Search results for: particle swarm optimal control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14546

Search results for: particle swarm optimal control

3266 Efficiency and Reliability Analysis of SiC-Based and Si-Based DC-DC Buck Converters in Thin-Film PV Systems

Authors: Elaid Bouchetob, Bouchra Nadji

Abstract:

This research paper compares the efficiency and reliability (R(t)) of SiC-based and Si-based DC-DC buck converters in thin layer PV systems with an AI-based MPPT controller. Using Simplorer/Simulink simulations, the study assesses their performance under varying conditions. Results show that the SiC-based converter outperforms the Si-based one in efficiency and cost-effectiveness, especially in high temperature and low irradiance conditions. It also exhibits superior reliability, particularly at high temperature and voltage. Reliability calculation (R(t)) is analyzed to assess system performance over time. The SiC-based converter demonstrates better reliability, considering factors like component failure rates and system lifetime. The research focuses on the buck converter's role in charging a Lithium battery within the PV system. By combining the SiC-based converter and AI-based MPPT controller, higher charging efficiency, improved reliability, and cost-effectiveness are achieved. The SiC-based converter proves superior under challenging conditions, emphasizing its potential for optimizing PV system charging. These findings contribute insights into the efficiency, reliability, and reliability calculation of SiC-based and Si-based converters in PV systems. SiC technology's advantages, coupled with advanced control strategies, promote efficient and sustainable energy storage using Lithium batteries. The research supports PV system design and optimization for reliable renewable energy utilization.

Keywords: efficiency, reliability, artificial intelligence, sic device, thin layer, buck converter

Procedia PDF Downloads 54
3265 Bio-Genetic Activities Associated with Resistant in Peppers to Phytophthora capsici

Authors: Mehdi Nasr-Esfahani, Leila Mohammad Bagheri, Ava Nasr-Esfahani

Abstract:

Root and collar rot disease caused by Phytophthora capsici (Leonian) is one of the most serious diseases in pepper, Capsicum annuum L. In this study, a diverse collection of 37 commercial edible and ornamental pepper genotypes infected with P. capsici were investigated for biomass parameters and enzymatic activity of peroxidase or peroxide reductases (EC), superoxide dismutase (SOD), polyphenol oxidase (PPOs), catalase (CAT) and phenylalanine ammonia-lyase (PAL). Seven candidate DEG genes were also evaluated on resistant and susceptible pepper cultivars, through measuring product formation, using spectrophotometry and real-time polymerase chain reaction. All the five enzymes and seven defense-gene candidates were up-regulated in all inoculated pepper accessions to P. capsici. But, the enzymes and DEG genes were highly expressed in resistant cv. 19OrnP-PBI, 37ChillP-Paleo, and “23CherryP-Orsh". The expression level of enzymes were 1.5 to 5.6-fold higher in the resistant peppers, than the control non-inoculated genotypes. Also, the transcriptional levels of related candidate DEG genes were 3.16 to 5.90-fold higher in the resistant genotypes. There was a direct and high correlation coefficient between resistance, bio-mass parameters, enzymatic activity, and resistance gene expression. The related enzymes and candidate genes expressed herein will provide a basis for further gene cloning and functional verification studies, and also will aid in an understanding of the regulatory mechanism of pepper resistance to P. capsici.

Keywords: AP2/ERF, cDNA, enzymes, MIP gene, q-RTPCR, XLOC

Procedia PDF Downloads 149
3264 Determination of Biological Efficiency Values of Some Pesticide Application Methods under Second Crop Maize Conditions

Authors: Ali Bolat, Ali Bayat, Mustafa Gullu

Abstract:

Maize can be cultivated both under main and second crop conditions in Turkey. Main pests of maize under second crop conditions are Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) and Ostrinia nubilalis Hübner (Lepidoptera: Crambidae). Aerial spraying applications to control these two main maize pests can be carried out until 2006 in Turkey before it was banned due to environmental concerns like drifting of sprayed pestisides and low biological efficiency. In this context, pulverizers which can spray tall maize plants ( > 175 cm) from the ground have begun to be used. However, the biological efficiency of these sprayers is unknown. Some methods have been tested to increase the success of ground spraying in field experiments conducted in second crop maize in 2008 and 2009. For this aim, 6 spraying methods (air assisted spraying with TX cone jet, domestic cone nozzles, twinjet nozzles, air induction nozzles, standard domestic cone nozzles and tail booms) were used at two application rates (150 and 300 l.ha-1) by a sprayer. In the study, biological efficacy evaluations of each methods were measured in each parcel. Biological efficacy evaluations included counts of number of insect damaged plants, number of holes in stems and live larvae and pupa in stems of selected plants. As a result, the highest biological efficacy value (close to 70%) was obtained from Air Assisted Spraying method at 300 l / ha application volume.

Keywords: air assisted sprayer, drift nozzles, biological efficiency, maize plant

Procedia PDF Downloads 208
3263 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis

Authors: Petr Gurný

Abstract:

One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the credit-scoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.

