Search results for: negative differential resistnace
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6252

Search results for: negative differential resistnace

6252 Two-Dimensional Material-Based Negative Differential Resistance Device with High Peak-to- Valley Current Ratio for Multi-Valued Logic Circuits

Authors: Kwan-Ho Kim, Jin-Hong Park

Abstract:

The multi-valued logic (MVL) circuits, which can handle more than two logic states, are one of the promising solutions to overcome the bit density limitations of conventional binary logic systems. Recently, tunneling devices such as Esaki diode and resonant tunneling diode (RTD) have been extensively explored to construct the MVL circuits. These tunneling devices present a negative differential resistance (NDR) phenomenon in which a current decreases as a voltage increases in a specific applied voltage region. Due to this non-monotonic current behavior, the tunneling devices have more than two threshold voltages, consequently enabling construction of MVL circuits. Recently, the emergence of two dimensional (2D) van der Waals (vdW) crystals has opened up the possibility to fabricate such tunneling devices easily. Owing to the defect-free surface of the 2D crystals, a very abrupt junction interface could be formed through a simple stacking process, which subsequently allowed the implementation of a high-performance tunneling device. Here, we report a vdW heterostructure based tunneling device with multiple threshold voltages, which was fabricated with black phosphorus (BP) and hafnium diselenide (HfSe₂). First, we exfoliated BP on the SiO₂ substrate and then transferred HfSe₂ on BP using dry transfer method. The BP and HfSe₂ form type-Ⅲ heterojunction so that the highly doped n+/p+ interface can be easily implemented without additional electrical or chemical doping process. Owing to high natural doping at the junction, record high peak to valley ratio (PVCR) of 16 was observed to the best our knowledge in 2D materials based NDR device. Furthermore, based on this, we first demonstrate the feasibility of the ternary latch by connecting two multi-threshold voltage devices in series.

Keywords: two dimensional van der Waals crystal, multi-valued logic, negative differential resistnace, tunneling device

Procedia PDF Downloads 211
6251 Double Negative Differential Resistance Features in GaN-Based Bipolar Resonance Tunneling Diodes

Authors: Renjie Liu, Junshuai Xue, Jiajia Yao, Guanlin Wu, Zumao L, Xueyan Yang, Fang Liu, Zhuang Guo

Abstract:

Here, we report the study of the performance of AlN/GaN bipolar resonance tunneling diodes (BRTDs) using numerical simulations. The I-V characteristics of BRTDs show double negative differential resistance regions, which exhibit similar peak current density and peak-to-valley current ratio (PVCR). Investigations show that the PVCR can approach 4.6 for the first and 5.75 for the second negative resistance region. The appearance of the two negative differential resistance regions is realized by changing the collector material of conventional GaN RTD to P-doped GaN. As the bias increases, holes in the P-region and electrons in the N-region undergo resonant tunneling, respectively, resulting in two negative resistance regions. The appearance of two negative resistance regions benefits from the high AlN barrier and the precise regulation of the potential well thickness. This result shows the promise of GaN BRTDs in the development of multi-valued logic circuits.

Keywords: GaN bipolar resonant tunneling diode, double negative differential resistance regions, peak to valley current ratio, multi-valued logic

Procedia PDF Downloads 161
6250 Noncommutative Differential Structure on Finite Groups

Authors: Ibtisam Masmali, Edwin Beggs

Abstract:

In this paper, we take example of differential calculi, on the finite group A4. Then, we apply methods of non-commutative of non-commutative differential geometry to this example, and see how similar the results are to those of classical differential geometry.

