differences in noise assessment results between different laboratories have ranged up to 10 dBA, which considerably exceeds the acceptable uncertainty ranged between 3 to 6 dBA. Contrary to predictive noise modelling, in cases of collaborative noise modelling for two existing noise sources the possibility to perform the validation noise measurements of existing noise sources greatly increased the comparability of noise modelling results. In both cases of collaborative noise modelling for existing motorway and railway, the modelling results of different laboratories were comparable. Differences in noise modeling results between different laboratories were below 5 dBA, which was acceptable uncertainty set up by interlaboratory noise modelling organizer. The lessons learned from the study were: 1) Predictive noise calculation using formulae from International standard SIST ISO 9613-2: 1997 is not an appropriate method to predict noise emissions of planned projects since due to complexity of procedure they are not used strictly, 2) The noise measurements are important tools to minimize noise assessment errors of planned projects and should be in cases of predictive noise modelling performed at least for validation of acoustic model, 3) National guidelines should be made on the appropriate data, methods, noise source digitalization, validation of acoustic model etc. in order to unify the predictive noise models and their results in scope of Environmental Impact Assessments for planned projects.

Keywords: environmental noise assessment, predictive noise modelling, spatial planning, noise measurements, national guidelines

Procedia PDF Downloads 207
113 Evaluating the Characteristics of Paediatric Accidental Poisonings

Authors: Grace Fangmin Tan, Elaine Yiling Tay, Elizabeth Huiwen Tham, Andrea Wei Ching Yeo

Abstract:

Background: While accidental poisonings in children may seem unavoidable, knowledge of circumstances surrounding such incidents and identification of risk factors is important in the development of secondary prevention strategies. Some risk factors include age of the child, lack of adequate supervision and improper storage of substances. The aim of this study is to assess risk factors and circumstances influencing outcomes in these children. Methodology: A retrospective medical record review of all accidental poisoning cases presenting to the Children’s Emergency at National University Hospital (NUH), Singapore between January 2014 and December 2015 was conducted. Information on demographics, poisoning circumstances and clinical outcomes were collected. Results: Ninety-nine of a total of 186 poisoning cases were accidental ingestions, with a mean age of 4.7 (range 0.4 to 18.3 years). The gender distribution is rather equal with 52(52.5%) females and 47(47.5%) males. Seventy-nine (79.8%) were self-administered by the child and in 20 cases (20.2%), the substance was administered erroneously by caregivers 12/20 (60.0%) of whom were given the wrong drug dose while 8/20 (40.0%) were given the wrong substance. Self-administration was associated with presentation to the ED within 12 hours (p=0.027, OR 6.65, 95% CI 1.24-35.72). Notably, 94.9% of the cases involved substances kept within reach of the child. Sixty-nine (82.1%) had the substance kept in the original container, 3(3.6%) in food containers, 8(9.5%) in other containers and 4(4.8%) without a container. Of the 50 cases with information on labelling, 40/50(80.0%) were accurately labelled, 2/50 (4.0%) wrongly labelled, and 8/50 (16.0%) were unlabelled. Implicated substances included personal care products (11.1%), household cleaning products (3.0%), and different classes of drugs such as paracetamol (22.2%), antihistamines (17.2%) and sympathomimetics (8.1%). Children < 3 years of age were 4.8 times more likely to be poisoned by household substances than children >3 years of age (p=0.009, 95% CI 1.48-15.77). Prehospital interventions were more likely to have been done in poisoning with household substances (p=0.005, OR 6.12 95% CI 1.73-21.68). Fifty-nine (59.6%) were asymptomatic, 34 (34.3%) had a Poisoning Severity Score (PSS) grade of 1 (minor) and 6 (6.1%) grade 2 (moderate). Older children were 9.3 times more likely to be symptomatic (p<0.001, 95% CI 3.15-27.25). Thirty (32%) required admission. Conclusion: A significant proportion of accidental poisoning cases were due to medication administration errors by caregivers, which should be preventable. Risk factors for accidental poisoning included lack of adequate caregiver supervision, improper labelling and young age of the child. There is an urgent need to improve caregiver counselling during medication dispensing as well as to educate caregivers on basic child safety measures in the home to prevent future accidental poisonings.

Keywords: accidental, caregiver, paediatrics, poisoning

Procedia PDF Downloads 184
112 Neurocognitive and Executive Function in Cocaine Addicted Females

Authors: Gwendolyn Royal-Smith

Abstract:

Cocaine ranks as one of the world’s most addictive and commonly abused stimulant drugs. Recent evidence indicates that the abuse of cocaine has risen so quickly among females that this group now accounts for about 40 percent of all users in the United States. Neuropsychological studies have demonstrated that specific neural activation patterns carry higher risks for neurocognitive and executive function in cocaine addicted females thereby increasing their vulnerability for poorer treatment outcomes and more frequent post-treatment relapse when compared to males. This study examined secondary data with a convenience sample of 164 cocaine addicted male and females to assess neurocognitive and executive function. The principal objective of this study was to assess whether individual performance on the Stroop Word Color Task is predictive of treatment success by gender. A second objective of the study evaluated whether individual performance employing neurocognitive measures including the Stroop Word-Color task, the Rey Auditory Verbal Learning Test (RALVT), the Iowa Gambling Task, the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale (FrSBE) test demonstrated differences in neurocognitive and executive function performance by gender. Logistic regression models were employed utilizing a covariate adjusted model application. Initial analyses of the Stroop Word color tasks indicated significant differences in the performance of males and females, with females experiencing more challenges in derived interference reaction time and associate recall ability. In early testing including the Rey Auditory Verbal Learning Test (RALVT), the number of advantageous vs disadvantageous cards from the Iowa Gambling Task, the number of perseverance errors from the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale, results were mixed with women scoring lower in multiple indicators in both neurocognitive and executive function.