Keywords: credit-scoring models, multidimensional subordinated Lévy model, probability of default

Procedia PDF Downloads 449
3262 Healthcare in COVID-19 and It’s Impact on Children with Cochlear Implants

Authors: Amirreza Razzaghipour, Mahdi Khalili

Abstract:

References from the World Health Organization and the Center for Disease Control for deceleration the spread of the Novel COVID-19, comprises social estrangement, frequent handwashing, and covering your mouth when around others. As hearing healthcare specialists, the influence of existenceinvoluntary to boundary social interactions on persons with hearing impairment was significant for us to understand. We found ourselves delaying cochlear implant (CI) surgeries. All children, and chiefly those with hearing loss, are susceptible to reductions in spoken communication. Hearing plans, such as cochlear implants, provide children with hearing loss access to spoken communication and provision language development. when provided early and used consistently, these supplies help children with hearing loss to engage in spoken connections. Cochlear implant (CI) is a standard medical-surgical treatment for bilateral severe to profound hearing loss with no advantage with the hearing aid. Hearing is one of the most important senses in humans. Pediatric hearing loss establishes one of the most important public health challenges. Children with hearing loss are recognized early and habilitated via hearing aids or with cochlear implants (CIs). Suitable care and maintenance as well as continuous auditory verbal therapy (AVT) are also essential in reaching for the successful attainment of language acquisition. Children with hearing loss posture important challenges to their parents, particularly when there is limited admission to their hearing care providers. The disruption in the routine of their hearing and therapy follow-up services has had substantial effects on the children as well as their parents.

Keywords: healthcare, covid-19, cochlear implants, spoken communication, hearing loss

Procedia PDF Downloads 163
3261 Solid Polymer Electrolyte Membranes Based on Siloxane Matrix

Authors: Natia Jalagonia, Tinatin Kuchukhidze

Abstract:

Polymer electrolytes (PE) play an important part in electrochemical devices such as batteries and fuel cells. To achieve optimal performance, the PE must maintain a high ionic conductivity and mechanical stability at both high and low relative humidity. The polymer electrolyte also needs to have excellent chemical stability for long and robustness. According to the prevailing theory, ionic conduction in polymer electrolytes is facilitated by the large-scale segmental motion of the polymer backbone, and primarily occurs in the amorphous regions of the polymer electrolyte. Crystallinity restricts polymer backbone segmental motion and significantly reduces conductivity. Consequently, polymer electrolytes with high conductivity at room temperature have been sought through polymers which have highly flexible backbones and have largely amorphous morphology. The interest in polymer electrolytes was increased also by potential applications of solid polymer electrolytes in high energy density solid state batteries, gas sensors and electrochromic windows. Conductivity of 10-3 S/cm is commonly regarded as a necessary minimum value for practical applications in batteries. At present, polyethylene oxide (PEO)-based systems are most thoroughly investigated, reaching room temperature conductivities of 10-7 S/cm in some cross-linked salt in polymer systems based on amorphous PEO-polypropylene oxide copolymers.. It is widely accepted that amorphous polymers with low glass transition temperatures Tg and a high segmental mobility are important prerequisites for high ionic conductivities. Another necessary condition for high ionic conductivity is a high salt solubility in the polymer, which is most often achieved by donors such as ether oxygen or imide groups on the main chain or on the side groups of the PE. It is well established also that lithium ion coordination takes place predominantly in the amorphous domain, and that the segmental mobility of the polymer is an important factor in determining the ionic mobility. Great attention was pointed to PEO-based amorphous electrolyte obtained by synthesis of comb-like polymers, by attaching short ethylene oxide unit sequences to an existing amorphous polymer backbone. The aim of presented work is to obtain of solid polymer electrolyte membranes using PMHS as a matrix. For this purpose the hydrosilylation reactions of α,ω-bis(trimethylsiloxy)methyl¬hydrosiloxane with allyl triethylene-glycol mo¬nomethyl ether and vinyltriethoxysilane at 1:28:7 ratio of initial com¬pounds in the presence of Karstedt’s catalyst, platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon catalyst in 50% solution of anhydrous toluene have been studied. The synthesized olygomers are vitreous liquid products, which are well soluble in organic solvents with specific viscosity ηsp ≈ 0.05 - 0.06. The synthesized olygomers were analysed with FTIR, 1H, 13C, 29Si NMR spectroscopy. Synthesized polysiloxanes were investigated with wide-angle X-ray, gel-permeation chromatography, and DSC analyses. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis¬(trifluoromethylsulfonyl)¬imide polymer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration was investigated and the activation energies of conductivity for all obtained compounds are calculated

Keywords: synthesis, PMHS, membrane, electrolyte

Procedia PDF Downloads 250
3260 Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products

Authors: Mohamad Saab, Florent Real, Francois Virot, Laurent Cantrel, Valerie Vallet

Abstract:

All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species.

Keywords: PUREX process, red oils, quantum chemical methods, hydrolysis

Procedia PDF Downloads 185
3259 The Effect of Blood Flow Restriction on the Knee Rehabilitation

Authors: O. Casasayas, M. Vigo, R. Navarro, P. Ragazzi, P. Alvarez, A. Perez-Bellmunt

Abstract:

Introduction: The blood flow restriction training (BFR) is a method of muscle training that allows increasing the stress of muscle tissue to enhance the muscle cross-section and strength. This type of training has clear benefits in the rehabilitation field since it can improve muscle strength using low mechanical loads. The aim of this study is to know in which knee pathologies BFR has been used, what methodology was used and what were the obtained results. Study design: We performed a systematic literature search using strategies for the concepts of “blood flow restriction OR blood flow restriction training AND knee” in Medline. Articles were screened by authors and included if they used the blood flow restriction training in pathology of the knee. Results: The pathology more frequently treated by BFR was knee osteoarthritis and the variables most analyzed were strength and pain. The vascular occlusion used was 80% in the major part of studies. The groups of BFR obtained an increase of strength with less pain but not always the results are statistically significant. The evidence levels are poor in the high number of studies because in some cases there is not a control group or the evaluators were not blinded. Conclusion: The use of BFR is useful to improve muscle strength in knee pathology since it does not increase the pain, but more studies are needed to see (comprehend) if this type of treatment obtains better results than a conventional therapy. No studies have been found that compare the different occlusion effects in both the strength improvement and the pain reduction. Neither studies that analyse the effects of BFR on the muscle contractile parameters have been found.

