Search results for: oscillating water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8433

Search results for: oscillating water

8103 Effects of Air Pollution on Dew Water: A Case Study of Ado-Ekiti, Nigeria

Authors: M. Sanmi Awopetu, Olugbenga Aribisala, Olabisi O. Ologuntoye, S. Olumuyi Akindele

Abstract:

Human existence vis-à-vis its environment is more and more getting a threatened sequel to air pollution occasioned majorly by human coupled with natural activities. Earth is getting warmer; ozone layer is getting depleted, acid rain is being experienced, all as a result of air pollution. This study seeks to investigate the effect of air pollution on dew water. Thirty-one (31) samples of dew water were collected in four locations in Ado- Ekiti, Ekiti State Nigeria. Analytical studies of the dew water samples were carried out to determine the pH, Total Dissolved Solids (TDS) and Electrical Conductivity (EC) in order to determine whether the dew water is polluted or not. There is no documented world standard for dew water quality. However, the standard for normal rain water which is pH between 5.0-5.6 and acid rain pH between 4.0-4.4 was adopted for this study. The pH of dew water samples collected and analyzed ranged between 5.5 and 7.9 in Olokun Ado-Ekiti while other samples fell in between this range. In Government Reserved Area (GRA), Ajilosun and EKSU school area, the pH ranged between 6.4 and 7.9 while EC fell in between 0.0 and 0.9 mS/cm which shows that the observed zones are polluted. Everyone has a role to play in order to reduce the pollutants being released into the atmosphere. There is a need to develop an international standard for dew water quality.

Keywords: dew, air pollution, total dissolved solids, electrical conductivity, Ado-Ekiti

Procedia PDF Downloads 149
8102 An Innovative Use of Flow Columns in Electrocoagulation Reactor to Control Water Temperature

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar, David Phipps, Ortoneda Pedrola

Abstract:

Temperature is an essential parameter in the electrocoagulation process (EC) as it governs the solubility of electrodes and the precipitates and the collision rate of particles in water being treated. Although it has been about 100 years since the EC technology was invented and applied in water and wastewater treatment, the effects of temperature on the its performance were insufficiently investigated. Thus, the present project aims to fill this gap by an innovative use of perforated flow columns in the designing of a new EC reactor (ECR1). The new reactor (ECR1) consisted of a Perspex made cylinder container supplied with a flow column consisted of perorated discoid electrodes that made from aluminium. The flow column has been installed vertically, half submerged in the water being treated, inside a plastic cylinder. The unsubmerged part of the flow column works as a radiator for the water being treated. In order to investigate the performance of ECR1; water samples with different initial temperatures (15, 20, 25, 30, and 35 °C) to the ECR1 for 20 min. Temperature of effluent water samples were measured using Hanna meter (Model: HI 98130). The obtained results demonstrated that the ECR1 reduced water temperature from 35, 30, and 25 °C to 24.6, 23.8, and 21.8 °C respectively. While low water temperature, 15 °C, increased slowly to reach 19.1 °C after 15 minutes and kept the same level till the end of the treatment period. At the same time, water sample with initial temperature of 20 °C showed almost a steady level of temperature along the treatment process, where the temperature increased negligibly from 20 to 20.1 °C after 20 minutes of treatment. In conclusion, ECR1 is able to control the temperature of water being treated around the room temperature even when the initial temperature was high (35 °C) or low (15 °C).

Keywords: electrocoagulation, flow column, treatment, water temperature

Procedia PDF Downloads 397
8101 Effect of Monsoon on Ground Water Quality and Contamination: A Case Study of Narsapur-Mogalthur Mandals, West Godavari District, Andhra Pradesh, India

Authors: M. S. V. K. V. Prasad, G. Siva Praveena, P. V. V. Prasada Rao

Abstract:

It is known that the groundwater quality is very important parameter because it is the main factor determining its suitability for drinking, agricultural and industrial purposes. Water Quality Index (WQI) has been calculated for ground water samples taken from Narsapur-Mogalthur mandals, West Godavari district, Andhra Pradesh, India, from 10 different locations in the pre-monsoon season as well as post monsoon. The water samples were analyzed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Total Hardness (TH), major cations like calcium, magnesium, sodium, potassium and anions like chloride, nitrate and sulphate in the laboratory using the standard methods given by the American Public Health Association (APHA). The overall quality of water in the study area is somewhat good for all constituents. Drinking water at almost all the locations was found to be slightly contaminated, except a few locations during the year 2014. It was found that some effective measures are urgently required for water quality management in this region.