Keywords: differential calculi, finite group A4, Christoffel symbols, covariant derivative, torsion compatible

Procedia PDF Downloads 248
6249 Solution of Singularly Perturbed Differential Difference Equations Using Liouville Green Transformation

Authors: Y. N. Reddy

Abstract:

The class of differential-difference equations which have characteristics of both classes, i.e., delay/advance and singularly perturbed behaviour is known as singularly perturbed differential-difference equations. The expression ‘positive shift’ and ‘negative shift’ are also used for ‘advance’ and ‘delay’ respectively. In general, an ordinary differential equation in which the highest order derivative is multiplied by a small positive parameter and containing at least one delay/advance is known as singularly perturbed differential-difference equation. Singularly perturbed differential-difference equations arise in the modelling of various practical phenomena in bioscience, engineering, control theory, specifically in variational problems, in describing the human pupil-light reflex, in a variety of models for physiological processes or diseases and first exit time problems in the modelling of the determination of expected time for the generation of action potential in nerve cells by random synaptic inputs in dendrites. In this paper, we envisage the use of Liouville Green Transformation to find the solution of singularly perturbed differential difference equations. First, using Taylor series, the given singularly perturbed differential difference equation is approximated by an asymptotically equivalent singularly perturbation problem. Then the Liouville Green Transformation is applied to get the solution. Several model examples are solved, and the results are compared with other methods. It is observed that the present method gives better approximate solutions.

Keywords: difference equations, differential equations, singular perturbations, boundary layer

Procedia PDF Downloads 198
6248 Multiple Negative-Differential Resistance Regions Based on AlN/GaN Resonant Tunneling Structures by the Vertical Growth of Molecular Beam Epitaxy

Authors: Yao Jiajia, Wu Guanlin, LIU Fang, Xue Junshuai, Zhang Jincheng, Hao Yue

Abstract:

Resonant tunneling diodes (RTDs) based on GaN have been extensively studied. However, no results of multiple logic states achieved by RTDs were reported by the methods of epitaxy in the GaN materials. In this paper, the multiple negative-differential resistance regions by combining two discrete double-barrier RTDs in series have been first demonstrated. Plasma-assisted molecular beam epitaxy (PA-MBE) was used to grow structures consisting of two vertical RTDs. The substrate was a GaN-on-sapphire template. Each resonant tunneling structure was composed of a double barrier of AlN and a single well of GaN with undoped 4-nm space layers of GaN on each side. The AlN barriers were 1.5 nm thick, and the GaN well was 2 nm thick. The resonant tunneling structures were separated from each other by 30-nm thick n+ GaN layers. The bottom and top layers of the structures, grown neighboring to the spacer layers that consist of 200-nm-thick n+ GaN. These devices with two tunneling structures exhibited uniform peaks and valleys current and also had two negative differential resistance NDR regions equally spaced in bias voltage. The current-voltage (I-V) characteristics of resonant tunneling structures with diameters of 1 and 2 μm were analyzed in this study. These structures exhibit three stable operating points, which are investigated in detail. This research demonstrates that using molecular beam epitaxy MBE to vertically grow multiple resonant tunneling structures is a promising method for achieving multiple negative differential resistance regions and stable logic states. These findings have significant implications for the development of digital circuits capable of multi-value logic, which can be achieved with a small number of devices.

Keywords: GaN, AlN, RTDs, MBE, logic state

Procedia PDF Downloads 91
6247 Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations

Authors: Fuziyah Ishak, Siti Norazura Ahmad

Abstract:

Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations.

Keywords: accuracy, extended trapezoidal method, numerical solution, Volterra integro-differential equations

Procedia PDF Downloads 421
6246 Double Negative Differential Resistance Features in Series AIN/GaN Double-Barrier Resonant Tunneling Diodes Vertically Integrated by Plasma-Assisted Molecular Beam Epitaxy

Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao

Abstract:

This study reports on the epitaxial growth of a GaN-based resonant tunneling diode (RTD) structure with stable and repeatable double negative differential resistance (NDR) characteristics at room temperature on a c-plane GaN-on-sapphire template using plasma-assisted molecular beam epitaxy (PA-MBE) technology. In this structure, two independent AlN/GaN RTDs are epitaxially connected in series in the vertical growth direction through a silicon-doped GaN layer. As the collector electrode bias voltage increases, the two RTDs respectively align the ground state energy level in the quantum well with the 2DEG energy level in the emitter accumulation well to achieve quantum resonant tunneling and then reach the negative differential resistance (NDR) region. The two NDR regions exhibit similar peak current densities and peak-to-valley current ratios, which are 230 kA/cm² and 249 kA/cm², 1.33 and 1.38, respectively, for a device with a collector electrode mesa diameter of 1 µm. The consistency of the NDR is much higher than the results of on-chip discrete RTD device interconnection, resulting from the smaller chip area, fewer interconnect parasitic parameters, and less process complexity. The methods and results presented in this paper show the brilliant prospects of GaN RTDs in the development of multi-value logic digital circuits.

Keywords: MBE, AlN/GaN, RTDs, double NDR

Procedia PDF Downloads 62
6245 Existence Result of Third Order Functional Random Integro-Differential Inclusion

Authors: D. S. Palimkar

Abstract:

The FRIGDI (functional random integrodifferential inclusion) seems to be new and includes several known random differential inclusions already studied in the literature as special cases have been discussed in the literature for various aspects of the solutions. In this paper, we prove the existence result for FIGDI under the non-convex case of multi-valued function involved in it.Using random fixed point theorem of B. C. Dhage and caratheodory condition. This result is new to the theory of differential inclusion.

Keywords: caratheodory condition, random differential inclusion, random solution, integro-differential inclusion

Procedia PDF Downloads 464
6244 Integral Image-Based Differential Filters

Authors: Kohei Inoue, Kenji Hara, Kiichi Urahama

Abstract:

We describe a relationship between integral images and differential images. First, we derive a simple difference filter from conventional integral image. In the derivation, we show that an integral image and the corresponding differential image are related to each other by simultaneous linear equations, where the numbers of unknowns and equations are the same, and therefore, we can execute the integration and differentiation by solving the simultaneous equations. We applied the relationship to an image fusion problem, and experimentally verified the effectiveness of the proposed method.

Keywords: integral images, differential images, differential filters, image fusion

Procedia PDF Downloads 505
6243 On the Relation between λ-Symmetries and μ-Symmetries of Partial Differential Equations

Authors: Teoman Ozer, Ozlem Orhan

Abstract:

This study deals with symmetry group properties and conservation laws of partial differential equations. We give a geometrical interpretation of notion of μ-prolongations of vector fields and of the related concept of μ-symmetry for partial differential equations. We show that these are in providing symmetry reduction of partial differential equations and systems and invariant solutions.

Keywords: λ-symmetry, μ-symmetry, classification, invariant solution

Procedia PDF Downloads 318
6242 Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation

Authors: Muhaned Zaidi, Ian Grout, Abu Khari bin A’ain

Abstract:

In this paper, a two-stage op-amp design is considered using both Miller and negative Miller compensation techniques. The first op-amp design uses Miller compensation around the second amplification stage, whilst the second op-amp design uses negative Miller compensation around the first stage and Miller compensation around the second amplification stage. The aims of this work were to compare the gain and phase margins obtained using the different compensation techniques and identify the ability to choose either compensation technique based on a particular set of design requirements. The two op-amp designs created are based on the same two-stage rail-to-rail output CMOS op-amp architecture where the first stage of the op-amp consists of differential input and cascode circuits, and the second stage is a class AB amplifier. The op-amps have been designed using a 0.35mm CMOS fabrication process.

Keywords: op-amp, rail-to-rail output, Miller compensation, Negative Miller capacitance

Procedia PDF Downloads 338
6241 Reduced Differential Transform Methods for Solving the Fractional Diffusion Equations

Authors: Yildiray Keskin, Omer Acan, Murat Akkus

Abstract:

In this paper, the solution of fractional diffusion equations is presented by means of the reduced differential transform method. Fractional partial differential equations have special importance in engineering and sciences. Application of reduced differential transform method to this problem shows the rapid convergence of the sequence constructed by this method to the exact solution. The numerical results show that the approach is easy to implement and accurate when applied to fractional diffusion equations. The method introduces a promising tool for solving many fractional partial differential equations.