Keywords: cocaine addiction, gender, neuropsychology, neurocognitive, executive function

Procedia PDF Downloads 375
111 Nutritional Status of Middle School Students and Their Selected Eating Behaviours

Authors: K. Larysz, E. Grochowska-Niedworok, M. Kardas, K. Brukalo, B. Calyniuk, R. Polaniak

Abstract:

Eating behaviours and habits are one of the main factors affecting health. Abnormal nutritional status is a growing problem related to nutritional errors. The number of adolescents presenting excess body weight is also rising. The body's demand for all nutrients increases in the period of intensive development, i.e., during puberty. A varied, well-balanced diet and elimination of unhealthy habits are two of the key factors that contribute to the proper development of a young body. The aim of the study was to assess the nutritional status and selected eating behaviours/habits in adolescents attending middle school. An original questionnaire including 24 questions was conducted. A total of 401 correctly completed questionnaires were qualified for the assessment. Body mass index (BMI) was calculated. Furthermore, the frequency of breakfast consumption, the number of meals per day, types of snacks and sweetened beverages, as well as the frequency of consuming fruit and vegetables, dairy products and fast-foods were assessed. The obtained results were analysed statistically. The study showed that malnutrition was more of a problem than overweight or obesity among middle school students. More than 71% of middle school students have breakfast, whereas almost 30% of adolescents skip this meal. Up to 57.6% of respondents most often consume sweets at school. A total of 37% of adolescents consume sweetened beverages daily or almost every day. Most of the respondents consume an optimal number of meals daily. Only 24.7% of respondents consume fruit and vegetables more than once daily. The majority of respondents (49.40%) declared that they consumed fast food several times a month. Satisfactory frequency of consuming dairy products was reported by 32.7% of middle school students. Conclusions of our study: 1. Malnutrition is more of a problem than overweight or obesity among middle school students. They consume excessive amounts of sweets, sweetened beverages, and fast foods. 2. The consumption of fruit and vegetables was too low in the study group. The intake of dairy products was also low in some cases. 3. A statistically significant correlation was found between the frequency of fast food consumption and the intake of sweetened beverages. A low correlation was found between nutritional status and the number of meals per day. The number of meals consumed by these individuals decreased with increasing nutritional status.

Keywords: adolescent, malnutrition, nutrition, nutritional status, obesity

Procedia PDF Downloads 107
110 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 257
109 Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling Approach

Authors: Ali K. M. Al-Nasrawi, Uday A. Al-Hamdany, Sarah M. Hamylton, Brian G. Jones, Yasir M. Alyazichi

Abstract:

Surface elevation dynamics have always responded to disturbance regimes. Creating Digital Elevation Models (DEMs) to detect surface dynamics has led to the development of several methods, devices and data clouds. DEMs can provide accurate and quick results with cost efficiency, in comparison to the inherited geomatics survey techniques. Nowadays, remote sensing datasets have become a primary source to create DEMs, including LiDAR point clouds with GIS analytic tools. However, these data need to be tested for error detection and correction. This paper evaluates various DEMs from different data sources over time for Apple Orchard Island, a coastal site in southeastern Australia, in order to detect surface dynamics. Subsequently, 30 chosen locations were examined in the field to test the error of the DEMs surface detection using high resolution global positioning systems (GPSs). Results show significant surface elevation changes on Apple Orchard Island. Accretion occurred on most of the island while surface elevation loss due to erosion is limited to the northern and southern parts. Concurrently, the projected differential correction and validation method aimed to identify errors in the dataset. The resultant DEMs demonstrated a small error ratio (≤ 3%) from the gathered datasets when compared with the fieldwork survey using RTK-GPS. As modern modelling approaches need to become more effective and accurate, applying several tools to create different DEMs on a multi-temporal scale would allow easy predictions in time-cost-frames with more comprehensive coverage and greater accuracy. With a DEM technique for the eco-geomorphic context, such insights about the ecosystem dynamic detection, at such a coastal intertidal system, would be valuable to assess the accuracy of the predicted eco-geomorphic risk for the conservation management sustainability. Demonstrating this framework to evaluate the historical and current anthropogenic and environmental stressors on coastal surface elevation dynamism could be profitably applied worldwide.