Keywords: Water Quality Index, Physico-chemical parameters, Quality rating, monsoon

Procedia PDF Downloads 305
8100 Evaluation of Corrosion Behaviour of Austenitic Steel 08Cr18Ni10Ti Exposed to Supercritical Water

Authors: Monika Šípová, Daniela Marušáková, Claudia Aparicio

Abstract:

New sources and ways of producing energy are still seeking, and one of the sustainable ways is Generation IV nuclear reactors. The supercritical water-cooled reactor is one of the six nuclear reactors of Generation IV, and as a consequence of the development of light water, reactors seem to be the most perspective. Thus, materials usually used in light water reactors are also tested under the expected operating conditions of the supercritical water-cooled reactor. Austenitic stainless steel 08Cr18Ni10Ti is widely used in the eastern types of light water nuclear power plants. Therefore, specimens of 08Cr18Ni10Ti were exposed to conditions close to the pseudo-critical point of water and high-temperature supercritical water. The description and evaluation of the corrosion behaviour of austenitic stainless steel have been done based on the results of X-ray diffraction in combination with energy dispersive spectroscopy and electron backscatter diffraction. Thus, significant differences have been found in the structure and composition of oxides formed depending on the temperature of exposure. The high temperature of supercritical water resulted in localised form of corrosion in contrast to the thin oxide layer of 1 µm present on the surface of specimens exposed close to the pseudo-critical point of water. The obtained results are important for further research as the supercritical water can be successfully used as a coolant for small modular reactors, which are currently of interest.

Keywords: localised corrosion, supercritical water, stainless steel, electron backscatter diffraction

Procedia PDF Downloads 53
8099 Evaluation of Health Risk Degree Arising from Heavy Metals Present in Drinking Water

Authors: Alma Shehu, Majlinda Vasjari, Sonila Duka, Loreta Vallja, Nevila Broli

Abstract:

Humans consume drinking water from several sources, including tap water, bottled water, natural springs, filtered tap water, etc. The quality of drinking water is crucial for human survival given the fact that the consumption of contaminated drinking water is related to many diseases and deaths all over the world. This study represents the investigation of the quality and health risks of different types of drinking waters being consumed by the population in Albania, arising from heavy metals content. Investigated water included industrialized water, tap water, and spring water. In total, 20 samples were analyzed for the content of Pb, Cd, Cr, Ni, Cu, Fe, Zn, Al, and Mn. Determination of each metal concentration in selected samples was conducted by atomic absorption spectroscopy method with electrothermal atomization, GFAAS. Water quality was evaluated by comparing the obtained metals concentrations with the recommended maximum limits, according to the European Directive (98/83/EC) and Guidelines for Drinking Water Quality (WHO, 2017). Metal Index (MI) was used to assess the overall water quality due to heavy metals content. Health risk assessment was conducted based on the recommendations of the USEPA (1996), human health risk assessment, via ingestion. Results of this investigation showed that Al, Ni, Fe, and Cu were the metals found in higher concentrations while Cd exhibited the lowest concentration. Among the analyzed metals, Al (one sample) and Ni (in five samples) exceeded the maximum allowed limit. Based on the pollution metal index, it was concluded that the overall quality of Glina bottled water can be considered as toxic to humans, while the quality of bottled water (Trebeshina) was classified as moderately toxic. Values of health risk quotient (HQ) varied between 1x10⁻⁶-1.3x10⁻¹, following the order Ni > Cd > Pb > Cu > Al > Fe > Zn > Mn. All the values were lower than 1, which suggests that the analyzed samples exhibit no health risk for humans.

Keywords: drinking water, health risk assessment, heavy metals, pollution index

Procedia PDF Downloads 105
8098 Optimization and Retrofitting for an Egyptian Refinery Water Network

Authors: Mohamed Mousa

Abstract:

Sacristies in the supply of freshwater, strict regulations on discharging wastewater and the support to encourage sustainable development by water minimization techniques leads to raise the interest of water reusing, regeneration, and recycling. Water is considered a vital element in chemical industries. In this study, an optimization model will be developed to determine the optimal design of refinery’s water network system via source interceptor sink that involves several network alternatives, then a Mixed-Integer Non-Linear programming (MINLP) was used to obtain the optimal network superstructure based on flowrates, the concentration of contaminants, etc. The main objective of the model is to reduce the fixed cost of piping installation interconnections, reducing the operating cots of all streams within the refiner’s water network, and minimize the concentration of pollutants to comply with the environmental regulations. A real case study for one of the Egyptian refineries was studied by GAMS / BARON global optimization platform, and the water network had been retrofitted and optimized, leading to saving around 195 m³/ hr. of freshwater with a total reduction reaches to 26 %.

Keywords: freshwater minimization, modelling, GAMS, BARON, water network design, wastewater reudction

Procedia PDF Downloads 196
8097 Climate Change and Its Impact on Water Security and Health in Coastal Community: A Gender Outlook

Authors: Soorya Vennila

Abstract:

The present study answers the questions; how does climate change affect the water security in drought prone Ramanathapuram district? and what has water insecurity done to the health of the coastal community? The study area chosen is Devipattinam in Ramanathapuram district. Climate change evidentially wreaked havoc on the community with saltwater intrusion, water quality degradation, water scarcity and its eventual economic, social like power inequality within family and community and health hazards. The climatological data such as rainfall, minimum temperature and maximum temperature were statistically analyzed for trend using Mann-Kendall test. The test was conducted for 14 years (1989-2002) of rainfall data, maximum and minimum temperature and the data were statistically analyzed. At the outset, the water quality samples were collected from Devipattinam to test its physical and chemical parameters and their spatial variation. The results were derived as shown in ARC GIS. Using the water quality test water quality index were framed. And finally, key Informant interview, questionnaire were conducted to capture the gender perception and problem. The data collected were thereafter interpreted using SPSS software for recommendations and suggestions to overcome water scarcity and health problems.

