Search results for: metsulfuron methyl
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 455

Search results for: metsulfuron methyl

125 Localized Detection of ᴅ-Serine by Using an Enzymatic Amperometric Biosensor and Scanning Electrochemical Microscopy

Authors: David Polcari, Samuel C. Perry, Loredano Pollegioni, Matthias Geissler, Janine Mauzeroll

Abstract:

ᴅ-serine acts as an endogenous co-agonist for N-methyl-ᴅ-aspartate receptors in neuronal synapses. This makes it a key component in the development and function of a healthy brain, especially given its role in several neurodegenerative diseases such as Alzheimer’s disease and dementia. Despite such clear research motivations, the primary site and mechanism of ᴅ-serine release is still currently unclear. For this reason, we are developing a biosensor for the detection of ᴅ-serine utilizing a microelectrode in combination with a ᴅ-amino acid oxidase enzyme, which produces stoichiometric quantities of hydrogen peroxide in response to ᴅ-serine. For the fabrication of a biosensor with good selectivity, we use a permselective poly(meta-phenylenediamine) film to ensure only the target molecule is reacted, according to the size exclusion principle. In this work, we investigated the effect of the electrodeposition conditions used on the biosensor’s response time and selectivity. Careful optimization of the fabrication process allowed for enhanced biosensor response time. This allowed for the real time sensing of ᴅ-serine in a bulk solution, and also provided in means to map the efflux of ᴅ-serine in real time. This was done using scanning electrochemical microscopy (SECM) with the optimized biosensor to measure localized release of ᴅ-serine from an agar filled glass capillary sealed in an epoxy puck, which acted as a model system. The SECM area scan simultaneously provided information regarding the rate of ᴅ-serine flux from the model substrate, as well as the size of the substrate itself. This SECM methodology, which provides high spatial and temporal resolution, could be useful to investigate the primary site and mechanism of ᴅ-serine release in other biological samples.

Keywords: ᴅ-serine, enzymatic biosensor, microelectrode, scanning electrochemical microscopy

Procedia PDF Downloads 207
124 Synthesis of ZnFe₂O₄-AC/CeMOF for Improvement Photodegradation of Textile Dyes Under Visible-light: Optimization and Statistical Study

Authors: Esraa Mohamed El-Fawal

Abstract:

A facile solvothermal procedure was applied to fabricate zinc ferrite nanoparticles (ZnFe₂O₄ NPs). Activated carbon (AC) derived from peanut shells is synthesized using a microwave through the chemical activation method. The ZnFe₂O₄-AC composite is then mixed with a cerium-based metal-organic framework (CeMOF) by solid-state adding to formulate ZnFe₂O₄-AC/CeMOF composite. The synthesized photo materials were tested by scanning/transmission electron microscope (SEM/TEM), Photoluminescence (PL), (XRD) X-Ray diffraction, (FTIR) Fourier transform infrared, (UV-Vis/DRS) ultraviolet-visible/diffuse reflectance spectroscopy. The prepared ZnFe₂O₄-AC/CeMOFphotomaterial shows significantly boosted efficiency for photodegradation of methyl orange /methylene blue (MO/MB) compared with the pristine ZnFe₂O₄ and ZnFe₂O₄-AC composite under the irradiation of visible-light. The favorable ZnFe₂O₄-AC/CeMOFphotocatalyst displays the highest photocatalytic degradation efficiency of MB/MO (R: 91.5-88.6%, consecutively) compared with the other as-prepared materials after 30 min of visible-light irradiation. The apparent reaction rate K: 1.94-1.31 min-1 is also calculated. The boosted photocatalytic proficiency is ascribed to the heterojunction at the interface of prepared photo material that assists the separation of the charge carriers. To reach optimization, statistical analysis using response surface methodology was applied. The effect of independent parameters (such as A (pH), B (irradiation time), and (c) initial pollutants concentration on the response function (%)photodegradation of MB/MO dyes (as examples of azodyes) was investigated via using central composite design. At the optimum condition, the photodegradation efficiency (%) of the MB/MO is 99.8-97.8%, respectively. ZnFe2O₄-AC/CeMOF hybrid reveals good stability over four consecutive cycles.