Keywords: blood flow restriction training, knee, arthroscopy knee, physical therapy

Procedia PDF Downloads 162
3258 Disruption of Cancer Cell Proliferation by Magnetic Field

Authors: Ming Ze Kao

Abstract:

Static magnetic fields (SMF) are widely used in several medical applications, especially in diagnosis of tumors. However, biological effects of the SMFs on modulating cell physiology through the Lorentz force, which is highly frequency and magnitude dependent, remain to be elucidated. Specific patterns from SMFs of static MF, delivered by means of Halbach array magnets with a gradient increment of 6.857mT/mm from center to border, were found to have profound inhibitory effect on the growth rate of human cell line derived from Nasopharyngeal carcinoma patients. The SMFs, which were shown to be noncontact, selectively impact rapid dividing cells while quiescent cells stay intact. The phenomenon acts in two modes: the arrest of cell proliferation in the G2/M phase and destruction of cell mitosis in cell division. First mode is manifested by impacting the proper formation of mitotic spindle, whereas the second results in disintegration of the cancer cell. Both modes are demonstrated when SMF was applied for 24 hours to cancer cells, the results revealed that metaphase arrest during mitosis due to activation of DNA damage response (DDR), resulting in high expression of ATM-NBS1-CHEK signaling pathways and higher G2/M phase ratio compared with control group. Here, experimental data suggest that the SMFs cause activation of cell cycle checkpoints, which implies the MFs as a potential therapeutic modality as a sensitizer for radiotherapy or chemotherapy.

Keywords: static magnetic field, DNA damage response, Halbach array, magnetic therapy

Procedia PDF Downloads 112
3257 Cryptocurrency Forensics: Analysis on Bitcoin E-Wallet from Computer Source Evidence

Authors: Muhammad Nooraiman bin Noorashid, Mohd Sharizuan bin Mohd Omar, Mohd Zabri Adil bin Talib, Aswami Fadillah bin Mohd Ariffin

Abstract:

Nowadays cryptocurrency has become a global phenomenon known to most people. People using this alternative digital money to do a transaction in many ways (e.g. Used for online shopping, wealth management, and fundraising). However, this digital asset also widely used in criminal activities since its use decentralized control as opposed to centralized electronic money and central banking systems and this makes a user, who used this currency invisible. The high-value exchange of these digital currencies also has been a target to criminal activities. The cryptocurrency crimes have become a challenge for the law enforcement to analyze and to proof the evidence as criminal devices. In this paper, our focus is more on bitcoin cryptocurrency and the possible artifacts that can be obtained from the different type of digital wallet, which is software and browser-based application. The process memory and physical hard disk are examined with the aims of identifying and recovering potential digital evidence. The stage of data acquisition divided by three states which are the initial creation of the wallet, transaction that consists transfer and receiving a coin and the last state is after the wallet is being deleted. Findings from this study suggest that both data from software and browser type of wallet process memory is a valuable source of evidence, and many of the artifacts found in process memory are also available from the application and wallet files on the client computer storage.

Keywords: cryptocurrency, bitcoin, digital wallet, digital forensics

Procedia PDF Downloads 336
3256 Improvement of Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation

Procedia PDF Downloads 421
3255 Improvement of Heat Pipes Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 360
3254 Fuzzy Time Series- Markov Chain Method for Corn and Soybean Price Forecasting in North Carolina Markets

Authors: Selin Guney, Andres Riquelme

Abstract:

Among the main purposes of optimal and efficient forecasts of agricultural commodity prices is to guide the firms to advance the economic decision making process such as planning business operations and marketing decisions. Governments are also the beneficiaries and suppliers of agricultural price forecasts. They use this information to establish a proper agricultural policy, and hence, the forecasts affect social welfare and systematic errors in forecasts could lead to a misallocation of scarce resources. Various empirical approaches have been applied to forecast commodity prices that have used different methodologies. Most commonly-used approaches to forecast commodity sectors depend on classical time series models that assume values of the response variables are precise which is quite often not true in reality. Recently, this literature has mostly evolved to a consideration of fuzzy time series models that provide more flexibility in terms of the classical time series models assumptions such as stationarity, and large sample size requirement. Besides, fuzzy modeling approach allows decision making with estimated values under incomplete information or uncertainty. A number of fuzzy time series models have been developed and implemented over the last decades; however, most of them are not appropriate for forecasting repeated and nonconsecutive transitions in the data. The modeling scheme used in this paper eliminates this problem by introducing Markov modeling approach that takes into account both the repeated and nonconsecutive transitions. Also, the determination of length of interval is crucial in terms of the accuracy of forecasts. The problem of determining the length of interval arbitrarily is overcome and a methodology to determine the proper length of interval based on the distribution or mean of the first differences of series to improve forecast accuracy is proposed. The specific purpose of this paper is to propose and investigate the potential of a new forecasting model that integrates methodologies for determining the proper length of interval based on the distribution or mean of the first differences of series and Fuzzy Time Series- Markov Chain model. Moreover, the accuracy of the forecasting performance of proposed integrated model is compared to different univariate time series models and the superiority of proposed method over competing methods in respect of modelling and forecasting on the basis of forecast evaluation criteria is demonstrated. The application is to daily corn and soybean prices observed at three commercially important North Carolina markets; Candor, Cofield and Roaring River for corn and Fayetteville, Cofield and Greenville City for soybeans respectively. One main conclusion from this paper is that using fuzzy logic improves the forecast performance and accuracy; the effectiveness and potential benefits of the proposed model is confirmed with small selection criteria value such MAPE. The paper concludes with a discussion of the implications of integrating fuzzy logic and nonarbitrary determination of length of interval for the reliability and accuracy of price forecasts. The empirical results represent a significant contribution to our understanding of the applicability of fuzzy modeling in commodity price forecasts.