Keywords: DEMs, eco-geomorphic-dynamic processes, geospatial Information Science, remote sensing, surface elevation changes,

Procedia PDF Downloads 246
108 Relativity in Toddlers' Understanding of the Physical World as Key to Misconceptions in the Science Classroom

Authors: Michael Hast

Abstract:

Within their first year, infants can differentiate between objects based on their weight. By at least 5 years children hold consistent weight-related misconceptions about the physical world, such as that heavy things fall faster than lighter ones because of their weight. Such misconceptions are seen as a challenge for science education since they are often highly resistant to change through instruction. Understanding the time point of emergence of such ideas could, therefore, be crucial for early science pedagogy. The paper thus discusses two studies that jointly address the issue by examining young children’s search behaviour in hidden displacement tasks under consideration of relative object weight. In both studies, they were tested with a heavy or a light ball, and they either had information about one of the balls only or both. In Study 1, 88 toddlers aged 2 to 3½ years watched a ball being dropped into a curved tube and were then allowed to search for the ball in three locations – one straight beneath the tube entrance, one where the curved tube lead to, and one that corresponded to neither of the previous outcomes. Success and failure at the task were not impacted by weight of the balls alone in any particular way. However, from around 3 years onwards, relative lightness, gained through having tactile experience of both balls beforehand, enhanced search success. Conversely, relative heaviness increased search errors such that children increasingly searched in the location immediately beneath the tube entry – known as the gravity bias. In Study 2, 60 toddlers aged 2, 2½ and 3 years watched a ball roll down a ramp and behind a screen with four doors, with a barrier placed along the ramp after one of four doors. Toddlers were allowed to open the doors to find the ball. While search accuracy generally increased with age, relative weight did not play a role in 2-year-olds’ search behaviour. Relative lightness improved 2½-year-olds’ searches. At 3 years, both relative lightness and relative heaviness had a significant impact, with the former improving search accuracy and the latter reducing it. Taken together, both studies suggest that between 2 and 3 years of age, relative object weight is increasingly taken into consideration in navigating naïve physical concepts. In particular, it appears to contribute to the early emergence of misconceptions relating to object weight. This insight from developmental psychology research may have consequences for early science education and related pedagogy towards early conceptual change.

Keywords: conceptual development, early science education, intuitive physics, misconceptions, object weight

Procedia PDF Downloads 172
107 Spatial Architecture Impact in Mediation Open Circuit Voltage Control of Quantum Solar Cell Recovery Systems

Authors: Moustafa Osman Mohammed

Abstract:

The photocurrent generations are influencing ultra-high efficiency solar cells based on self-assembled quantum dot (QD) nanostructures. Nanocrystal quantum dots (QD) provide a great enhancement toward solar cell efficiencies through the use of quantum confinement to tune absorbance across the solar spectrum enabled multi-exciton generation. Based on theoretical predictions, QDs have potential to improve systems efficiency in approximate regular electrons excitation intensity greater than 50%. In solar cell devices, an intermediate band formed by the electron levels in quantum dot systems. The spatial architecture is exploring how can solar cell integrate and produce not only high open circuit voltage (> 1.7 eV) but also large short-circuit currents due to the efficient absorption of sub-bandgap photons. In the proposed QD system, the structure allows barrier material to absorb wavelengths below 700 nm while multi-photon processes in the used quantum dots to absorb wavelengths up to 2 µm. The assembly of the electronic model is flexible to demonstrate the atoms and molecules structure and material properties to tune control energy bandgap of the barrier quantum dot to their respective optimum values. In terms of energy virtual conversion, the efficiency and cost of the electronic structure are unified outperform a pair of multi-junction solar cell that obtained in the rigorous test to quantify the errors. The milestone toward achieving the claimed high-efficiency solar cell device is controlling the edge causes of energy bandgap between the barrier material and quantum dot systems according to the media design limits. Despite this remarkable potential for high photocurrent generation, the achievable open-circuit voltage (Voc) is fundamentally limited due to non-radiative recombination processes in QD solar cells. The orientation of voltage recovery system is compared theoretically with experimental Voc variation in mediation upper–limit obtained one diode modeling form at the cells with different bandgap (Eg) as classified in the proposed spatial architecture. The opportunity for improvement Voc is valued approximately greater than 1V by using smaller QDs through QD solar cell recovery systems as confined to other micro and nano operations states.

Keywords: nanotechnology, photovoltaic solar cell, quantum systems, renewable energy, environmental modeling

Procedia PDF Downloads 121
106 Determination of Optimal Stress Locations in 2D–9 Noded Element in Finite Element Technique

Authors: Nishant Shrivastava, D. K. Sehgal

Abstract:

In Finite Element Technique nodal stresses are calculated through displacement as nodes. In this process, the displacement calculated at nodes is sufficiently good enough but stresses calculated at nodes are not sufficiently accurate. Therefore, the accuracy in the stress computation in FEM models based on the displacement technique is obviously matter of concern for computational time in shape optimization of engineering problems. In the present work same is focused to find out unique points within the element as well as the boundary of the element so, that good accuracy in stress computation can be achieved. Generally, major optimal stress points are located in domain of the element some points have been also located at boundary of the element where stresses are fairly accurate as compared to nodal values. Then, it is subsequently concluded that there is an existence of unique points within the element, where stresses have higher accuracy than other points in the elements. Therefore, it is main aim is to evolve a generalized procedure for the determination of the optimal stress location inside the element as well as at the boundaries of the element and verify the same with results from numerical experimentation. The results of quadratic 9 noded serendipity elements are presented and the location of distinct optimal stress points is determined inside the element, as well as at the boundaries. The theoretical results indicate various optimal stress locations are in local coordinates at origin and at a distance of 0.577 in both directions from origin. Also, at the boundaries optimal stress locations are at the midpoints of the element boundary and the locations are at a distance of 0.577 from the origin in both directions. The above findings were verified through experimentation and findings were authenticated. For numerical experimentation five engineering problems were identified and the numerical results of 9-noded element were compared to those obtained by using the same order of 25-noded quadratic Lagrangian elements, which are considered as standard. Then root mean square errors are plotted with respect to various locations within the elements as well as the boundaries and conclusions were drawn. After numerical verification it is noted that in a 9-noded element, origin and locations at a distance of 0.577 from origin in both directions are the best sampling points for the stresses. It was also noted that stresses calculated within line at boundary enclosed by 0.577 midpoints are also very good and the error found is very less. When sampling points move away from these points, then it causes line zone error to increase rapidly. Thus, it is established that there are unique points at boundary of element where stresses are accurate, which can be utilized in solving various engineering problems and are also useful in shape optimizations.

