Search results for: physics guided machine learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9486

Search results for: physics guided machine learning

9486 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller

Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni

Abstract:

With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.

Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning

Procedia PDF Downloads 227
9485 Teaching Physics: History, Models, and Transformation of Physics Education Research

Authors: N. Didiş Körhasan, D. Kaltakçı Gürel

Abstract:

Many students have difficulty in learning physics from elementary to university level. In addition, students' expectancy, attitude, and motivation may be influenced negatively with their experience (failure) and prejudice about physics learning. For this reason, physics educators, who are also physics teachers, search for the best ways to make students' learning of physics easier by considering cognitive, affective, and psychomotor issues in learning. This research critically discusses the history of physics education, fundamental pedagogical approaches, and models to teach physics, and transformation of physics education with recent research.

Keywords: pedagogy, physics, physics education, science education

Procedia PDF Downloads 262
9484 The Development Learning Module Physics based on Guided Inquiry Approach on Model Cooperative Learning Type STAD (Student Team Achievement Division) in the Main Subject of Temperature and Heat

Authors: Fani Firmahandari

Abstract:

The development learning module physics based on guided inquiry approach on model cooperative learning type STAD (Student Team Achievement Division) in the main subject of temperature and heat. The research development aimed to produce physics learning module based on guided cooperative learning type STAD (Student Team Achievement Division) in the main subject of temperature and heat to the student in X class. The research method used Research and Development approach. The development procedure of this module includes potential problems, data collection to meet the need, product design, and feasibility of this module. The impact of learning can be seen or observed clearly when the learning process takes place, the teachers or the students already implemented measures cooperative learning model type STAD, so that the learning process goes well, the interaction of teachers and students, students with student looks good, besides that students can interact and work together in group.

Keywords: cooperative learning type STAD (student team achievement division), development, inquiry, interaction students

Procedia PDF Downloads 360
9483 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem

Authors: Feng Yang

Abstract:

Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.

Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics

Procedia PDF Downloads 149
9482 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning

Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag

Abstract:

The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.

Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling

Procedia PDF Downloads 90
9481 A Review of Machine Learning for Big Data

Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.

Abstract:

Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.

Keywords: active learning, big data, deep learning, machine learning

Procedia PDF Downloads 444
9480 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course

Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu

Abstract:

This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.

Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN

Procedia PDF Downloads 43
9479 A Bibliometric Analysis of Research on E-learning in Physics Education: Trends, Patterns, and Future Directions

Authors: Siti Nurjanah, Supahar

Abstract:

E-learning has become an increasingly popular mode of instruction, particularly in the field of physics education, where it offers opportunities for interactive and engaging learning experiences. This research aims to analyze the trends of research that investigated e-learning in physics education. Data was extracted from Scopus's database using the keywords "physics" and "e-learning". Of the 380 articles obtained based on the search criteria, a trend analysis of the research was carried out with the help of RStudio using the biblioshiny package and VosViewer software. Analysis showed that publications on this topic have increased significantly from 2014 to 2021. The publication was dominated by researchers from the United States. The main journal that publishes articles on this topic is Proceedings Frontiers in Education Conference fie. The most widely cited articles generally focus on the effectiveness of Moodle for physics learning. Overall, this research provides an in-depth understanding of the trends and key findings of research related to e-learning in physics.

Keywords: bibliometric analysis, physics education, biblioshiny, E-learning

Procedia PDF Downloads 40
9478 Physical Physics: Enhancing the Learning Experience for Undergraduate Game Development Students

Authors: Y. Kavanagh, N. O'Hara, R. Palmer, P. Lowe, D. Rafferty

Abstract:

Physical Physics is a physics education methodology for games programfmes that integrates physical activity with movement tracking and modelling. It significantly enhances the learning experience and it is effective in illustrating how physics is core in games design and programming, while allowing students to be active participants and take ownership of the learning process. It has been successfully piloted with undergraduate students studying Games Development.

Keywords: activity, enhanced learning, game development, physics

Procedia PDF Downloads 288
9477 Teachers’ and Students’ Reactions to a Guided Reading Program Designed by a Teachers’ Professional Learning Community

Authors: Yea-Mei Leou, Shiu-Hsung Huang, T. C. Shen, Chin-Ya Fang

Abstract:

The purposes of this study were to explore how to establish a professional learning community for English teachers at a junior high school, and to explore how teachers and students think about the guided reading program. The participants were three experienced English teachers and their ESL seventh-grade students from three classes in a junior high school. Leveled picture books and worksheets were used in the program. Questionnaires and interviews were used for gathering information. The findings were as follows: First, most students enjoyed this guided reading program. Second, the teachers thought the guided reading program was helpful to students’ learning and the discussions in the professional learning community refreshed their ideas, but the preparation for the teaching was time-consuming. Suggestions based on the findings were provided.