Keywords: commodity, forecast, fuzzy, Markov

Procedia PDF Downloads 215
3253 Shrinkage Evaluation in a Stepped Wax Pattern – a Simulation Approach

Authors: Alok S Chauhan, Sridhar S., Pradyumna R.

Abstract:

In the process of precision investment casting of turbine hollow blade/vane components, a part of the dimensional deviations observed in the castings can be attributed to the wax pattern. In the process of injection moulding of wax to produce patterns, heated wax shrinks in size during cooling in the die, leading to a reduction in the dimensions of the pattern. Also, flow and thermal induced residual stresses result in shrinkage & warpage of the component after removal from the die, further adding to the deviations. Injection moulding parameters such as wax temperature, flow rate, packing pressure, etc. affect the flow and thermal behavior of the component and hence are directly responsible for the dimensional deviations. There is a need to precisely determine and control these deviations in order to achieve stringent dimensional accuracies imposed on these castings by aerospace standards. Simulation based approaches provide a platform to predict these dimensional deviations without resorting to elaborate experimentation. In the present paper, Moldex3D simulation package has been utilized to analyze the effect of variations in injection temperature, packing pressure and cooling time on the shrinkage behavior of a stepped pattern. Two types of waxes with different rheological properties have been included in the study to gauge the effect of change in wax on the dimensional deviations. A full factorial design of experiments has been configured with these parameters and results of analysis of variance have been presented.

Keywords: wax patterns, investment casting, pattern die/mould, wax injection, Moldex3D simulation

Procedia PDF Downloads 366
3252 Entrepreneurship, Institutional Quality, and Macroeconomic Performance: Evidence from Nigeria

Authors: Cleopatra Oluseye Ibukun

Abstract:

Following the endogenous growth theory, entrepreneurship has been considered pivotal to economic growth and development, particularly in developing countries like Nigeria. Meanwhile, efforts to reduce unemployment has yielded minimal result with over 36% of youth unemployment and a dwindling economic growth despite the country’s natural and human resource endowment. This study, therefore, investigates the effects of entrepreneurship and institutional quality on economic growth and unemployment in Nigeria over the period 1996 to 2018. The data is obtained from the National Bureau of Statistics (NBS), World Bank’s World Development Indicators (WDI), and the World Bank’s World Governance Indicators (WGI). The study period is guided by the availability of data, and the study employs both descriptive and econometric techniques of analysis (specifically, the Auto-regressive Distributed Lag Approach). This approach is preferable given that the variables are stationary at the first difference, while the bounds test suggests the existence of co-integration among the variables. By implication, an increase in entrepreneurship significantly improves economic growth, and it reduces unemployment in both the short-run and the long-run. Besides, institutional quality proxied by the control of corruption, political stability, and government effectiveness significantly mediates the interaction between entrepreneurship and macroeconomic performance. This study concludes that improved institutional quality enhances the effect of entrepreneurship on economic growth and unemployment in Nigeria, and it recommends an improvement in Nigeria’s institutional quality because it can jeopardise or augment the effect of entrepreneurship on macroeconomic performance.

Keywords: entrepreneurship, institutional quality, unemployment, gross domestic product, Nigeria

Procedia PDF Downloads 126
3251 Influence of Cooking on the Functional Properties of Dioscorea Schimperiana During Chips Production

Authors: Djeukeu Asongni William, Leng Marlyse, Gouado Inocent

Abstract:

Background: Process for obtaining D. schimperiana chips involves a long period of cooking followed by drying of obtained products in the sun. Such a process could induce the modification of the functional properties of the chips, thus reducing the technological uses of these products. This study was conducted with a view to assessing the impact of this process on the chips of D. schimperiana. Methods: The chips used were purchased in Baham, Bamendjou and Bagangté markets during the month of February 2013. A representative sample of each market chips was formed by mixing the chips of several sellers. The control sample consisted of fresh yams that have been sliced to the average size of local chips then dried in the oven at 45 ° C for 36 h. On each sample was performed the analysis of the physico-chemical properties (carbohydrates, lipids, proteins, iron , phosphorus, reducing sugars, ash and total starch) and gelling properties both with and without inhibitor alpha-amylases (0.018 and 0.146 mol / l). Results: Results show that the levels of ash 2.99 g / 100gms, iron 1.01 g / 100gms and phosphorus 532.06 mg / 100gms fresh sample were significantly higher than those of the products obtained in the traditional process. The functional properties of the chips obtained from different methods shows that the peak viscosity of the fresh sample is larger than the other samples with or without inhibitor. In addition, the fresh sample has the lowest breakdown under the same conditions. Conclusion: These results show that traditional process reduces technological potential of chips, thus limiting the value of D. schimperiana.