Keywords: health, watersecurity, water quality, climate change

Procedia PDF Downloads 42
8096 Environmental Implications of Groundwater Quality in Irrigated Agriculture in Kebbi State, Nigeria

Authors: O. I. Ojo, W. B. R. Graham, I. W. Pishiria

Abstract:

The quality of groundwater used for irrigation in Kebbi State, northwestern Nigeria was evaluated. Open-well, tube-well and borehole water samples were collected from various locations in the State. The water samples analyzed had pH values below the normal range for irrigation water and very low to moderate salinity (electrical conductivity 0.05-0.82 dS.m-1). The adjusted sodium adsorption ratio values in all the samples were also very low (<0.2), indicating very low sodicity hazards. However, irrigation water of very low salinity (<0.2dS.m-1) and low SAR can lead to problems of infiltration into soils. The Ca: Mg ratio (<1) in most of the samples may lead to Ca deficiency in soils after long term use. The nitrate concentration in most of the samples was high ranging from 4.5 to >50mg/L.

Keywords: ground water quality, irrigation, characteristics, soil drainage, salinity, Fadama

Procedia PDF Downloads 256
8095 Automatic Extraction of Water Bodies Using Whole-R Method

Authors: Nikhat Nawaz, S. Srinivasulu, P. Kesava Rao

Abstract:

Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R-colour component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies.

Keywords: feature extraction, remote sensing, image retrieval, chromaticity, water index, spectral library, integrated method

Procedia PDF Downloads 341
8094 Rural Water Supply Services in India: Developing a Composite Summary Score

Authors: Mimi Roy, Sriroop Chaudhuri

Abstract:

Sustainable water supply is among the basic needs for human development, especially in the rural areas of the developing nations where safe water supply and basic sanitation infrastructure is direly needed. In light of the above, we propose a simple methodology to develop a composite water sustainability index (WSI) to assess the collective performance of the existing rural water supply services (RWSS) in India over time. The WSI will be computed by summarizing the details of all the different varieties of water supply schemes presently available in India comprising of 40 liters per capita per day (lpcd), 55 lpcd, and piped water supply (PWS) per household. The WSI will be computed annually, between 2010 and 2016, to elucidate changes in holistic RWSS performances. Results will be integrated within a robust geospatial framework to identify the ‘hotspots’ (states/districts) which have persistent issues over adequate RWSS coverage and warrant spatially-optimized policy reforms in future to address sustainable human development. Dataset will be obtained from the National Rural Drinking Water Program (NRDWP), operating under the aegis of the Ministry of Drinking Water and Sanitation (MoDWS), at state/district/block levels to offer the authorities a cross-sectional view of RWSS at different levels of administrative hierarchy. Due to simplistic design, complemented by spatio-temporal cartograms, similar approaches can also be adopted in other parts of the world where RWSS need a thorough appraisal.

Keywords: rural water supply services, piped water supply, sustainability, composite index, spatial, drinking water

Procedia PDF Downloads 276
8093 Use of Alternative Water Sources Based on a Rainwater in the Multi-Dwelling Urban Building 2030

Authors: Monika Lipska

Abstract:

Drinking water is water with a very high quality, and as such represents only 2.5% of the total quantity of all water in the world. For many years we have observed continuous increase in its consumption as a result of many factors such as: Growing world population (7 billion in 2011r.), increase of human lives comfort and – above all – the economic growth. Due to the rocketing consumption and growing costs of production of water with such high-quality parameters, we experience accelerating interest in alternative sources of obtaining potable water. One of the ways of saving this valuable material is using rainwater in the Urban Building. With an exponentially growing demand, the acquisition of additional sources of water is necessary to maintain the proper balance of all ecosystems. The first part of the paper describes what rainwater is and what are its potential sources and means of use, while the main part of the article focuses on the description of the methods of obtaining water from rain on the example of new urban building in Poland. It describes the method and installations of rainwater in the new urban building (“MBJ2030”). The paper addresses also the issue of monitoring of the whole recycling systems as well as the particular quality indicators important because of identification of the potential risks to human health. The third part describes the legal arrangements concerning the recycling of rainwater existing in different European Union countries with particular reference to Poland on example the new urban building in Warsaw.

Keywords: rainwater, potable water, non-potable water, Poland

Procedia PDF Downloads 386
8092 RANS Simulation of the LNG Ship Squat in Shallow Water

Authors: Mehdi Nakisa, Adi Maimun, Yasser M. Ahmed, Fatemeh Behrouzi

Abstract:

Squat is the reduction in under-keel clearance between a vessel at-rest and underway due to the increased flow of water past the moving body. The forward motion of the ship induces a relative velocity between the ship and the surrounding water that causes a water level depression in which the ship sinks. The problem of ship squat is one among the crucial factors affecting the navigation of ships in restricted waters. This article investigates the LNG ship squat, its effects on flow streamlines around the ship hull and ship behavior and motion using computational fluid dynamics which is applied by Ansys-Fluent.