Keywords: fractional diffusion equations, Caputo fractional derivative, reduced differential transform method, partial

Procedia PDF Downloads 524
6240 Series Connected GaN Resonant Tunneling Diodes for Multiple-Valued Logic

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, XueYan Yang, ZuMao Li, GuanLin Wu, HePeng Zhang, ZhiPeng Sun

Abstract:

III-Nitride resonant tunneling diode (RTD) is one of the most promising candidates for multiple-valued logic (MVL) elements. Here, we report a monolithic integration of GaN resonant tunneling diodes to realize multiple negative differential resistance (NDR) regions for MVL application. GaN RTDs, composed of a 2 nm quantum well embedded in two 1 nm quantum barriers, are grown by plasma-assisted molecular beam epitaxy on free-standing c-plane GaN substrates. Negative differential resistance characteristic with a peak current density of 178 kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed. Statistical properties exhibit high consistency showing a peak current density standard deviation of almost 1%, laying the foundation for the monolithic integration. After complete electrical isolation, two diodes of the designed same area are connected in series. By solving the Poisson equation and Schrodinger equation in one dimension, the energy band structure is calculated to explain the transport mechanism of the differential negative resistance phenomenon. Resonant tunneling events in a sequence of the series-connected RTD pair (SCRTD) form multiple NDR regions with nearly equal peak current, obtaining three stable operating states corresponding to ternary logic. A frequency multiplier circuit achieved using this integration is demonstrated, attesting to the robustness of this multiple peaks feature. This article presents a monolithic integration of SCRTD with multiple NDR regions driven by the resonant tunneling mechanism, which can be applied to a multiple-valued logic field, promising a fast operation speed and a great reduction of circuit complexity and demonstrating a new solution for nitride devices to break through the limitations of binary logic.

Keywords: GaN resonant tunneling diode, multiple-valued logic system, frequency multiplier, negative differential resistance, peak-to-valley current ratio

Procedia PDF Downloads 80
6239 Nonhomogeneous Linear Second Order Differential Equations and Resonance through Geogebra Program

Authors: F. Maass, P. Martin, J. Olivares

Abstract:

The aim of this work is the application of the program GeoGebra in teaching the study of nonhomogeneous linear second order differential equations with constant coefficients. Different kind of functions or forces will be considered in the right hand side of the differential equations, in particular, the emphasis will be placed in the case of trigonometrical functions producing the resonance phenomena. In order to obtain this, the frequencies of the trigonometrical functions will be changed. Once the resonances appear, these have to be correlationated with the roots of the second order algebraic equation determined by the coefficients of the differential equation. In this way, the physics and engineering students will understand resonance effects and its consequences in the simplest way. A large variety of examples will be shown, using different kind of functions for the nonhomogeneous part of the differential equations.

Keywords: education, geogebra, ordinary differential equations, resonance

Procedia PDF Downloads 244
6238 Weak Solutions Of Stochastic Fractional Differential Equations

Authors: Lev Idels, Arcady Ponosov

Abstract:

Stochastic fractional differential equations have recently attracted considerable attention, as they have been used to model real-world processes, which are subject to natural memory effects and measurement uncertainties. Compared to conventional hereditary differential equations, one of the advantages of fractional differential equations is related to more realistic geometric properties of their trajectories that do not intersect in the phase space. In this report, a Peano-like existence theorem for nonlinear stochastic fractional differential equations is proven under very general hypotheses. Several specific classes of equations are checked to satisfy these hypotheses, including delay equations driven by the fractional Brownian motion, stochastic fractional neutral equations and many others.