Keywords: azo-dyes, photo-catalysis, zinc ferrite, response surface methodology

Procedia PDF Downloads 142
123 Novel Wound Healing Biodegradable Patch of Bioactive

Authors: Abhay Asthana, Shally Toshkhani, Gyati Shilakari

Abstract:

The present research was aimed to develop a biodegradable dermal patch formulation for wound healing in a novel, sustained and systematic manner. The goal is to reduce the frequency of dressings with improved drug delivery and thereby enhance therapeutic performance. In present study optimized formulation was designed using component polymers and excipients (e.g. Hydroxypropyl methyl cellulose, Ethylcellulose, and Gelatin) to impart significant folding endurance, elasticity and strength. Gelatin was used to get a mixture using ethylene glycol. Chitosan dissolved in suitable medium was mixed with stirring to gelatin mixture. With continued stirring to the mixture Curcumin was added in optimized ratio to get homogeneous dispersion. Polymers were dispersed with stirring in final formulation. The mixture was sonicated casted to get the film form. All steps were carried out under under strict aseptic conditions. The final formulation was a thin uniformly smooth textured film with dark brown-yellow color. The film was found to have folding endurance was around 20 to 21 times without a crack in an optimized formulation at RT (23C). The drug content was in range 96 to 102% and it passed the content uniform test. The final moisture content of the optimized formulation film was NMT 9.0%. The films passed stability study conducted at refrigerated conditions (4±0.2C) and at room temperature (23 ± 2C) for 30 days. Further, the drug content and texture remained undisturbed with stability study conducted at RT 23±2C for 45 and 90 days. Percentage cumulative drug release was found to be 80% in 12 h and matched the biodegradation rate as drug release with correlation factor R2 > 0.9. The film based formulation developed shows promising results in terms of stability and release profiles.

Keywords: biodegradable, patch, bioactive, polymer

Procedia PDF Downloads 488
122 Structural Analysis of Polymer Thin Films at Single Macromolecule Level

Authors: Hiroyuki Aoki, Toru Asada, Tomomi Tanii

Abstract:

The properties of a spin-cast film of a polymer material are different from those in the bulk material because the polymer chains are frozen in an un-equilibrium state due to the rapid evaporation of the solvent. However, there has been little information on the un-equilibrated conformation and dynamics in a spin-cast film at the single chain level. The real-space observation of individual chains would provide direct information to discuss the morphology and dynamics of single polymer chains. The recent development of super-resolution fluorescence microscopy methods allows the conformational analysis of single polymer chain. In the current study, the conformation of a polymer chain in a spin-cast film by the super-resolution microscopy. Poly(methyl methacrylate) (PMMA) with the molecular weight of 2.2 x 10^6 was spin-cast onto a glass substrate from toluene and chloroform. For the super-resolution fluorescence imaging, a small amount of the PMMA labeled by rhodamine spiroamide dye was added. The radius of gyration (Rg) was evaluated from the super-resolution fluorescence image of each PMMA chain. The mean-square-root of Rg was 48.7 and 54.0 nm in the spin-cast films prepared from the toluene and chloroform solutions, respectively. On the other hand, the chain dimension in a bulk state (a thermally annealed 10- μm-thick sample) was observed to be 43.1 nm. This indicates that the PMMA chain in the spin-cast film takes an expanded conformation compared to the unperturbed chain and that the chain dimension is dependent on the solvent quality. In a good solvent, the PMMA chain has an expanded conformation by the excluded volume effect. The polymer chain is frozen before the relaxation from an un-equilibrated expanded conformation to an unperturbed one by the rapid solvent evaporation.