Keywords: ship squat, CFD, confined, mechanic

Procedia PDF Downloads 585
8091 Effect of Floods on Water Quality: A Global Review and Analysis

Authors: Apoorva Bamal, Agnieszka Indiana Olbert

Abstract:

Floods are known to be one of the most devastating hydro-climatic events, impacting a wide range of stakeholders in terms of environmental, social and economic losses. With difference in inundation durations and level of impact, flood hazards are of different degrees and strength. Amongst various set of domains being impacted by floods, environmental degradation in terms of water quality deterioration is one of the majorly effected but less highlighted domains across the world. The degraded water quality is caused by numerous natural and anthropogenic factors that are both point and non-point sources of pollution. Therefore, it is essential to understand the nature and source of the water pollution due to flooding. The major impact of floods is not only on the physico-chemical water quality parameters, but also on the biological elements leading to a vivid influence on the aquatic ecosystem. This deteriorated water quality is impacting many water categories viz. agriculture, drinking water, aquatic habitat, and miscellaneous services requiring an appropriate water quality to survive. This study identifies, reviews, evaluates and assesses multiple researches done across the world to determine the impact of floods on water quality. With a detailed statistical analysis of top relevant researches, this study is a synopsis of the methods used in assessment of impact of floods on water quality in different geographies, and identifying the gaps for further abridgement. As per majority of the studies, different flood magnitudes have varied impact on the water quality parameters leading to either increased or decreased values as compared to the recommended values for various categories. There is also an evident shift of the biological elements in the impacted waters leading to a change in its phenology and inhabitants of the specified water body. This physical, chemical and biological water quality degradation by floods is dependent upon its duration, extent, magnitude and flow direction. Therefore, this research provides an overview into the multiple impacts of floods on water quality, along with a roadmap of way forward to an efficient and uniform linkage of floods and impacted water quality dynamics.

Keywords: floods, statistical analysis, water pollution, water quality

Procedia PDF Downloads 58
8090 Consequential Effects of Coal Utilization on Urban Water Supply Sources – a Study of Ajali River in Enugu State Nigeria

Authors: Enebe Christian Chukwudi

Abstract:

Water bodies around the world notably underground water, ground water, rivers, streams, and seas, face degradation of their water quality as a result of activities associated with coal utilization including coal mining, coal processing, coal burning, waste storage and thermal pollution from coal plants which tend to contaminate these water bodies. This contamination results from heavy metals, presence of sulphate and iron, dissolved solids, mercury and other toxins contained in coal ash, sludge, and coal waste. These wastes sometimes find their way to sources of urban water supply and contaminate them. A major problem encountered in the supply of potable water to Enugu municipality is the contamination of Ajali River, the source of water supply to Enugu municipal by coal waste. Hydro geochemical analysis of Ajali water samples indicate high sulphate and iron content, high total dissolved solids(TDS), low pH (acidity values) and significant hardness in addition to presence of heavy metals, mercury, and other toxins. This is indicative of the following remedial measures: I. Proper disposal of mine wastes at designated disposal sites that are suitably prepared. II. Proper water treatment and III. Reduction of coal related contaminants taking advantage of clean coal technology.

Keywords: effects, coal, utilization, water quality, sources, waste, contamination, treatment

Procedia PDF Downloads 395
8089 The Effect of Inlet Baffle Position in Improving the Efficiency of Oil and Water Gravity Separator Tanks

Authors: Haitham A. Hussein, Rozi Abdullah, Issa Saket, Md. Azlin

Abstract:

The gravitational effect has been extensively applied to separate oil from water in water and wastewater treatment systems. The maximum oil globules removal efficiency is improved by obtaining the best flow uniformity in separator tanks. This study used 2D computational fluid dynamics (CFD) to investigate the effect of different inlet baffle positions inside the separator tank. Laboratory experiment has been conducted, and the measured velocity fields which were by Nortek Acoustic Doppler Velocimeter (ADV) are used to verify the CFD model. Computational investigation results indicated that the construction of an inlet baffle in a suitable location provides the minimum recirculation zone volume, creates the best flow uniformity, and dissipates kinetic energy in the oil and water separator tank. Useful formulas were predicted to design the oil and water separator tanks geometry based on an experimental model.