Keywords: ESL students, guided reading, leveled books, professional learning community

Procedia PDF Downloads 375
9476 The Different Learning Path Analysis of Students with Different Learning Attitudes and Styles in Arts Creation

Authors: Tracy Ho, Huann-Shyang Lin, Mina Lin

Abstract:

This study investigated the different learning path of students with different learning attitude and learning styles in Arts Creation. Based on direct instruction, guided-discovery learning, and discovery learning theories, a tablet app including the following three learning areas were developed for students: (1) replication and remix practice area, (2) guided creation area, and (3) free creation area. Thirty. students with different learning attitude and learning styles were invited to use this app. Students’ learning behaviors were categorized and defined. The results will provide both educators and researchers with insights that can form a useful foundation for designing different content and strategy with the application of new technologies in school teaching. It also sheds light on how an educational App can be designed to enhance Arts Creation.

Keywords: App, arts creation, learning attitude, learning style, tablet

Procedia PDF Downloads 275
9475 Modern Machine Learning Conniptions for Automatic Speech Recognition

Authors: S. Jagadeesh Kumar

Abstract:

This expose presents a luculent of recent machine learning practices as employed in the modern and as pertinent to prospective automatic speech recognition schemes. The aspiration is to promote additional traverse ablution among the machine learning and automatic speech recognition factions that have transpired in the precedent. The manuscript is structured according to the chief machine learning archetypes that are furthermore trendy by now or have latency for building momentous hand-outs to automatic speech recognition expertise. The standards offered and convoluted in this article embraces adaptive and multi-task learning, active learning, Bayesian learning, discriminative learning, generative learning, supervised and unsupervised learning. These learning archetypes are aggravated and conferred in the perspective of automatic speech recognition tools and functions. This manuscript bequeaths and surveys topical advances of deep learning and learning with sparse depictions; further limelight is on their incessant significance in the evolution of automatic speech recognition.

Keywords: automatic speech recognition, deep learning methods, machine learning archetypes, Bayesian learning, supervised and unsupervised learning

Procedia PDF Downloads 446
9474 Tongue Image Retrieval Based Using Machine Learning

Authors: Ahmad FAROOQ, Xinfeng Zhang, Fahad Sabah, Raheem Sarwar

Abstract:

In Traditional Chinese Medicine, tongue diagnosis is a vital inspection tool (TCM). In this study, we explore the potential of machine learning in tongue diagnosis. It begins with the cataloguing of the various classifications and characteristics of the human tongue. We infer 24 kinds of tongues from the material and coating of the tongue, and we identify 21 attributes of the tongue. The next step is to apply machine learning methods to the tongue dataset. We use the Weka machine learning platform to conduct the experiment for performance analysis. The 457 instances of the tongue dataset are used to test the performance of five different machine learning methods, including SVM, Random Forests, Decision Trees, and Naive Bayes. Based on accuracy and Area under the ROC Curve, the Support Vector Machine algorithm was shown to be the most effective for tongue diagnosis (AUC).

Keywords: medical imaging, image retrieval, machine learning, tongue

Procedia PDF Downloads 80
9473 The Student Care: The Influence of Family’s Attention toward the Student of Junior High Schools in Physics Learning Achievements

Authors: Siti Rossidatul Munawaroh, Siti Khusnul Khowatim

Abstract:

This study is determined to find how is the influence of family attention of students in provides guidance of the student learning. The increasing of student’s learning motivation can be increased made up in various ways, one of them are through students social guidance in their relation with the family. The family not only provides the matter and the learning time but also be supervise for the learning time and guide his children to overcome a learning disability. The character of physics subject in their science experiences at junior high schools has demanded that student’s ability is to think symbolically and understand something in a meaningful manner. Therefore, the reinforcement of the physics learning motivation is clearly necessary not only by the school are related, but the family environment and the society. As for the role of family which includes maintenance, parenting, coaching, and educating both of physically and spiritually, this way is expected to give spirit impulsion in studying physics subject in order to increase student learning achievements.

Keywords: physics subject, the influence of family attention, learning motivation, the Student care

Procedia PDF Downloads 429
9472 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques

Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart

Abstract:

Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.

Keywords: machine learning, text classification, NLP techniques, semantic representation

Procedia PDF Downloads 99
9471 Mobile Games Applications Android-Based Physics Education to Improve Student Motivation and Interest in Learning Physics

Authors: Rizky Dwi A, Mikha Herlina Pi

Abstract:

Physics lessons for high school students, especially in Indonesia is less desirable because many people believe that physics is very difficult, especially the development of increasingly sophisticated era make online gaming more attractive many people especially school children with a variety of increasingly sophisticated gadgets. Therefore, if those two things combined to attract students in physics, the physics-based educational game android can motivate students' interest and understanding of the physics because while playing, they can also learn physics.