Keywords: chain conformation, polymer thin film, spin-coating, super-resolution optical microscopy

Procedia PDF Downloads 259
121 Isolation and Characterization of an Ethanol Resistant Bacterium from Sap of Saccharum officinarum for Efficient Fermentation

Authors: Rukshika S Hewawasam, Sisira K. Weliwegamage, Sanath Rajapakse, Subramanium Sotheeswaran

Abstract:

Bio fuel is one of the emerging industries around the world due to arise of crisis in petroleum fuel. Fermentation is a cost effective and eco-friendly process in production of bio-fuel. So inventions in microbes, substrates, technologies in fermentation cause new modifications in fermentation. One major problem in microbial ethanol fermentation is the low resistance of conventional microorganisms to the high ethanol concentrations, which ultimately lead to decrease in the efficiency of the process. In the present investigation, an ethanol resistant bacterium was isolated from sap of Saccharum officinarum (sugar cane). The optimal cultural conditions such as pH, temperature, incubation period, and microbiological characteristics, morphological characteristics, biochemical characteristics, ethanol tolerance, sugar tolerance, growth curve assay were investigated. Isolated microorganism was tolerated to 18% (V/V) of ethanol concentration in the medium and 40% (V/V) glucose concentration in the medium. Biochemical characteristics have revealed as Gram negative, non-motile, negative for Indole test ,Methyl Red test, Voges- Proskauer`s test, Citrate Utilization test, and Urease test. Positive results for Oxidase test was shown by isolated bacterium. Sucrose, Glucose, Fructose, Maltose, Dextrose, Arabinose, Raffinose, Lactose, and Sachcharose can be utilized by this particular bacterium. It is a significant feature in effective fermentation. The fermentation process was carried out in glucose medium under optimum conditions; pH 4, temperature 30˚C, and incubated for 72 hours. Maximum ethanol production was recorded as 12.0±0.6% (V/V). Methanol was not detected in the final product of the fermentation process. This bacterium is especially useful in bio-fuel production due to high ethanol tolerance of this microorganism; it can be used to enhance the fermentation process over conventional microorganisms. Investigations are currently conducted on establishing the identity of the bacterium

Keywords: bacterium, bio-fuel, ethanol tolerance, fermentation

Procedia PDF Downloads 309
120 Anti-Ulcer Activity of Hydro Alcoholic Extract of Ficus bengalensis Linn Bark in Experimental Rats

Authors: Jagdish Baheti, Sampat Navale

Abstract:

The present study was performed to evaluate the anti-ulcerogenic activity of hydro-alcoholic extract of Ficus bengalensis Linn. against ethanol-induced gastric mucosal injury in rats and pylorus ligation gastric secretion in rats. Five groups of adult wistar rats were orally pre-treated respectively with carboxy methyl cellulose (CMC) solution (ulcer control group), Omeprazole 20 mg/kg (reference group), and 100, 200 and 300 mg/kg F. bengalensis Linn. bark extract in CMC solution (experimental groups), one hour before oral administration of absolute ethanol to generate gastric mucosal injury. Rats were sacrificed and the ulcer index, gastric volume, gastric pH, free acidity, total acidity of the gastric content was determined. Grossly, the ulcer control group exhibited severe mucosal injury, whereas pre-treatment with F. bengalensis Linn. bark extract exhibited significant protection of gastric mucosal injury in both model. Histological studies revealed that ulcer control group exhibited severe damage of gastric mucosa, along with edema and leucocytes infiltration of submucosal layer compared to rats pre-treated with F. bengalensis Linn. bark extract which showed gastric mucosal protection, reduction or absence of edema and leucocytes infiltration of submucosal layer. Acute toxicity study did not manifest any toxicological signs in rats. The present finding suggests that F. bengalensis Linn. bark extract promotes ulcer protection as ascertained grossly and histologically compared to the ulcer control group.

Keywords: Ficus bengalensis Linn., gastric ulcer, hydroalcoholic, pylorus ligation

Procedia PDF Downloads 265
119 Molecular Engineering of Intrinsically Microporous Polybenzimidazole for Energy-efficient Gas Separation

Authors: Mahmoud Abdulhamid, Rifan Hardian, Prashant Bhatt, Shuvo Datta, Adrian Ramirez, Jorge Gascon, Mohamed Eddaoudi, Gyorgy Szekely

Abstract:

Polybenzimidazole (PBI) is a high-performance polymer that exhibits high thermal and chemical stability. However, it suffers from low porosity and low fractional free volume, which hinder its application as separation material. Herein, we demonstrate the molecular engineering of gas separation materials by manipulating a PBI backbone possessing kinked moieties. PBI was selected as it contains NH groups which increase the affinity towards CO₂, increase sorption capacity, and favors CO₂ over other gasses. We have designed and synthesized an intrinsically microporous polybenzimidazole (iPBI) featuring a spirobisindane structure. Introducing a kinked moiety in conjunction with crosslinking enhanced the polymer properties, markedly increasing the gas separation performance. In particular, the BET surface area of PBI increased 30-fold by replacing a flat benzene ring with a kinked structure. iPBI displayed a good CO₂ uptake of 1.4 mmol g⁻¹ at 1 bar and 3.6 mmol g⁻¹ at 10 bar. Gas sorption uptake and breakthrough experiments were conducted using mixtures of CO₂/CH₄ (50%/50%) and CO₂/N₂ (50%/50%), which revealed the high selectivity of CO₂ over both CH₄ and N₂. The obtained CO₂/N₂ selectivity is attractive for power plant flue gas application requiring CO₂ capturing materials. Energy and process simulations of biogas CO₂ removal demonstrated that up to 70% of the capture energy could be saved when iPBI was used rather than the current amine technology (methyl diethanolamine [MDEA]). Similarly, the combination of iPBI and MDEA in a hybrid system exhibited the highest CO₂ capture yield (99%), resulting in nearly 50% energy saving. The concept of enhancing the porosity of PBI using kinked moieties provides new scope for designing highly porous polybenzimidazoles for various separation processes.

Keywords: polybenzimidazole (PBI), intrinsically microporous polybenzimidazole (iPBI), gas separation, pnergy and process simulations

Procedia PDF Downloads 62
118 Reduction of Transient Receptor Potential Vanilloid 1 for Chronic Pain and Depression Co-Morbidity through Electroacupuncture and Gene Deletion in Mice Brain

Authors: Bernice Lottering, Yi-Wen Lin

Abstract:

Chronic pain and depression have an estimated 80% rate of comorbidity with unsatisfactory treatment interventions signifying the importance of developing effective therapeutic interventions for a serious chronic condition affecting a large majority of the global population. Chronic pain is defined as persistent pain presenting for over 3 months. This disease state increases the risk of developing depression in comparison to healthy individuals. In the current study, complete Freund’s adjuvant (CFA) was used to induce cell-mediated chronic inflammatory pain in a murine model. Significant mechanical and thermal hyperalgesia was induced, alongside observable depression-like behaviors. These conditions were attenuated through the use of electroacupuncture (EA). Similarly, these effects were also investigated with respect to the transient receptor potential vanilloid 1 (TRPV1), by analyzing the effects of TRPV1 gene deletion on the comorbidity of chronic pain and depression. The expression of the TRPV1 inflammatory response, and related downstream molecules, including protein kinases (PKs), mitogen-activated protein kinase (MAPKs), and transcriptional factors, were significantly reduced in the thalamus, prefrontal cortex (PFC), hippocampus, and periaqueductal gray (PAG) of CFA-treated mice. In addition, phosphorylated N-methyl-D-aspartate (NMDA) receptor 1 was also found to be reduced in the aforementioned areas, suggesting potential application and validity in a clinical setting. Our study determined the prospective therapeutic effects of EA in the treatment of chronic inflammatory pain and depression comorbidity and provides a novel and detailed mechanism underlying EA-mediated analgesia. These findings may be relevant in the utilization of clinical intervention approaches related to chronic pain and depression comorbidity.