Keywords: finite elements, Lagrangian, optimal stress location, serendipity

Procedia PDF Downloads 86
105 Imputation of Incomplete Large-Scale Monitoring Count Data via Penalized Estimation

Authors: Mohamed Dakki, Genevieve Robin, Marie Suet, Abdeljebbar Qninba, Mohamed A. El Agbani, Asmâa Ouassou, Rhimou El Hamoumi, Hichem Azafzaf, Sami Rebah, Claudia Feltrup-Azafzaf, Nafouel Hamouda, Wed a.L. Ibrahim, Hosni H. Asran, Amr A. Elhady, Haitham Ibrahim, Khaled Etayeb, Essam Bouras, Almokhtar Saied, Ashrof Glidan, Bakar M. Habib, Mohamed S. Sayoud, Nadjiba Bendjedda, Laura Dami, Clemence Deschamps, Elie Gaget, Jean-Yves Mondain-Monval, Pierre Defos Du Rau

Abstract:

In biodiversity monitoring, large datasets are becoming more and more widely available and are increasingly used globally to estimate species trends and con- servation status. These large-scale datasets challenge existing statistical analysis methods, many of which are not adapted to their size, incompleteness and heterogeneity. The development of scalable methods to impute missing data in incomplete large-scale monitoring datasets is crucial to balance sampling in time or space and thus better inform conservation policies. We developed a new method based on penalized Poisson models to impute and analyse incomplete monitoring data in a large-scale framework. The method al- lows parameterization of (a) space and time factors, (b) the main effects of predic- tor covariates, as well as (c) space–time interactions. It also benefits from robust statistical and computational capability in large-scale settings. The method was tested extensively on both simulated and real-life waterbird data, with the findings revealing that it outperforms six existing methods in terms of missing data imputation errors. Applying the method to 16 waterbird species, we estimated their long-term trends for the first time at the entire North African scale, a region where monitoring data suffer from many gaps in space and time series. This new approach opens promising perspectives to increase the accuracy of species-abundance trend estimations. We made it freely available in the r package ‘lori’ (https://CRAN.R-project.org/package=lori) and recommend its use for large- scale count data, particularly in citizen science monitoring programmes.

Keywords: biodiversity monitoring, high-dimensional statistics, incomplete count data, missing data imputation, waterbird trends in North-Africa

Procedia PDF Downloads 117
104 Strategic Public Procurement: A Lever for Social Entrepreneurship and Innovation

Authors: B. Orser, A. Riding, Y. Li

Abstract:

To inform government about how gender gaps in SME ( small and medium-sized enterprise) contracting might be redressed, the research question was: What are the key obstacles to, and response strategies for, increasing the engagement of women business owners among SME suppliers to the government of Canada? Thirty-five interviews with senior policymakers, supplier diversity organization executives, and expert witnesses to the Canadian House of Commons, Standing Committee on Government Operations and Estimates. Qualitative data were conducted and analysed using N’Vivo 11 software. High order response categories included: (a) SME risk mitigation strategies, (b) SME procurement program design, and (c) performance measures. Primary obstacles cited were government red tape and long and complicated requests for proposals (RFPs). The majority of 'common' complaints occur when SMEs have questions about the federal procurement process. Witness responses included use of outcome-based rather than prescriptive procurement practices, more agile procurement, simplified RFPs, making payment within 30 days a procurement priority. Risk mitigation strategies included provision of procurement officers to assess risks and opportunities for businesses and development of more agile procurement procedures and processes. Recommendations to enhance program design included: improved definitional consistency of qualifiers and selection criteria, better co-ordination across agencies; clarification about how SME suppliers benefit from federal contracting; goal setting; specification of categories that are most suitable for women-owned businesses; and, increasing primary contractor awareness about the importance of subcontract relationships. Recommendations also included third-party certification of eligible firms and the need to enhance SMEs’ financial literacy to reduce financial errors. Finally, there remains the need for clear and consistent pre-program statistics to establish baselines (by sector, issuing department) performance measures, targets based on percentage of contracts granted, value of contract, percentage of target employee (women, indigenous), and community benefits including hiring local employees. The study advances strategies to enhance federal procurement programs to facilitate socio-economic policy objectives.