Keywords: oil/water separator tanks, inlet baffles, CFD, VOF

Procedia PDF Downloads 325
8088 Absorption Capability Examination of Heavy Metals by Spirogyra Alga in Ahvaz Water Treatment Plant

Authors: F. Fakheri Raof, F. Zobeidizadeh

Abstract:

The present study examined the potential capability of Spirogyra algae remove heavy metals Zn, Pb, Cu, and Cr from the water. For this purpose, the water treatment No. 3 of Ahvaz County in Khuzestan Province of Iran was selected as a case study. From 8 sampling stations, 4 stations were dedicated to the water samples and 4 stations to the algae samples. According to the obtained results, the concentration of the heavy metals Cr, Cu, Pb, and Zn in water samples were within the ranges of 1.98-19.53, 0.67-13.45, 1-23.18, and 2.12-83.04 µg/L. Besides, the concentration of heavy metal Cr, Pb, Cu, and Zn in spirogyra algae samples varied between the ranges 2.30-3.61, 2.06-3.43, 2.29-2.56, and 9.88-10.84 µg/L. The highest amount of metal absorption in spirogyra algae samples was related to the zinc. The obtained results also indicated that the last spirogyra algae sample which was at the inlet of Tank 4 absorbed the lowest concentration of metals. This would be due to the treatment process along the course of ponds resulted in completely pure water at the outlet without the existence of algae on the sides. The paper also provides some useful recommendations on this issue.

Keywords: absorption, Ahvaz, heavy metal, spirogyra algae, water treatment plants

Procedia PDF Downloads 236
8087 Revolution Biopolibag System Based on Water Hyacinth's Fiber as a Solution for Environmental Friendly Seeding and Seedling

Authors: Supriady R. P. Siregar, Rizki Barkah Aulia, Dhiya Fadilla Dewi

Abstract:

Polybag is a plastic that is used to seed plants. The common type that used for polybag is a synthetic that made from petroleum such as polyethylene. Beside the character of the raw material that are non-renewable and limited, synthetic polybag ability to disintegrate in the environment is very low. According to that situation, we need a solution to overcome these problems by creating an environmentally friendly polybag. In this research, using the water hyacinth plant fibers (Eichornia crassipes) as a major component in manufacturing the environmentally friendly polybag, the water hyacinth (Eichornia crassipes) contains approximately 60% cellulose. The research method used is an experiment by testing the mechanical characters and biodegradability bio-polybag water hyacinth fibers (Eichornia crassipes) on three medium that is dissolved in water, river water and buried in soil. The research shows bio-polybag of hyacinth fibers can rapidly degraded. This study is expected to be the beginning of the creation bio-polybag of water hyacinth fiber (Eichornia crassipes) and can be applied in agriculture.

Keywords: revolution, biopolybag, renewable, environment

Procedia PDF Downloads 215
8086 Environmental Impacts and Ecological Utilization of Water Hyacinth (Eichhornia crassipes) in the Niger Delta Fresh Ecosystem

Authors: Seiyaboh E. I.

Abstract:

Water Hyacinth (Eichhornia crassipes) was introduced into many parts of the world, including Africa, as an ornamental garden pond plant because of its beauty. However, it is considered a dangerous pest today because when not controlled, water hyacinth will cover rivers, lakes and ponds entirely; this dramatically impacts water flow, blocks sunlight from reaching native aquatic plants, and starves the water of oxygen, often killing fish and other aquatic organisms. In the Niger Delta region, water hyacinth is considered a nuisance because of its very obvious devastating environmental impacts in the region. However, water hyacinth (Eichhornia crassipes) constitutes a very important part of an aquatic ecosystem. It possesses specialized growth habits, physiological characteristics and reproductive strategies that allow for rapid growth and spread in freshwater environments and this explains its very rapid spread in the Niger Delta freshwater ecosystem. This paper therefore focuses on the environmental consequences of the proliferation of water hyacinth (Eichhornia crassipes) in the Niger Delta freshwater ecosystem, extent of impact, and options available for its ecological utilization which will help mitigate proliferation, restore effective freshwater ecosystem utilization and balance. It concludes by recommending sustainable practices outlining the beneficial uses of water hyacinth (Eichhornia crassipes) rather than control.

Keywords: environmental impacts, ecological utilization, Niger Delta, water hyacinth, Eichhornia crassipes

Procedia PDF Downloads 244
8085 Effect of Water Hyacinth on Behaviour of Reinforced Concrete Beams

Authors: Ahmed Shaban Abdel Hay Gabr

Abstract:

Water hyacinth (W-H) has an adverse effect on Nile river in Egypt, it absorbs high quantities of water, it needs to serve these quantities especially at this time, so by burning W-H, it can be used in concrete mix to reduce the permeability of concrete and increase both the compressive and splitting strength. The effect of W-H on non-structural concrete properties was studied, but there is a lack of studies about the behavior of structural concrete containing W-H. Therefore, in the present study, the behavior of 15 RC beams with 100 x 150 mm cross section, 1250 mm span, different reinforcement ratios and different W-H ratios were studied by testing the beams under two-point bending test. The test results showed that Water Hyacinth is compatible with RC which yields promising results.