Keywords: Dioscorea schimperiana, chips, functional properties, technological properties, valorization

Procedia PDF Downloads 396
3250 Flow: A Fourth Musical Element

Authors: James R. Wilson

Abstract:

Music is typically defined as having the attributes of melody, harmony, and rhythm. In this paper, a fourth element is proposed -"flow". "Flow" is a new dimension in music that has always been present but only recently identified and measured. The Adagio "Flow Machine" enables us to envision this component and even suggests a new approach to music theory and analysis. The Adagio was created specifically to measure the underlying “flow” in music. The Adagio is an entirely new way to experience and visualize the music, to assist in performing music (both as a conductor and/or performer), and to provide a whole new methodology for music analysis and theory. The Adagio utilizes musical “hit points”, such as a transition from one musical section to another (for example, in a musical composition utilizing the sonata form, a transition from the exposition to the development section) to help define the compositions flow rate. Once the flow rate is established, the Adagio can be used to determine if the composer/performer/conductor has correctly maintained the proper rate of flow throughout the performance. An example is provided using Mozart’s Piano Concerto Number 21. Working with the Adagio yielded an unexpected windfall; it was determined via an empirical study conducted at Nova University’s Biofeedback Lab that watching the Adagio helped volunteers participating in a controlled experiment recover from stressors significantly faster than the control group. The Adagio can be thought of as a new arrow in the Musicologist's quiver. It provides a new, unique way of viewing the psychological impact and esthetic effectiveness of music composition. Additionally, with the current worldwide access to multi-media via the internet, flow analysis can be performed and shared with others with little time and/or expense.

Keywords: musicology, music analysis, music flow, music therapy

Procedia PDF Downloads 170
3249 Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality

Authors: Rohit T. P., Sahil Athrij, Sasi Gopalan

Abstract:

Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards Augmented/Virtual Reality applications the computational demands on these devices are increasing exponentially and we are already reaching the limits of hardware optimizations. This paper proposes a software solution to this problem. By leveraging the capabilities of cloud computing we can offload the work from mobile devices to dedicated rendering servers that are way more powerful. But this introduces the problem of latency. This paper introduces a protocol that can achieve high-performance low latency Augmented/Virtual Reality experience. There are two parts to the protocol, 1) In-flight compression The main cause of latency in the system is the time required to transmit the camera frame from client to server. The round trip time is directly proportional to the amount of data transmitted. This can therefore be reduced by compressing the frames before sending. Using some standard compression algorithms like JPEG can result in minor size reduction only. Since the images to be compressed are consecutive camera frames there won't be a lot of changes between two consecutive images. So inter-frame compression is preferred. Inter-frame compression can be implemented efficiently using WebGL but the implementation of WebGL limits the precision of floating point numbers to 16bit in most devices. This can introduce noise to the image due to rounding errors, which will add up eventually. This can be solved using an improved interframe compression algorithm. The algorithm detects changes between frames and reuses unchanged pixels from the previous frame. This eliminates the need for floating point subtraction thereby cutting down on noise. The change detection is also improved drastically by taking the weighted average difference of pixels instead of the absolute difference. The kernel weights for this comparison can be fine-tuned to match the type of image to be compressed. 2) Dynamic Load distribution Conventional cloud computing architectures work by offloading as much work as possible to the servers, but this approach can cause a hit on bandwidth and server costs. The most optimal solution is obtained when the device utilizes 100% of its resources and the rest is done by the server. The protocol balances the load between the server and the client by doing a fraction of the computing on the device depending on the power of the device and network conditions. The protocol will be responsible for dynamically partitioning the tasks. Special flags will be used to communicate the workload fraction between the client and the server and will be updated in a constant interval of time ( or frames ). The whole of the protocol is designed so that it can be client agnostic. Flags are available to the client for resetting the frame, indicating latency, switching mode, etc. The server can react to client-side changes on the fly and adapt accordingly by switching to different pipelines. The server is designed to effectively spread the load and thereby scale horizontally. This is achieved by isolating client connections into different processes.

Keywords: 2D kernelling, augmented reality, cloud computing, dynamic load distribution, immersive experience, mobile computing, motion tracking, protocols, real-time systems, web-based augmented reality application

Procedia PDF Downloads 69
3248 Variability of Hydrological Modeling of the Blue Nile

Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm

Abstract:

The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.

Keywords: Blue Nile Basin, climate change, hydrological modeling, watershed

Procedia PDF Downloads 361
3247 Post-bladder Catheter Infection

Authors: Mahla Azimi

Abstract:

Introduction: Post-bladder catheter infection is a common and significant healthcare-associated infection that affects individuals with indwelling urinary catheters. These infections can lead to various complications, including urinary tract infections (UTIs), bacteremia, sepsis, and increased morbidity and mortality rates. This article aims to provide a comprehensive review of post-bladder catheter infections, including their causes, risk factors, clinical presentation, diagnosis, treatment options, and preventive measures. Causes and Risk Factors: Post-bladder catheter infections primarily occur due to the colonization of microorganisms on the surface of the urinary catheter. The most common pathogens involved are Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterococcus species. Several risk factors contribute to the development of these infections, such as prolonged catheterization duration, improper insertion technique, poor hygiene practices during catheter care, compromised immune system function in patients with underlying conditions or immunosuppressive therapy. Clinical Presentation: Patients with post-bladder catheter infections may present with symptoms such as fever, chills, malaise, suprapubic pain or tenderness, and cloudy or foul-smelling urine. In severe cases or when left untreated for an extended period of time, patients may develop more severe symptoms like hematuria or signs of systemic infection. Diagnosis: The diagnosis of post-bladder catheter infection involves a combination of clinical evaluation and laboratory investigations. Urinalysis is crucial in identifying pyuria (presence of white blood cells) and bacteriuria (presence of bacteria). A urine culture is performed to identify the causative organism(s) and determine its antibiotic susceptibility profile. Treatment Options: Prompt initiation of appropriate antibiotic therapy is essential in managing post-bladder catheter infections. Empirical treatment should cover common pathogens until culture results are available. The choice of antibiotics should be guided by local antibiogram data to ensure optimal therapy. In some cases, catheter removal may be necessary, especially if the infection is recurrent or associated with severe complications. Preventive Measures: Prevention plays a vital role in reducing the incidence of post-bladder catheter infections. Strategies include proper hand hygiene, aseptic technique during catheter insertion and care, regular catheter maintenance, and timely removal of unnecessary catheters. Healthcare professionals should also promote patient education regarding self-care practices and signs of infection. Conclusion: Post-bladder catheter infections are a significant healthcare concern that can lead to severe complications and increased healthcare costs. Early recognition, appropriate diagnosis, and prompt treatment are crucial in managing these infections effectively. Implementing preventive measures can significantly reduce the incidence of post-bladder catheter infections and improve patient outcomes. Further research is needed to explore novel strategies for prevention and management in this field.

Keywords: post-bladder catheter infection, urinary tract infection, bacteriuria, indwelling urinary catheters, prevention

Procedia PDF Downloads 76
3246 The Oppressive Boss and Employees' Authoritarianism: The Relation between Suppression of Voice by Employers and Employees' Preferences for Authoritarian Political Leadership

Authors: Antonia Stanojević, Agnes Akkerman

Abstract:

In contemporary society, economically active people typically spend most of their waking hours doing their job. Having that in mind, this research examines how socialization at the workplace shapes political preferences. Innovatively, it examines, in particular, the possible relationship between employees’ voice suppression by the employer and the formation of their political preferences. Since the employer is perceived as an authority figure, their behavior might induce spillovers to attitudes about political authorities and authoritarian governance. Therefore, a positive effect of suppression of voice by employers on employees' preference for authoritarian governance is expected. Furthermore, this relation is expected to be mediated by two mechanisms: system justification and power distance. Namely, it is expected that suppression of voice would create a power distance organizational climate and increase employees’ acceptance of unequal distribution of power, as well as evoke attempts of oppression rationalization through system justification. The hypotheses will be tested on the data gathered within the first wave of Work and Politics Dataset 2017 (N=6000), which allows for a wide range of demographic and psychological control variables. Although a cross-sectional analysis to be used at this point does not allow for causal inferences, the confirmation of expected relationships would encourage and justify further longitudinal research on the same panel dataset, in order to get a clearer image of the causal relationship between employers' suppression of voice and workers' political preferences.

Keywords: authoritarian values, political preferences, power distance, system justification, voice suppression

Procedia PDF Downloads 262
3245 Genetic Diversity of Mycobacterium bovis and Its Zoonotic Potential in Ethiopia: A Systematic Review

Authors: Begna Tulu, Gobena Ameni

Abstract:

Understanding the types of Mycobacterium bovis (M. bovis) strains circulating in a country and exploring its zoonotic potential has significant contribution in the effort to design control strategies. The main aim of this study was to review and compile the results of studies conducted on M. bovis genotyping and its zoonotic potential of M. bovis in Ethiopia. A systematic search and review of articles published on M. bovis strains in Ethiopia were made. PubMed and Google Scholar databases were considered for the search while the keywords used were 'Mycobacteria,' 'Mycobacterium bovis,' 'Bovine Tuberculosis' and 'Ethiopia.' Fourteen studies were considered in this review and a total of 31 distinct strains of M. bovis (N=211) were obtained; the most dominant strains were SB0133 (N=62, 29.4%), SB1176 (N=61, 28.9%), and followed by SB0134 and SB1476 each (N=18, 8.5%). The clustering rate of M. bovis strains was found to be 42.0%. On the other hand, 6 strains of M. bovis were reported from human namely; SB0665 (N=4), SB0303 (N=2), SB0982 (N=2), SB0133 (N=1), SB1176 (N=1), and 1 new strain. Similarly, a total of 8 strains (N=13) of M. tuberculosis bacteria were also identified from animal subjects; namely SIT149 (N=3), SIT1 (N=2), SIT1688 (n=2), SIT262 (N=2), SIT53 (N=1), SIT59 (N=1), and one new-Ethiopian strain. The result showed that the genetic diversity of M. bovis strains reported from Ethiopia are less diversified and highly clustered. And also the result underlines that there is an ongoing active transmission of M. bovis and M. tuberculosis between human and animals in Ethiopia because a significant number strains of both type of bacteria were reported from human and animals.