Keywords: education, game physics, interest, student's motivation

Procedia PDF Downloads 277
9470 A Machine Learning-based Study on the Estimation of the Threat Posed by Orbital Debris

Authors: Suhani Srivastava

Abstract:

This research delves into the classification of orbital debris through machine learning (ML): it will categorize the intensity of the threat orbital debris poses through multiple ML models to gain an insight into effectively estimating the danger specific orbital debris can pose to future space missions. As the space industry expands, orbital debris becomes a growing concern in Low Earth Orbit (LEO) because it can potentially obfuscate space missions due to the increased orbital debris pollution. Moreover, detecting orbital debris and identifying its characteristics has become a major concern in Space Situational Awareness (SSA), and prior methods of solely utilizing physics can become inconvenient in the face of the growing issue. Thus, this research focuses on approaching orbital debris concerns through machine learning, an efficient and more convenient alternative, in detecting the potential threat certain orbital debris pose. Our findings found that the Logistic regression machine worked the best with a 98% accuracy and this research has provided insight into the accuracies of specific machine learning models when classifying orbital debris. Our work would help provide space shuttle manufacturers with guidelines about mitigating risks, and it would help in providing Aerospace Engineers facilities to identify the kinds of protection that should be incorporated into objects traveling in the LEO through the predictions our models provide.

Keywords: aerospace, orbital debris, machine learning, space, space situational awareness, nasa

Procedia PDF Downloads 20
9469 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.

Keywords: data science, fraud detection, machine learning, supervised learning

Procedia PDF Downloads 194
9468 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process

Authors: Jan Stodt, Christoph Reich

Abstract:

The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.

Keywords: audit, machine learning, assessment, metrics

Procedia PDF Downloads 269
9467 The Influence of Guided and Independent Training Toward Teachers’ Competence to Plan Early Childhood Education Learning Program

Authors: Sofia Hartati

Abstract:

This research is aimed at describing training in early childhood education program empirically, describing teachers ability to plan lessons empirically, and acquiring empirical data as well as analyzing the influence of guided and independent training toward teachers competence in planning early childhood learning program. The method used is an experiment. It collected data with a population of 76 early childhood educators in Tunjung Teja Sub District area through random sampling technique and grouped into two namely 38 people in an experiment class and 38 people in a controlled class. The technique used for data collections is a test. The result of the research shows that there is a significant influence between training for guided educators toward Teachers Ability toward Planning Early Childhood Learning Program. Guided training has been proven to improve the ability to comprehend planning a learning program. The ability to comprehend planning a learning program owned by teachers of early childhood program comprises of 1) determining the characteristics and competence of students prior to learning; 2) formulating the objective of the learning; 3) selecting materials and its sequences; 4) selecting teaching methods; 5) determining the means or learning media; 6) selecting evaluation strategy as a part of teachers pedagogic competence. The result of this research describes a difference in the competence level of teachers who have joined guided training which is relatively higher than the teachers who joined the independent training. Guided training is one of an effective way to improve the knowledge and competence of early childhood educators.

Keywords: competence, planning, teachers, training

Procedia PDF Downloads 263
9466 The Influence of Mathematic Learning Outcomes towards Physics Ability in Senior High School through Authentic Assessment System

Authors: Aida Nurul Safitri, Rosita Sari

Abstract:

Physics is science, which in its learning there are some product such as theory, fact, concept, law and formula. So that to understand physics lesson students not only need a theory or concept but also mathematical calculation to solve physics problem through formula or equation. This is can be taken from mathematics lesson which obtained by students. This research is to know the influence of mathematics learning outcomes towards physics ability in Senior High School through authentic assessment system. Based on the researches have been discussed, is obtained that mathematic lesson have an important role in physics learning but it according to one aspect only, namely cognitive aspect. In Indonesia, curriculum of 2013 reinforces displacement in the assessment, from assessment through test (measuring the competence of knowledge based on the result) toward authentic assessment (measuring the competence of attitudes, skills, and knowledge based on the process and results). In other researches are mentioned that authentic assessment system give positive responses for students to improve their motivation and increase the physics learning in the school.

Keywords: authentic assessment, curriculum of 2013, mathematic, physics

Procedia PDF Downloads 247
9465 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems

Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini

Abstract:

Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.

Keywords: quantum, machine learning, kernel, non-markovianity

Procedia PDF Downloads 178
9464 Enabling Non-invasive Diagnosis of Thyroid Nodules with High Specificity and Sensitivity

Authors: Sai Maniveer Adapa, Sai Guptha Perla, Adithya Reddy P.