Keywords: procurement, small business, policy, women

Procedia PDF Downloads 89
103 21st Century Business Dynamics: Acting Local and Thinking Global through Extensive Business Reporting Language (XBRL)

Authors: Samuel Faboyede, Obiamaka Nwobu, Samuel Fakile, Dickson Mukoro

Abstract:

In the present dynamic business environment of corporate governance and regulations, financial reporting is an inevitable and extremely significant process for every business enterprise. Several financial elements such as Annual Reports, Quarterly Reports, ad-hoc filing, and other statutory/regulatory reports provide vital information to the investors and regulators, and establish trust and rapport between the internal and external stakeholders of an organization. Investors today are very demanding, and emphasize greatly on authenticity, accuracy, and reliability of financial data. For many companies, the Internet plays a key role in communicating business information, internally to management and externally to stakeholders. Despite high prominence being attached to external reporting, it is disconnected in most companies, who generate their external financial documents manually, resulting in high degree of errors and prolonged cycle times. Chief Executive Officers and Chief Financial Officers are increasingly susceptible to endorsing error-laden reports, late filing of reports, and non-compliance with regulatory acts. There is a lack of common platform to manage the sensitive information – internally and externally – in financial reports. The Internet financial reporting language known as eXtensible Business Reporting Language (XBRL) continues to develop in the face of challenges and has now reached the point where much of its promised benefits are available. This paper looks at the emergence of this revolutionary twenty-first century language of digital reporting. It posits that today, the world is on the brink of an Internet revolution that will redefine the ‘business reporting’ paradigm. The new Internet technology, eXtensible Business Reporting Language (XBRL), is already being deployed and used across the world. It finds that XBRL is an eXtensible Markup Language (XML) based information format that places self-describing tags around discrete pieces of business information. Once tags are assigned, it is possible to extract only desired information, rather than having to download or print an entire document. XBRL is platform-independent and it will work on any current or recent-year operating system, or any computer and interface with virtually any software. The paper concludes that corporate stakeholders and the government cannot afford to ignore the XBRL. It therefore recommends that all must act locally and think globally now via the adoption of XBRL that is changing the face of worldwide business reporting.

Keywords: XBRL, financial reporting, internet, internal and external reports

Procedia PDF Downloads 251
102 A Microwave and Millimeter-Wave Transmit/Receive Switch Subsystem for Communication Systems

Authors: Donghyun Lee, Cam Nguyen

Abstract:

Multi-band systems offer a great deal of benefit in modern communication and radar systems. In particular, multi-band antenna-array radar systems with their extended frequency diversity provide numerous advantages in detection, identification, locating and tracking a wide range of targets, including enhanced detection coverage, accurate target location, reduced survey time and cost, increased resolution, improved reliability and target information. An accurate calibration is a critical issue in antenna array systems. The amplitude and phase errors in multi-band and multi-polarization antenna array transceivers result in inaccurate target detection, deteriorated resolution and reduced reliability. Furthermore, the digital beam former without the RF domain phase-shifting is less immune to unfiltered interference signals, which can lead to receiver saturation in array systems. Therefore, implementing integrated front-end architecture, which can support calibration function with low insertion and filtering function from the farthest end of an array transceiver is of great interest. We report a dual K/Ka-band T/R/Calibration switch module with quasi-elliptic dual-bandpass filtering function implementing a Q-enhanced metamaterial transmission line. A unique dual-band frequency response is incorporated in the reception and calibration path of the proposed switch module utilizing the composite right/left-handed meta material transmission line coupled with a Colpitts-style negative generation circuit. The fabricated fully integrated T/R/Calibration switch module in 0.18-μm BiCMOS technology exhibits insertion loss of 4.9-12.3 dB and isolation of more than 45 dB in the reception, transmission and calibration mode of operation. In the reception and calibration mode, the dual-band frequency response centered at 24.5 and 35 GHz exhibits out-of-band rejection of more than 30 dB compared to the pass bands below 10.5 GHz and above 59.5 GHz. The rejection between the pass bands reaches more than 50 dB. In all modes of operation, the IP1-dB is between 4 and 11 dBm. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: microwaves, millimeter waves, T/R switch, wireless communications, wireless communications

Procedia PDF Downloads 138
101 Mapping of Renovation Potential in Rudersdal Municipality Based on a Sustainability Indicator Framework

Authors: Barbara Eschen Danielsen, Morten Niels Baxter, Per Sieverts Nielsen

Abstract:

Europe is currently in an energy and climate crisis, which requires more sustainable solutions than what has been used to before. Europe uses 40% of its energy in buildings so there has come a significant focus on trying to find and commit to new initiatives to reduce energy consumption in buildings. The European Union has introduced a building standard in 2021 to be upheld by 2030. This new building standard requires a significant reduction of CO2 emissions from both privately and publicly owned buildings. The overall aim is to achieve a zero-emission building stock by 2050. EU is revising the Energy Performance of Buildings Directive (EPBD) as part of the “Fit for 55” package. It was adopted on March 14, 2023. The new directive’s main goal is to renovate the least energy-efficient homes in Europe. There will be a cost for the home owner with a renovation project, but there will also be an improvement in energy efficiency and, therefore, a cost reduction. After the implementation of the EU directive, many homeowners will have to focus their attention on how to make the most effective energy renovations of their homes. The new EU directive will affect almost one million Danish homes (30%), as they do not meet the newly implemented requirements for energy efficiency. The problem for this one mio homeowners is that it is not easy to decide which renovation project they should consider. The houses are build differently and there are many possible solutions. The main focus of this paper is to identify the most impactful solutions and evaluate their impact and evaluating them with a criteria based sustainability indicator framework. The result of the analysis give each homeowner an insight in the various renovation options, including both advantages and disadvantages with the aim of avoiding unnecessary costs and errors while minimizing their CO2 footprint. Given that the new EU directive impacts a significant number of home owners and their homes both in Denmark and the rest of the European Union it is crucial to clarify which renovations have the most environmental impact and most cost effective. We have evaluated the 10 most impactful solutions and evaluated their impact in an indicator framework which includes 9 indicators and covers economic, environmental as well as social factors. We have packaged the result of the analysis in three packages, the most cost effective (short term), the most cost effective (long-term) and the most sustainable. The results of the study secure transparency and thereby provides homeowners with a tool to help their decision-making. The analysis is based on mostly qualitative indicators, but it will be possible to evaluate most of the indicators quantitively in a future study.

Keywords: energy efficiency, building renovation, renovation solutions, building energy performance criteria

Procedia PDF Downloads 51
100 Robust Processing of Antenna Array Signals under Local Scattering Environments

Authors: Ju-Hong Lee, Ching-Wei Liao

Abstract:

An adaptive array beamformer is designed for automatically preserving the desired signals while cancelling interference and noise. Providing robustness against model mismatches and tracking possible environment changes calls for robust adaptive beamforming techniques. The design criterion yields the well-known generalized sidelobe canceller (GSC) beamformer. In practice, the knowledge of the desired steering vector can be imprecise, which often occurs due to estimation errors in the DOA of the desired signal or imperfect array calibration. In these situations, the SOI is considered as interference, and the performance of the GSC beamformer is known to degrade. This undesired behavior results in a reduction of the array output signal-to-interference plus-noise-ratio (SINR). Therefore, it is worth developing robust techniques to deal with the problem due to local scattering environments. As to the implementation of adaptive beamforming, the required computational complexity is enormous when the array beamformer is equipped with massive antenna array sensors. To alleviate this difficulty, a generalized sidelobe canceller (GSC) with partially adaptivity for less adaptive degrees of freedom and faster adaptive response has been proposed in the literature. Unfortunately, it has been shown that the conventional GSC-based adaptive beamformers are usually very sensitive to the mismatch problems due to local scattering situations. In this paper, we present an effective GSC-based beamformer against the mismatch problems mentioned above. The proposed GSC-based array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. We utilize the predefined steering vector and a presumed angle tolerance range to carry out the required estimation for obtaining an appropriate steering vector. A matrix associated with the direction vector of signal sources is first created. Then projection matrices related to the matrix are generated and are utilized to iteratively estimate the actual direction vector of the desired signal. As a result, the quiescent weight vector and the required signal blocking matrix required for performing adaptive beamforming can be easily found. By utilizing the proposed GSC-based beamformer, we find that the performance degradation due to the considered local scattering environments can be effectively mitigated. To further enhance the beamforming performance, a signal subspace projection matrix is also introduced into the proposed GSC-based beamformer. Several computer simulation examples show that the proposed GSC-based beamformer outperforms the existing robust techniques.

Keywords: adaptive antenna beamforming, local scattering, signal blocking, steering mismatch

Procedia PDF Downloads 81
99 Educational Debriefing in Prehospital Medicine: A Qualitative Study Exploring Educational Debrief Facilitation and the Effects of Debriefing

Authors: Maria Ahmad, Michael Page, Danë Goodsman

Abstract:

‘Educational’ debriefing – a construct distinct from clinical debriefing – is used following simulated scenarios and is central to learning and development in fields ranging from aviation to emergency medicine. However, little research into educational debriefing in prehospital medicine exists. This qualitative study explored the facilitation and effects of prehospital educational debriefing and identified obstacles to debriefing, using the London’s Air Ambulance Pre-Hospital Care Course (PHCC) as a model. Method: Ethnographic observations of moulages and debriefs were conducted over two consecutive days of the PHCC in October 2019. Detailed contemporaneous field notes were made and analysed thematically. Subsequently, seven one-to-one, semi-structured interviews were conducted with four PHCC debrief facilitators and three course participants to explore their experiences of prehospital educational debriefing. Interview data were manually transcribed and analysed thematically. Results: Four overarching themes were identified: the approach to the facilitation of debriefs, effects of debriefing, facilitator development, and obstacles to debriefing. The unpredictable debriefing environment was seen as both hindering and paradoxically benefitting educational debriefing. Despite using varied debriefing structures, facilitators emphasised similar key debriefing components, including exploring participants’ reasoning and sharing experiences to improve learning and prevent future errors. Debriefing was associated with three principal effects: releasing emotion; learning and improving, particularly participant compound learning as they progressed through scenarios; and the application of learning to clinical practice. Facilitator training and feedback were central to facilitator learning and development. Several obstacles to debriefing were identified, including mismatch of participant and facilitator agendas, performance pressure, and time. Interestingly, when used appropriately in the educational environment, these obstacles may paradoxically enhance learning. Conclusions: Educational debriefing in prehospital medicine is complex. It requires the establishment of a safe learning environment, an understanding of participant agendas, and facilitator experience to maximise participant learning. Aspects unique to prehospital educational debriefing were identified, notably the unpredictable debriefing environment, interdisciplinary working, and the paradoxical benefit of educational obstacles for learning. This research also highlights aspects of educational debriefing not extensively detailed in the literature, such as compound participant learning, display of ‘professional honesty’ by facilitators, and facilitator learning, which require further exploration. Future research should also explore educational debriefing in other prehospital services.