Keywords: beams, reinforcement ratio, reinforced concrete, water hyacinth

Procedia PDF Downloads 423
8084 Health Risk Assessment of Trihalogenmethanes in Drinking Water

Authors: Lenka Jesonkova, Frantisek Bozek

Abstract:

Trihalogenmethanes (THMs) are disinfection byproducts with non-carcinogenic and genotoxic effects. The contamination of 6 sites close to the water treatment plant has been monitored in second largest city of the Czech Republic. Health risk assessment including both non-carcinogenic and genotoxic risk for long term exposition was realized using the critical concentrations. Concentrations of trihalogenmethanes met national standards in all samples. Risk assessment proved that health risks from trihalogenmethanes are acceptable on each site.

Keywords: drinking water, health risk assessment, trihalogenmethanes, water pollution

Procedia PDF Downloads 491
8083 Physiochemical Analysis of Ground Water in Zaria, Kaduna state, Nigeria

Authors: E. D. Paul, F. G. Okibe, C. E. Gimba, S. Yakubu

Abstract:

Some physicochemical characteristics and heavy metal concentrations of water samples collected from ten boreholes in Samaru, Zaria, Kaduna state, Nigeria were analysed in order to assess the drinking water quality. Physicochemical parameters were determined using classical methods while the heavy metals were determined using Atomic Absorption Spectrometry. Results of the analysis obtained were as follows: Temperature 29 – 310C, pH 5.74 – 6.19, Electrical conductivity 3.21 – 7.54 µs, DO 0.51 – 1.00 mg/L, BOD 0.0001 – 0.006 mg/L, COD 160 – 260 mg/L, TDS 2.08 – 4.55 mg/L, Total Hardness 97.44 – 401.36 mg/L CaCO3, and Chloride 0.97 – 59.12 mg/L. Concentrations of heavy metals were in the range; Zinc 0.000 – 0.7568 mg/L, Lead 0.000 – 0.070 mg/L and Cadmium 0.000 – 0.009 mg/L. The implications of these findings are discussed.

Keywords: ground water, water quality, heavy metals, Atomic Absorption Spectrometry (AAS)

Procedia PDF Downloads 494
8082 Hydrological Analysis for Urban Water Management

Authors: Ranjit Kumar Sahu, Ramakar Jha

Abstract:

Urban Water Management is the practice of managing freshwater, waste water, and storm water as components of a basin-wide management plan. It builds on existing water supply and sanitation considerations within an urban settlement by incorporating urban water management within the scope of the entire river basin. The pervasive problems generated by urban development have prompted, in the present work, to study the spatial extent of urbanization in Golden Triangle of Odisha connecting the cities Bhubaneswar (20.2700° N, 85.8400° E), Puri (19.8106° N, 85.8314° E) and Konark (19.9000° N, 86.1200° E)., and patterns of periodic changes in urban development (systematic/random) in order to develop future plans for (i) urbanization promotion areas, and (ii) urbanization control areas. Remote Sensing, using USGS (U.S. Geological Survey) Landsat8 maps, supervised classification of the Urban Sprawl has been done for during 1980 - 2014, specifically after 2000. This Work presents the following: (i) Time series analysis of Hydrological data (ground water and rainfall), (ii) Application of SWMM (Storm Water Management Model) and other soft computing techniques for Urban Water Management, and (iii) Uncertainty analysis of model parameters (Urban Sprawl and correlation analysis). The outcome of the study shows drastic growth results in urbanization and depletion of ground water levels in the area that has been discussed briefly. Other relative outcomes like declining trend of rainfall and rise of sand mining in local vicinity has been also discussed. Research on this kind of work will (i) improve water supply and consumption efficiency (ii) Upgrade drinking water quality and waste water treatment (iii) Increase economic efficiency of services to sustain operations and investments for water, waste water, and storm water management, and (iv) engage communities to reflect their needs and knowledge for water management.

Keywords: Storm Water Management Model (SWMM), uncertainty analysis, urban sprawl, land use change

Procedia PDF Downloads 402
8081 AquaCrop Model Simulation for Water Productivity of Teff (Eragrostic tef): A Case Study in the Central Rift Valley of Ethiopia

Authors: Yenesew Mengiste Yihun, Abraham Mehari Haile, Teklu Erkossa, Bart Schultz

Abstract:

Teff (Eragrostic tef) is a staple food in Ethiopia. The local and international demand for the crop is ever increasing pushing the current price five times compared with that in 2006. To meet this escalating demand increasing production including using irrigation is imperative. Optimum application of irrigation water, especially in semi-arid areas is profoundly important. AquaCrop model application in irrigation water scheduling and simulation of water productivity helps both irrigation planners and agricultural water managers. This paper presents simulation and evaluation of AquaCrop model in optimizing the yield and biomass response to variation in timing and rate of irrigation water application. Canopy expansion, canopy senescence and harvest index are the key physiological processes sensitive to water stress. For full irrigation water application treatment there was a strong relationship between the measured and simulated canopy and biomass with r2 and d values of 0.87 and 0.96 for canopy and 0.97 and 0.74 for biomass, respectively. However, the model under estimated the simulated yield and biomass for higher water stress level. For treatment receiving full irrigation the harvest index value obtained were 29%. The harvest index value shows generally a decreasing trend under water stress condition. AquaCrop model calibration and validation using the dry season field experiments of 2010/2011 and 2011/2012 shows that AquaCrop adequately simulated the yield response to different irrigation water scenarios. We conclude that the AquaCrop model can be used in irrigation water scheduling and optimizing water productivity of Teff grown under water scarce semi-arid conditions.