Keywords: delay equations, operator methods, stochastic noise, weak solutions

Procedia PDF Downloads 208
6237 Modeling the Compound Interest Dynamics Using Fractional Differential Equations

Authors: Muath Awadalla, Maen Awadallah

Abstract:

Banking sector covers different activities including lending money to customers. However, it is commonly known that customers pay money they have borrowed including an added amount called interest. Compound interest rate is an approach used in determining the interest to be paid. The instant compounded amount to be paid by a debtor is obtained through a differential equation whose main parameters are the rate and the time. The rate used by banks in a country is often defined by the government of the said country. In Switzerland, for instance, a negative rate was once applied. In this work, a new approach of modeling the compound interest is proposed using Hadamard fractional derivative. As a result, it appears that depending on the fraction value used in derivative the amount to be paid by a debtor might either be higher or lesser than the amount determined using the classical approach.

Keywords: compound interest, fractional differential equation, hadamard fractional derivative, optimization

Procedia PDF Downloads 126
6236 Generalization of Tau Approximant and Error Estimate of Integral Form of Tau Methods for Some Class of Ordinary Differential Equations

Authors: A. I. Ma’ali, R. B. Adeniyi, A. Y. Badeggi, U. Mohammed

Abstract:

An error estimation of the integrated formulation of the Lanczos tau method for some class of ordinary differential equations was reported. This paper is concern with the generalization of tau approximants and their corresponding error estimates for some class of ordinary differential equations (ODEs) characterized by m + s =3 (i.e for m =1, s=2; m=2, s=1; and m=3, s=0) where m and s are the order of differential equations and number of overdetermination, respectively. The general result obtained were validated with some numerical examples.

Keywords: approximant, error estimate, tau method, overdetermination

Procedia PDF Downloads 605
6235 Closed Form Exact Solution for Second Order Linear Differential Equations

Authors: Saeed Otarod

Abstract:

In a different simple and straight forward analysis a closed-form integral solution is found for nonhomogeneous second order linear ordinary differential equations, in terms of a particular solution of their corresponding homogeneous part. To find the particular solution of the homogeneous part, the equation is transformed into a simple Riccati equation from which the general solution of non-homogeneouecond order differential equation, in the form of a closed integral equation is inferred. The method works well in manyimportant cases, such as Schrödinger equation for hydrogen-like atoms. A non-homogenous second order linear differential equation has been solved as an extra example

Keywords: explicit, linear, differential, closed form

Procedia PDF Downloads 58
6234 An Equivalence between a Harmonic Form and a Closed Co-Closed Differential Form in L^Q and Non-L^Q Spaces

Authors: Lina Wu, Ye Li

Abstract:

An equivalent relation between a harmonic form and a closed co-closed form is established on a complete non-compact manifold. This equivalence has been generalized for a differential k-form ω from Lq spaces to non-Lq spaces when q=2 in the context of p-balanced growth where p=2. Especially for a simple differential k-form on a complete non-compact manifold, the equivalent relation has been verified with the extended scope of q for from finite q-energy in Lq spaces to infinite q-energy in non-Lq spaces when with 2-balanced growth. Generalized Hadamard Theorem, Cauchy-Schwarz Inequality, and Calculus skills including Integration by Parts as well as Convergent Series have been applied as estimation techniques to evaluate growth rates for a differential form. In particular, energy growth rates as indicated by an appropriate power range in a selected test function lead to a balance between a harmonic differential form and a closed co-closed differential form. Research ideas and computational methods in this paper could provide an innovative way in the study of broadening Lq spaces to non-Lq spaces with a wide variety of infinite energy growth for a differential form.

Keywords: closed forms, co-closed forms, harmonic forms, L^q spaces, p-balanced growth, simple differential k-forms

Procedia PDF Downloads 449
6233 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions

Authors: Mustafa Bayram Gücen, Coşkun Yakar

Abstract:

In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.