Keywords: debriefing, prehospital medicine, prehospital medical education, pre-hospital care course

Procedia PDF Downloads 181
98 Experimental Investigation of the Thermal Conductivity of Neodymium and Samarium Melts by a Laser Flash Technique

Authors: Igor V. Savchenko, Dmitrii A. Samoshkin

Abstract:

The active study of the properties of lanthanides has begun in the late 50s of the last century, when methods for their purification were developed and metals with a relatively low content of impurities were obtained. Nevertheless, up to date, many properties of the rare earth metals (REM) have not been experimentally investigated, or insufficiently studied. Currently, the thermal conductivity and thermal diffusivity of lanthanides have been studied most thoroughly in the low-temperature region and at moderate temperatures (near 293 K). In the high-temperature region, corresponding to the solid phase, data on the thermophysical characteristics of the REM are fragmentary and in some cases contradictory. Analysis of the literature showed that the data on the thermal conductivity and thermal diffusivity of light REM in the liquid state are few in number, little informative (only one point corresponds to the liquid state region), contradictory (the nature of the thermal conductivity change with temperature is not reproduced), as well as the results of measurements diverge significantly beyond the limits of the total errors. Thereby our experimental results allow to fill this gap and to clarify the existing information on the heat transfer coefficients of neodymium and samarium in a wide temperature range from the melting point up to 1770 K. The measurement of the thermal conductivity of investigated metallic melts was carried out by laser flash technique on an automated experimental setup LFA-427. Neodymium sample of brand NM-1 (99.21 wt % purity) and samarium sample of brand SmM-1 (99.94 wt % purity) were cut from metal ingots and then ones were annealed in a vacuum (1 mPa) at a temperature of 1400 K for 3 hours. Measuring cells of a special design from tantalum were used for experiments. Sealing of the cell with a sample inside it was carried out by argon-arc welding in the protective atmosphere of the glovebox. The glovebox was filled with argon with purity of 99.998 vol. %; argon was additionally cleaned up by continuous running through sponge titanium heated to 900–1000 K. The general systematic error in determining the thermal conductivity of investigated metallic melts was 2–5%. The approximation dependences and the reference tables of the thermal conductivity and thermal diffusivity coefficients were developed. New reliable experimental data on the transport properties of the REM and their changes in phase transitions can serve as a scientific basis for optimizing the industrial processes of production and use of these materials, as well as ones are of interest for the theory of thermophysical properties of substances, physics of metals, liquids and phase transformations.

Keywords: high temperatures, laser flash technique, liquid state, metallic melt, rare earth metals, thermal conductivity, thermal diffusivity

Procedia PDF Downloads 170
97 On-Site Coaching on Freshly-Graduated Nurses to Improves Quality of Clinical Handover and to Avoid Clinical Error

Authors: Sau Kam Adeline Chan

Abstract:

World Health Organization had listed ‘Communication during Patient Care Handovers’ as one of its highest 5 patient safety initiatives. Clinical handover means transfer of accountability and responsibility of clinical information from one health professional to another. The main goal of clinical handover is to convey patient’s current condition and treatment plan accurately. Ineffective communication at point of care is globally regarded as the main cause of the sentinel event. Situation, Background, Assessment and Recommendation (SBAR), a communication tool, is extensively regarded as an effective communication tool in healthcare setting. Nonetheless, just by scenario-based program in nursing school or attending workshops on SBAR would not be enough for freshly graduated nurses to apply it competently in a complex clinical practice. To what extend and in-depth of information should be conveyed during handover process is not easy to learn. As such, on-site coaching is essential to upgrade their expertise on the usage of SBAR and ultimately to avoid any clinical error. On-site coaching for all freshly graduated nurses on the usage of SBAR in clinical handover was commenced in August 2014. During the preceptorship period, freshly graduated nurses were coached by the preceptor. After that, they were gradually assigned to take care of a group of patients independently. Nurse leaders would join in their shift handover process at patient’s bedside. Feedback and support were given to them accordingly. Discrepancies on their clinical handover process were shared with them and documented for further improvement work. Owing to the constraint of manpower in nurse leader, about coaching for 30 times were provided to a nurse in a year. Staff satisfaction survey was conducted to gauge their feelings about the coaching and look into areas for further improvement. Number of clinical error avoided was documented as well. The nurses reported that there was a significant improvement particularly in their confidence and knowledge in clinical handover process. In addition, the sense of empowerment was developed when liaising with senior and experienced nurses. Their proficiency in applying SBAR was enhanced and they become more alert to the critical criteria of an effective clinical handover. Most importantly, accuracy of transferring patient’s condition was improved and repetition of information was avoided. Clinical errors were prevented and quality patient care was ensured. Using SBAR as a communication tool looks simple. The tool only provides a framework to guide the handover process. Nevertheless, without on-site training, loophole on clinical handover still exists, patient’s safety will be affected and clinical error still happens.