Keywords: AquaCrop, climate smart agriculture, simulation, teff, water security, water stress regions

Procedia PDF Downloads 377
8080 Rainwater Harvesting for Household Consumption in Rural Demonstration Sites of Nong Khai Province, Thailand

Authors: Shotiros Protong

Abstract:

In recent years, Thailand has been affected by climate change phenomenon, which is clearly seen from the season change for different times. The occurrence of violent storms, heavy rains, floods, and drought were found in several areas. In a long dry period, the water supply is not adequate in drought areas. Nowadays, it is renowned that there is a significant decrease of rainwater use for household consumption in rural area of Thailand. Rainwater harvesting is the practice of collection and storage of rainwater in storage tanks before it is lost as surface run-off. Rooftop rainwater harvesting is used to provide drinking water, domestic water, and water for livestock. Rainwater harvesting in households is an alternative for people to readily prepare water resources for their own consumptions during the drought season, can help mitigate flooding of flooded plains, and also may reduce demand on the basin and well. It also helps in the availability of potable water, as rainwater is substantially free of salts. Application of rainwater harvesting in rural water system provide a substantial benefit for both water supply and wastewater subsystems by reducing the need for clean water in water distribution systems, less generated storm water in sewer systems, and a reduction in storm water runoff polluting freshwater bodies. The combination of rainwater quality and rainfall quantity is used to determine proper rainwater harvesting for household consumption to be safe and adequate for survivals. Rainwater quality analysis is compared with the drinking water standard. In terms of rainfall quantity, the observed rainfall data are interpolated by GIS 10.5 and showed by map during 1980 to 2020, used to assess the annual yield for household consumptions.

Keywords: rainwater harvesting, drinking water standard, annual yield, rainfall quantity

Procedia PDF Downloads 135
8079 Water Injection in order to Enhanced Oil Recovery

Authors: Hooman Fallah, Fatemeh Karampour

Abstract:

Low salinity water (LSW) has been proved to be efficacious because of low cost and ability to change properties of reservoir rock and fluids and their interactions toward desired condition. These include change in capillary pressure, interfacial tension, wettability tendency, permeability and pore sizing. This enhanced oil recovery (EOR) method has been studied so far for evaluating capability of inducing recent mentioned parameters and the mechanisms of its operation and applicabi-lity in different fields. This study investigates the effect of three types of salts (including Ca2+, Mg2+, and SO42-) on wettability and final oil recovery in labratory.

Keywords: low salinity water, smart water, wettability alteration, carbonated reservoir

Procedia PDF Downloads 275
8078 A Milky-White Stream Water Suitability for Drinking Purpose

Authors: Kassahun Tadesse, Megersa O. Dinka

Abstract:

Drinking water suitability study was conducted for a milky-white stream in remote areas of Ethiopia in order to understand its effect on human health. Water samples were taken from the water source and physicochemical properties were analyzed based on standard methods. The mean values of pH, total dissolved solids, sodium, magnesium, potassium, manganese, chloride, boron, and fluoride were within maximum permissible limits set for health. Whereas turbidity, calcium, irons, hardness, alkalinity, nitrate, and sulfate contents were above the limits. The water is very hard water due to high calcium content. High sulfate content can cause noticeable taste and a laxative (gastrointestinal) effect. The nitrate content was very high and can cause methemoglobinemia (blue baby syndrome) which is a temporary blood disorder in the bottle fed infants. Hence, parents should be advised not to give this water to infants. In conclusion, all physicochemical parameters except for nitrate are safe for health but may affect the appearance and taste, and wear water infrastructures. A high value of turbidity due to suspended minerals is the cause for milky-white colour. However, a mineralogical analysis of suspended sediments is required to identify the exact cause for white colour, and a study on sediment source was recommended.

Keywords: hard water, laxative effect, methemoglobinemia, nitrate, physicochemical, water quality

Procedia PDF Downloads 168
8077 The Study on Corpse Floating Time in Shanghai Region of China

Authors: Hang Meng, Wen-Bin Liu, Bi Xiao, Kai-Jun Ma, Jian-Hui Xie, Geng Fei, Tian-Ye Zhang, Lu-Yi Xu, Dong-Chuan Zhang

Abstract:

The victims in water are often found in the coastal region, along river region or the region with lakes. In China, the examination for the bodies of victims in the water is conducted by forensic doctors working in the public security bureau. Because the enter water time for most of the victims are not clear, and often lack of monitor images and other information, so to find out the corpse enter water time for victims is very difficult. After the corpse of the victim enters the water, it sinks first, then corruption gas produces, which can make the density of the corpse to be less than water, and thus rise again. So the factor that determines the corpse floating time is temperature. On the basis of the temperature data obtained in Shanghai region of China (Shanghai is a north subtropical marine monsoon climate, with an average annual temperature of about 17.1℃. The hottest month is July, the average monthly temperature is 28.6℃, and the coldest month is January, the average monthly temperature is 4.8℃). This study selected about 100 cases with definite corpse enter water time and corpse floating time, analyzed the cases and obtained the empirical law of the corpse floating time. For example, in the Shanghai region, on June 15th and October 15th, the corpse floating time is about 1.5 days. In early December, the bodies who entered the water will go up around January 1st of the following year, and the bodies who enter water in late December will float in March of next year. The results of this study can be used to roughly estimate the water enter time of the victims in Shanghai. Forensic doctors around the world can also draw on the results of this study to infer the time when the corpses of the victims in the water go up.