Keywords: fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability

Procedia PDF Downloads 248
6232 Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease

Authors: H. N. Agiza, M. A. Sohaly, M. A. Elfouly

Abstract:

Parkinson's disease (PD) is a heterogeneous disorder with common age of onset, symptoms, and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs.

Keywords: Parkinson's disease, step method, delay differential equation, two delays

Procedia PDF Downloads 203
6231 Monolithic Integrated GaN Resonant Tunneling Diode Pair with Picosecond Switching Time for High-speed Multiple-valued Logic System

Authors: Fang Liu, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun, JunShuai Xue

Abstract:

The explosive increasing needs of data processing and information storage strongly drive the advancement of the binary logic system to multiple-valued logic system. Inherent negative differential resistance characteristic, ultra-high-speed switching time, and robust anti-irradiation capability make III-nitride resonant tunneling diode one of the most promising candidates for multi-valued logic devices. Here we report the monolithic integration of GaN resonant tunneling diodes in series to realize multiple negative differential resistance regions, obtaining at least three stable operating states. A multiply-by-three circuit is achieved by this combination, increasing the frequency of the input triangular wave from f0 to 3f0. The resonant tunneling diodes are grown by plasma-assistedmolecular beam epitaxy on free-standing c-plane GaN substrates, comprising double barriers and a single quantum well both at the atomic level. Device with a peak current density of 183kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed, which is the best result reported in nitride-based resonant tunneling diodes. Microwave oscillation event at room temperature was discovered with a fundamental frequency of 0.31GHz and an output power of 5.37μW, verifying the high repeatability and robustness of our device. The switching behavior measurement was successfully carried out, featuring rise and fall times in the order of picoseconds, which can be used in high-speed digital circuits. Limited by the measuring equipment and the layer structure, the switching time can be further improved. In general, this article presents a novel nitride device with multiple negative differential regions driven by the resonant tunneling mechanism, which can be used in high-speed multiple value logic field with reduced circuit complexity, demonstrating a new solution of nitride devices to break through the limitations of binary logic.

Keywords: GaN resonant tunneling diode, negative differential resistance, multiple-valued logic system, switching time, peak-to-valley current ratio

Procedia PDF Downloads 99
6230 Existence of positive periodic solutions for certain delay differential equations

Authors: Farid Nouioua, Abdelouaheb Ardjouni

Abstract:

In this article, we study the existence of positive periodic solutions of certain delay differential equations. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ Krasnoselskii's fixed point theorem to obtain sufficient conditions for the existence of a positive periodic solution of the differential equation. The obtained results improve and extend the results in the literature. Finally, an example is given to illustrate our results.

Keywords: delay differential equations, positive periodic solutions, integral equations, Krasnoselskii fixed point theorem

Procedia PDF Downloads 437
6229 Periodicity of Solutions of a Nonlinear Impulsive Differential Equation with Piecewise Constant Arguments

Authors: Mehtap Lafcı

Abstract:

In recent years, oscillation, periodicity and convergence of solutions of linear differential equations with piecewise constant arguments have been significantly considered but there are only a few papers for impulsive differential equations with piecewise constant arguments. In this paper, a first order nonlinear impulsive differential equation with piecewise constant arguments is studied and the existence of solutions and periodic solutions of this equation are investigated by using Carvalho’s method. Finally, an example is given to illustrate these results.

Keywords: Carvalho's method, impulsive differential equation, periodic solution, piecewise constant arguments

Procedia PDF Downloads 514
6228 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

Discrete linear multistep block method of uniform order for the solution of first order Initial Value Problems (IVPs) in Ordinary Differential Equations (ODEs) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.