Keywords: mycobacterium bovis, Mycobacterium tuberculosis, zoonotic potential, genetic diversity, Ethiopia

Procedia PDF Downloads 132
3244 Spatial Relationship of Drug Smuggling Based on Geographic Information System Knowledge Discovery Using Decision Tree Algorithm

Authors: S. Niamkaeo, O. Robert, O. Chaowalit

Abstract:

In this investigation, we focus on discovering spatial relationship of drug smuggling along the northern border of Thailand. Thailand is no longer a drug production site, but Thailand is still one of the major drug trafficking hubs due to its topographic characteristics facilitating drug smuggling from neighboring countries. Our study areas cover three districts (Mae-jan, Mae-fahluang, and Mae-sai) in Chiangrai city and four districts (Chiangdao, Mae-eye, Chaiprakarn, and Wienghang) in Chiangmai city where drug smuggling of methamphetamine crystal and amphetamine occurs mostly. The data on drug smuggling incidents from 2011 to 2017 was collected from several national and local published news. Geo-spatial drug smuggling database was prepared. Decision tree algorithm was applied in order to discover the spatial relationship of factors related to drug smuggling, which was converted into rules using rule-based system. The factors including land use type, smuggling route, season and distance within 500 meters from check points were found that they were related to drug smuggling in terms of rules-based relationship. It was illustrated that drug smuggling was occurred mostly in forest area in winter. Drug smuggling exhibited was discovered mainly along topographic road where check points were not reachable. This spatial relationship of drug smuggling could support the Thai Office of Narcotics Control Board in surveillance drug smuggling.

Keywords: decision tree, drug smuggling, Geographic Information System, GIS knowledge discovery, rule-based system

Procedia PDF Downloads 162
3243 Controlled Release of Glucosamine from Pluronic-Based Hydrogels for the Treatment of Osteoarthritis

Authors: Papon Thamvasupong, Kwanchanok Viravaidya-Pasuwat

Abstract:

Osteoarthritis affects a lot of people worldwide. Local injection of glucosamine is one of the alternative treatment methods to replenish the natural lubrication of cartilage. However, multiple injections can potentially lead to possible bacterial infection. Therefore, a drug delivery system is desired to reduce the frequencies of injections. A hydrogel is one of the delivery systems that can control the release of drugs. Thermo-reversible hydrogels can be beneficial to the drug delivery system especially in the local injection route because this formulation can change from liquid to gel after getting into human body. Once the gel is in the body, it will slowly release the drug in a controlled manner. In this study, various formulations of Pluronic-based hydrogels were synthesized for the controlled release of glucosamine. One of the challenges of the Pluronic controlled release system is its fast dissolution rate. To overcome this problem, alginate and calcium sulfate (CaSO4) were added to the polymer solution. The characteristics of the hydrogels were investigated including the gelation temperature, gelation time, hydrogel dissolution and glucosamine release mechanism. Finally, a mathematical model of glucosamine release from Pluronic-alginate-hyaluronic acid hydrogel was developed. Our results have shown that crosslinking Pluronic gel with alginate did not significantly extend the dissolution rate of the gel. Moreover, the gel dissolution profiles and the glucosamine release mechanisms were best described using the zeroth-order kinetic model, indicating that the release of glucosamine was primarily governed by the gel dissolution.

Keywords: controlled release, drug delivery system, glucosamine, pluronic, thermoreversible hydrogel

Procedia PDF Downloads 265
3242 Comparative Study of Heat Transfer Capacity Limits of Heat Pipes

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved Heat pipe, heat pipe limits

Procedia PDF Downloads 416
3241 Development of an Omaha System-Based Remote Intervention Program for Work-Related Musculoskeletal Disorders (WMSDs) Among Front-Line Nurses

Authors: Tianqiao Zhang, Ye Tian, Yanliang Yin, Yichao Tian, Suzhai Tian, Weige Sun, Shuhui Gong, Limei Tang, Ruoliang Tang

Abstract:

Introduction: Healthcare workers, especially the nurses all over the world, are highly vulnerable to work-related musculoskeletal disorders (WMSDs), experiencing high rates of neck, shoulder, and low back injuries, due to the unfavorable working conditions. To reduce WMSDs among nursing personnel, many workplace interventions have been developed and implemented. Unfortunately, the ongoing Covid-19 (SARS-CoV-2) pandemic has posed great challenges to the ergonomic practices and interventions in healthcare facilities, particularly the hospitals, since current Covid-19 mitigation measures, such as social distancing and working remotely, has substantially minimized in-person gatherings and trainings. On the other hand, hospitals throughout the world have been short-staffed, resulting in disturbance of shift scheduling and more importantly, the increased job demand among the available caregivers, particularly the doctors and nurses. With the latest development in communication technology, remote intervention measures have been developed as an alternative, without the necessity of in-person meetings. The Omaha System (OS) is a standardized classification system for nursing practices, including a problem classification system, an intervention system, and an outcome evaluation system. This paper describes the development of an OS-based ergonomic intervention program. Methods: First, a comprehensive literature search was performed among worldwide electronic databases, including PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), between journal inception to May 2020, resulting in a total of 1,418 scientific articles. After two independent screening processes, the final knowledge pool included eleven randomized controlled trial studies to develop the draft of the intervention program with Omaha intervention subsystem as the framework. After the determination of sample size needed for statistical power and the potential loss to follow-up, a total of 94 nurses from eight clinical departments agreed to provide written, informed consent to participate in the study, which were subsequently assigned into two random groups (i.e., intervention vs. control). A subgroup of twelve nurses were randomly selected to participate in a semi-structured interview, during which their general understanding and awareness of musculoskeletal disorders and potential interventions was assessed. Then, the first draft was modified to reflect the findings from these interviews. Meanwhile, the tentative program schedule was also assessed. Next, two rounds of consultation were conducted among experts in nursing management, occupational health, psychology, and rehabilitation, to further adjust and finalize the intervention program. The control group had access to all the information and exercise modules at baseline, while an interdisciplinary research team was formed and supervised the implementation of the on-line intervention program through multiple social media groups. Outcome measures of this comparative study included biomechanical load assessed by the Quick Exposure Check and stresses due to awkward body postures. Results and Discussion: Modification to the draft included (1) supplementing traditional Chinese medicine practices, (2) adding the use of assistive patient handling equipment, and (3) revising the on-line training method. Information module should be once a week, lasting about 20 to 30 minutes, for a total of 6 weeks, while the exercise module should be 5 times a week, each lasting about 15 to 20 minutes, for a total of 6 weeks.