Keywords: corpse enter water time, corpse floating time, drowning, forensic pathology, victims in the water

Procedia PDF Downloads 159
8076 The Review and Contribution of Taiwan Government Policies on Environmental Impact Assessment to Water Recycling

Authors: Feng-Ming Fan, Xiu-Hui Wen, Po-Feng Chen, Yi-Ching Tu

Abstract:

Because of inborn natural conditions and man-made sabotage, the water resources insufficient phenomenon in Taiwan is a very important issue needed to face immediately. The regulations and law of water resources protection and recycling are gradually completed now but still lack of specific water recycling effectiveness checking method. The research focused on the industrial parks that already had been certificated with EIA to establish a professional checking system, carry through and forge ahead to contribute one’s bit in water resources sustainable usage. Taiwan Government Policies of Environmental Impact Assessment established in 1994, some development projects were requested to set certain water recycling ratio for water resources effective usage. The water covers and contains everything because all-inclusive companies enter and be stationed. For control the execution status of industrial park water and waste water recycling ratio about EIA commitment effectively, we invited experts and scholars in this filed to discuss with related organs to formulate the policy and audit plan. Besides, call a meeting to set public version water equilibrium diagrams and recycles parameter. We selected nine industrial parks that were requested set certain water recycling ratio in EIA examination stage and then according to the water usage quantity, we audited 340 factories in these industrial parks with spot and documents examination and got fruitful results – the average water usage of unit area per year of all these examined industrial parks is 31,000 tons/hectare/year, the value is just half of Taiwan industries average. It is obvious that the industrial parks with EIA commitment can decrease the water resources consumption effectively. Taiwan government policies of Environmental Impact Assessment took follow though tracking function into consideration at the beginning. The results of this research verify the importance of the implementing with water recycling to save water resources in EIA commitment. Inducing development units to follow EIA commitment to get the balance between environmental protection and economic development is one of the important EIA value.

Keywords: Taiwan government policies of environmental impact assessment, water recycling ratio of EIA commitment, water resources sustainable usage, water recycling

Procedia PDF Downloads 192
8075 Environment and Water in the Conceptions of a Sustainable Architecture

Authors: Carlos H. Ferreira, Joana R. Pereira

Abstract:

In recent decades, calls for sustainable architecture based on environmental policies have been frequent. Despite a vast number of documents, technical procedures, and publications involving these themes, conceptions, and even architectural practice are often distanced from critical and methodological reflection on the relationship between environment and architecture. Among the various issues that we could consider in this relationship, we highlight in this article the relevance of water in the environment and in the architectural design. From documentary references and works carried out, we seek contributions to a better systematization and framing of water in architectural thinking. We distinguish, on the one hand, more conceptual issues that involve the environmental relationship of water, involving its cycle, relevance in the landscape, and infrastructural commitments. On the other hand, we highlight a more operative component, focusing on the place of water in the design process, from its perception in space-shape dimensions to more specific technical requirements that involve the interdisciplinary boundaries of architecture. In both approaches to water in architectural design, we seek to contribute to greater sensitivity and efficiency in the art of designing a more sustainable future.

Keywords: sustainability, environment, water, resilience design

Procedia PDF Downloads 102
8074 Control Strategy of Solar Thermal Cooling System under the Indonesia Climate

Authors: Budihardjo Sarwo Sastrosudiro, Arnas Lubis, Muhammad Idrus Alhamid, Nasruddin Jusuf

Abstract:

Solar thermal cooling system was installed on Mechanical Research Center (MRC) Building that is located in Universitas Indonesia, Depok, Indonesia. It is the first cooling system in Indonesia that utilizes solar energy as energy input combined with natural gas; therefore, the control system must be appropriated with the climates. In order to stabilize the cooling capacity and also to maximize the use of solar energy, the system applies some controllers. Constant flow rate and on/off controller are applied for the hot water, chilled water and cooling water pumps. The hot water circulated by pump when the solar radiation is over than 400W/m2, and the chilled water is continually circulated by pump and its temperature is kept constant 7 °C by absorption chiller. The cooling water is also continually circulated until the outlet temperature of cooling tower below than 27 oC. Furthermore, the three-way valve is used to control the hot water for generate vapor on absorption chiller. The system performance using that control system is shown in this study results.

Keywords: absorption chiller, control system, solar cooling, solar energy

Procedia PDF Downloads 241