Keywords: freshly graduated nurse, competency of clinical handover, quality, clinical error

Procedia PDF Downloads 124
96 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination

Authors: Gilberto Goracci, Fabio Curti

Abstract:

This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.

Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field

Procedia PDF Downloads 66
95 The Relationship between Violence against Women and Levels of Self-Esteem in Urban Informal Settlements of Mumbai, India: A Cross-Sectional Study

Authors: A. Bentley, A. Prost, N. Daruwalla, D. Osrin

Abstract:

Background: This study aims to investigate the relationship between experiences of violence against women in the family, and levels of self-esteem in women residing in informal settlement (slum) areas of Mumbai, India. The authors hypothesise that violence against women in Indian households extends beyond that of intimate partner violence (IPV), to include other members of the family and that experiences of violence are associated with lower levels of self-esteem. Methods: Experiences of violence were assessed through a cross-sectional survey of 598 women, including questions about specific acts of emotional, economic, physical and sexual violence across different time points, and the main perpetrator of each. Self-esteem was assessed using the Rosenberg self-esteem questionnaire. A global score for self-esteem was calculated and the relationship between violence in the past year and Rosenberg self-esteem score was assessed using multivariable linear regression models, adjusted for years of education completed, and clustering using robust standard errors. Results: 482 (81%) women consented to interview. On average, they were 28.5 years old, had completed 6 years of education and had been married 9.5 years. 88% were Muslim and 46% lived in joint families. 44% of women had experienced at least one act of violence in their lifetime (33% emotional, 22% economic, 24% physical, 12% sexual). Of the women who experienced violence after marriage, 70% cited a perpetrator other than the husband for at least one of the acts. 5% had low self-esteem (Rosenberg score < 15). For women who experienced emotional violence in the past year, the Rosenberg score was 2.6 points lower (p < 0.001). It was 1.2 points lower (p = 0.03) for women who experienced economic violence. For physical or sexual violence in the past year, no statistically significant relationship with Rosenberg score was seen. However, for a one-unit increase in the number of different acts of each type of violence experienced in the past year, a decrease in Rosenberg score was seen (-0.62 for emotional, -0.76 for economic, -0.53 for physical and -0.47 for sexual; p < 0.05 for all). Discussion: The high prevalence of violence experiences across the lifetime was likely due to the detailed assessment of violence and the inclusion of perpetrators within the family other than the husband. Experiences of emotional or economic violence in the past year were associated with lower Rosenberg scores and therefore lower self-esteem, but no relationship was seen between experiences of physical or sexual violence and Rosenberg score overall. For all types of violence in the past year, a greater number of different acts were associated with a decrease in Rosenberg score. Emotional violence showed the strongest relationship with self-esteem, but for all types of violence the more complex the pattern of perpetration with different methods used, the lower the levels of self-esteem. Due to the cross-sectional nature of the study causal directionality cannot be attributed. Further work to investigate the relationship between severity of violence and self-esteem and whether self-esteem mediates relationships between violence and poorer mental health would be beneficial.

Keywords: family violence, India, informal settlements, Rosenberg self-esteem scale, self-esteem, violence against women

Procedia PDF Downloads 107
94 Rain Gauges Network Optimization in Southern Peninsular Malaysia

Authors: Mohd Khairul Bazli Mohd Aziz, Fadhilah Yusof, Zulkifli Yusop, Zalina Mohd Daud, Mohammad Afif Kasno

Abstract:

Recent developed rainfall network design techniques have been discussed and compared by many researchers worldwide due to the demand of acquiring higher levels of accuracy from collected data. In many studies, rain-gauge networks are designed to provide good estimation for areal rainfall and for flood modelling and prediction. In a certain study, even using lumped models for flood forecasting, a proper gauge network can significantly improve the results. Therefore existing rainfall network in Johor must be optimized and redesigned in order to meet the required level of accuracy preset by rainfall data users. The well-known geostatistics method (variance-reduction method) that is combined with simulated annealing was used as an algorithm of optimization in this study to obtain the optimal number and locations of the rain gauges. Rain gauge network structure is not only dependent on the station density; station location also plays an important role in determining whether information is acquired accurately. The existing network of 84 rain gauges in Johor is optimized and redesigned by using rainfall, humidity, solar radiation, temperature and wind speed data during monsoon season (November – February) for the period of 1975 – 2008. Three different semivariogram models which are Spherical, Gaussian and Exponential were used and their performances were also compared in this study. Cross validation technique was applied to compute the errors and the result showed that exponential model is the best semivariogram. It was found that the proposed method was satisfied by a network of 64 rain gauges with the minimum estimated variance and 20 of the existing ones were removed and relocated. An existing network may consist of redundant stations that may make little or no contribution to the network performance for providing quality data. Therefore, two different cases were considered in this study. The first case considered the removed stations that were optimally relocated into new locations to investigate their influence in the calculated estimated variance and the second case explored the possibility to relocate all 84 existing stations into new locations to determine the optimal position. The relocations of the stations in both cases have shown that the new optimal locations have managed to reduce the estimated variance and it has proven that locations played an important role in determining the optimal network.

Keywords: geostatistics, simulated annealing, semivariogram, optimization

Procedia PDF Downloads 273