Keywords: block method, first order ordinary differential equations, hybrid, self-starting

Procedia PDF Downloads 480
6227 Sufficient Conditions for Exponential Stability of Stochastic Differential Equations with Non Trivial Solutions

Authors: Fakhreddin Abedi, Wah June Leong

Abstract:

Exponential stability of stochastic differential equations with non trivial solutions is provided in terms of Lyapunov functions. The main result of this paper establishes that, under certain hypotheses for the dynamics f(.) and g(.), practical exponential stability in probability at the small neighborhood of the origin is equivalent to the existence of an appropriate Lyapunov function. Indeed, we establish exponential stability of stochastic differential equation when almost all the state trajectories are bounded and approach a sufficiently small neighborhood of the origin. We derive sufficient conditions for exponential stability of stochastic differential equations. Finally, we give a numerical example illustrating our results.

Keywords: exponential stability in probability, stochastic differential equations, Lyapunov technique, Ito's formula

Procedia PDF Downloads 50
6226 Series Solutions to Boundary Value Differential Equations

Authors: Armin Ardekani, Mohammad Akbari

Abstract:

We present a method of generating series solutions to large classes of nonlinear differential equations. The method is well suited to be adapted in mathematical software and unlike the available commercial solvers, we are capable of generating solutions to boundary value ODEs and PDEs. Many of the generated solutions converge to closed form solutions. Our method can also be applied to systems of ODEs or PDEs, providing all the solutions efficiently. As examples, we present results to many difficult differential equations in engineering fields.

Keywords: computational mathematics, differential equations, engineering, series

Procedia PDF Downloads 335
6225 11-Round Impossible Differential Attack on Midori64

Authors: Zhan Chen, Wenquan Bi

Abstract:

This paper focuses on examining the strength of Midori against impossible differential attack. The Midori family of light weight block cipher orienting to energy-efficiency is proposed in ASIACRYPT2015. Using a 6-round property, the authors implement an 11-round impossible differential attack on Midori64 by extending two rounds on the top and three rounds on the bottom. There is enough key space to consider pre-whitening keys in this attack. An impossible differential path that minimises the key bits involved is used to reduce computational complexity. Several additional observations such as partial abort technique are used to further reduce data and time complexities. This attack has data complexity of 2 ⁶⁹·² chosen plaintexts, requires 2 ¹⁴·⁵⁸ blocks of memory and 2 ⁹⁴·⁷ 11- round Midori64 encryptions.

Keywords: cryptanalysis, impossible differential, light weight block cipher, Midori

Procedia PDF Downloads 275
6224 Differential Transform Method: Some Important Examples

Authors: M. Jamil Amir, Rabia Iqbal, M. Yaseen

Abstract:

In this paper, we solve some differential equations analytically by using differential transform method. For this purpose, we consider four models of Laplace equation with two Dirichlet and two Neumann boundary conditions and K(2,2) equation and obtain the corresponding exact solutions. The obtained results show the simplicity of the method and massive reduction in calculations when one compares it with other iterative methods, available in literature. It is worth mentioning that here only a few number of iterations are required to reach the closed form solutions as series expansions of some known functions.

Keywords: differential transform method, laplace equation, Dirichlet boundary conditions, Neumann boundary conditions

Procedia PDF Downloads 536
6223 A Study on the Solutions of the 2-Dimensional and Forth-Order Partial Differential Equations

Authors: O. Acan, Y. Keskin

Abstract:

In this study, we will carry out a comparative study between the reduced differential transform method, the adomian decomposition method, the variational iteration method and the homotopy analysis method. These methods are used in many fields of engineering. This is been achieved by handling a kind of 2-Dimensional and forth-order partial differential equations called the Kuramoto–Sivashinsky equations. Three numerical examples have also been carried out to validate and demonstrate efficiency of the four methods. Furthermost, it is shown that the reduced differential transform method has advantage over other methods. This method is very effective and simple and could be applied for nonlinear problems which used in engineering.

Keywords: reduced differential transform method, adomian decomposition method, variational iteration method, homotopy analysis method

Procedia PDF Downloads 432