Keywords: ergonomic interventions, musculoskeletal disorders (MSDs), omaha system, nurses, Covid-19

Procedia PDF Downloads 171
3240 Application of GPRS in Water Quality Monitoring System

Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan

Abstract:

Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.

Keywords: multiparameter sensor, GPRS, visual basic software, RS232

Procedia PDF Downloads 403
3239 Quinazoline Analogue as a Pet Tracer for Imaging PDE10A: Radiosynthesis and Biological Evaluation

Authors: Anjani Kumar Tiwari, Neelam Kumari, Anil Mishra

Abstract:

The family of phosphodiesterases (PDEs) plays a critical role in control of the level, localization, and duration of intracellular 3’-5’-cyclic adenosine monophosphate (cAMP) and 3’-5’-cyclic guanosine monophosphate (cGMP) signals by specifically hydrolyzing these cyclic nucleotides. As the involvement of cyclic nucleotide second messengers in cell signaling and homeostasis is established, the regulation of these pathways in the brain by various PDE isoforms is an area of considerable interest, as they are involved in nearly all brain functions and in the etiology of neuropsychiatric diseases. The PDE10A isoform, isolated from different species and characterized regarding structure and function, has received much attention in recent years, particularly in the context of schizophrenia and Huntington’s disease, which are both related to a role of PDE10A in the regulation of striatal dopaminergic neurotransmission. Quinazoline analogue 1-(4-methoxyphenyl)-6,7-dimethoxyquinazoline, was evaluated as specific PET marker for phosphodiesterase (PDE) 10A. Here, we report the radiosynthesis of [11C]2 and the in vitro and in vivo evaluation of [11C]2 as a potential positron emission tomography (PET) radiotracer for imaging PDE10A in the central nervous system (CNS). The radiosynthesis of [11C]2 was achieved by O-methylation of the corresponding des-methyl precursor with [11C]methyl iodide. [11C]2 was obtained with ∼50% radiochemical yield. PET imaging studies in rat brain displayed initial specific uptake with very rapid clearance of [11C]2 from brain. Though [11C]2 is not an ideal radioligand for clinical imaging of PDE10A in the CNS. Modified analogue of quinazoline having a higher potency for inhibiting PDE10A and improved pharmacokinetic properties will be necessary for imaging this enzyme with PET.

Keywords: PDE10A, PET, radiotracer, quinazoline

Procedia PDF Downloads 182
3238 Wind Energy Loss Phenomenon Over Volumized Building Envelope with Porous Air Portals

Authors: Ying-chang Yu, Yuan-lung Lo

Abstract:

More and more building envelopes consist of the construction of balconies, canopies, handrails, sun-shading, vertical planters or gardens, maintenance platforms, display devices, lightings, ornaments, and also the most commonly seen double skin system. These components form a uniform but three-dimensional disturbance structure and create a complex surface wind field in front of the actual watertight building interface. The distorted wind behavior would affect the façade performance and building ventilation. Comparing with sole windscreen walls, these three-dimensional structures perform like distributed air portal assembly, and each portal generates air turbulence and consume wind pressure and energy simultaneously. In this study, we attempted to compare the behavior of 2D porous windscreens without internal construction, porous tubular portal windscreens, porous tapered portal windscreens, and porous coned portal windscreens. The wind energy reduction phenomenon is then compared to the different distributed air portals. The experiments are conducted in a physical wind tunnel with 1:25 in scale to simulate the three-dimensional structure of a real building envelope. The experimental airflow was set up to smooth flow. The specimen is designed as a plane with a distributed tubular structure behind, and the control group uses different tubular shapes but the same fluid volume to observe the wind damping phenomenon of various geometries.

Keywords: volumized building envelope, porous air portal, wind damping, wind tunnel test, wind energy loss

Procedia PDF Downloads 129
3237 Next-Gen Solutions: How Generative AI Will Reshape Businesses

Authors: Aishwarya Rai

Abstract:

This study explores the transformative influence of generative AI on startups, businesses, and industries. We will explore how large businesses can benefit in the area of customer operations, where AI-powered chatbots can improve self-service and agent effectiveness, greatly increasing efficiency. In marketing and sales, generative AI could transform businesses by automating content development, data utilization, and personalization, resulting in a substantial increase in marketing and sales productivity. In software engineering-focused startups, generative AI can streamline activities, significantly impacting coding processes and work experiences. It can be extremely useful in product R&D for market analysis, virtual design, simulations, and test preparation, altering old workflows and increasing efficiency. Zooming into the retail and CPG industry, industry findings suggest a 1-2% increase in annual revenues, equating to $400 billion to $660 billion. By automating customer service, marketing, sales, and supply chain management, generative AI can streamline operations, optimizing personalized offerings and presenting itself as a disruptive force. While celebrating economic potential, we acknowledge challenges like external inference and adversarial attacks. Human involvement remains crucial for quality control and security in the era of generative AI-driven transformative innovation. This talk provides a comprehensive exploration of generative AI's pivotal role in reshaping businesses, recognizing its strategic impact on customer interactions, productivity, and operational efficiency.

Keywords: generative AI, digital transformation, LLM, artificial intelligence, startups, businesses

Procedia PDF Downloads 67