Abstract:

Thyroid nodules can often be diagnosed with ultrasound imaging, although differentiating between benign and malignant nodules can be challenging for medical professionals. This work suggests a novel approach to increase the precision of thyroid nodule identification by combining machine learning and deep learning. The new approach first extracts information from the ultrasound pictures using a deep learning method known as a convolutional autoencoder. A support vector machine, a type of machine learning model, is then trained using these features. With an accuracy of 92.52%, the support vector machine can differentiate between benign and malignant nodules. This innovative technique may decrease the need for pointless biopsies and increase the accuracy of thyroid nodule detection.

Keywords: thyroid tumor diagnosis, ultrasound images, deep learning, machine learning, convolutional auto-encoder, support vector machine

Procedia PDF Downloads 57
9463 A Deep Learning Approach to Subsection Identification in Electronic Health Records

Authors: Nitin Shravan, Sudarsun Santhiappan, B. Sivaselvan

Abstract:

Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models.

Keywords: deep learning, machine learning, semantic clinical classification, subsection identification, text classification

Procedia PDF Downloads 216
9462 Detect QOS Attacks Using Machine Learning Algorithm

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

A large majority of users favoured to wireless LAN connection since it was so simple to use. A wireless network can be the target of numerous attacks. Class hijacking is a well-known attack that is fairly simple to execute and has significant repercussions on users. The statistical flow analysis based on machine learning (ML) techniques is a promising categorization methodology. In a given dataset, which in the context of this paper is a collection of components representing frames belonging to various flows, machine learning (ML) can offer a technique for identifying and characterizing structural patterns. It is possible to classify individual packets using these patterns. It is possible to identify fraudulent conduct, such as class hijacking, and take necessary action as a result. In this study, we explore a way to use machine learning approaches to thwart this attack.

Keywords: wireless lan, quality of service, machine learning, class hijacking, EDCA remapping

Procedia PDF Downloads 59
9461 Deleterious SNP’s Detection Using Machine Learning

Authors: Hamza Zidoum

Abstract:

This paper investigates the impact of human genetic variation on the function of human proteins using machine-learning algorithms. Single-Nucleotide Polymorphism represents the most common form of human genome variation. We focus on the single amino-acid polymorphism located in the coding region as they can affect the protein function leading to pathologic phenotypic change. We use several supervised Machine Learning methods to identify structural properties correlated with increased risk of the missense mutation being damaging. SVM associated with Principal Component Analysis give the best performance.

Keywords: single-nucleotide polymorphism, machine learning, feature selection, SVM

Procedia PDF Downloads 375
9460 Predicting the Frequencies of Tropical Cyclone-Induced Rainfall Events in the US Using a Machine-Learning Model

Authors: Elham Sharifineyestani, Mohammad Farshchin

Abstract:

Tropical cyclones are one of the most expensive and deadliest natural disasters. They cause heavy rainfall and serious flash flooding that result in billions of dollars of damage and considerable mortality each year in the United States. Prediction of the frequency of tropical cyclone-induced rainfall events can be helpful in emergency planning and flood risk management. In this study, we have developed a machine-learning model to predict the exceedance frequencies of tropical cyclone-induced rainfall events in the United States. Model results show a satisfactory agreement with available observations. To examine the effectiveness of our approach, we also have compared the result of our predictions with the exceedance frequencies predicted using a physics-based rainfall model by Feldmann.

Keywords: flash flooding, tropical cyclones, frequencies, machine learning, risk management

Procedia PDF Downloads 246
9459 Navigating the VUCA World with a Strong Heart and Mind: How to Build Passion and Character

Authors: Shynn Lim, Ching Tan

Abstract:

The paper presents the PASSION Programme designed by a government school in Singapore, guided by national goals as well as research-based pedagogies that aims to nurture students to become lifelong learners with the strength of character. The design and enactment of the integrated approach to develop in students good character, resilience and social-emotional well-being, future readiness, and active citizenship is guided by a set of principles that amalgamates Biesta’s domains of purposes of education and authentic learning. Data in terms of evidence of students’ learning and students’ feedback were collected, analysed, and suggests that the learning experience benefitted students by boosting their self-confidence, self-directed and collaborative learning skills, as well as empathy.

Keywords: lifelong learning, character and citizenship education, education and career guidance, 21CC, teaching and learning empathy

Procedia PDF Downloads 145
9458 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning

Procedia PDF Downloads 212
9457 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning

Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz

Abstract:

Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.

Keywords: quantum machine learning, SVM, QSVM, matrix product state

Procedia PDF Downloads 93