Keywords: chronic pain, depression, NMDA, prefrontal cortex, TRPV1

Procedia PDF Downloads 109
117 Impact of Ventilation Systems on Indoor Air Quality in Swedish Primary School Classrooms

Authors: Sarka Langer, Despoina Teli, Blanka Cabovska, Jan-Olof Dalenbäck, Lars Ekberg, Gabriel Bekö, Pawel Wargocki, Natalia Giraldo Vasquez

Abstract:

The aim of the study was to investigate the impact of various ventilation systems on indoor climate, air pollution, chemistry, and perception. Measurements of thermal environment and indoor air quality were performed in 45 primary school classrooms in Gothenburg, Sweden. The classrooms were grouped into three categories according to their ventilation system: category A) natural or exhaust ventilation or automated window opening; category B) balanced mechanical ventilation systems with constant air volume (CAV); and category C) balanced mechanical ventilation systems with variable air volume (VAV). A questionnaire survey about indoor air quality, perception of temperature, odour, noise and light, and sensation of well-being, alertness focus, etc., was distributed among the 10-12 years old children attending the classrooms. The results (medians) showed statistically significant differences between ventilation category A and categories B and C, but not between categories B and C in air change rates, median concentrations of carbon dioxide, individual volatile organic compounds formaldehyde and isoprene, in-door-to-outdoor ozone ratios and products of ozonolysis of squalene, a constituent of human skin oils, 6-methyl-5-hepten-2-one and decanal. Median ozone concentration, ozone loss -a difference between outdoor and indoor ozone concentrations- were different only between categories A and C. Median concentration of total VOCs and a perception index based on survey responses on perceptions and sensations indoors were not significantly different. In conclusion, ventilation systems have an impact on air change rates, indoor air quality, and chemistry, but the Swedish primary school children’s perception did not differ with the ventilation systems of the classrooms.

Keywords: indoor air pollutants, indoor climate, indoor chemistry, air change rate, perception

Procedia PDF Downloads 35
116 Study of Nanoclay Blends Based on PET/PEN Prepared by Reactive Extrusion

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour

Abstract:

A new route of preparation of compatible blends, based on poly(ethylene terephthalate)(PET)/poly(ethylenenaphthalene2,6-dicarboxylate) (PEN)/clay nanocomposites has been successfully performed in one step by reactive melt extrusion. To achieve this, untreated clay was first purified and functionalized “in situ” with a compound based on an organic peroxide/sulfur mixture and (tetra methyl thiuram disulfide) TMTD as accelerator or activator for sulfur. The PET and PEN materials were first mixed separately in the melt state with different amounts of functionalized clay. It was observed that the compositions PET/4 wt% clay and PEN/7.5 wt% clay showed total exfoliation. These completely exfoliated compositions, called nPET and nPEN, respectively, were used to prepare new nPET/nPEN nanoblends in the same mixing batch. The nPET/nPEN nanoblends were compared to neat blends of PET/PEN. The blends and the nanocomposites were characterized by different techniques: differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS). The micro and nanostructure/properties relationships were investigated. The results of the WAXS measurements study showed that the exfoliation of tetrahedral nanolayers of clay was complete and the octahedral structure disappeared totally. From the different WAXS patterns, it is seen that all samples are amorphous phase. The thermal study showed that there are only one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition. This indicated that both PET/PEN blends and nPET/nPEN blends were compatible in the entire range of compositions. In addition, nPET/nPEN blends present lower Tc values and higher Tm values than the corresponding neat PET/PEN blends. The obtained results indicate that nPET/nPEN blends are somewhat different from the pure ones in nanostructure and behavior, thus showing the additional effect of nanolayers. The present study allowed establishing good correlations between the different measured properties.

Keywords: PET, PEN, montmorillonite, nanocomposites, exfoliation, reactive melt-mixing

Procedia PDF Downloads 270
115 Lightweight Ceramics from Clay and Ground Corncobs

Authors: N.Quaranta, M. Caligaris, R. Varoli, A. Cristobal, M. Unsen, H. López

Abstract:

Corncobs are agricultural wastes and they can be used as fuel or as raw material in different industrial processes like cement manufacture, contaminant adsorption, chemical compound synthesis, etc. The aim of this work is to characterize this waste and analyze the feasibility of its use as a pore-forming material in the manufacture of lightweight ceramics for the civil construction industry. The characterization of raw materials is carried out by using various techniques: electron diffraction analysis X-ray, differential and gravimetric thermal analyses, FTIR spectroscopy, ecotoxicity evaluation, among others. The ground corncobs, particle size less than 2 mm, are mixed with clay up to 30% in volume and shaped by uniaxial pressure of 25 MPa, with 6% humidity, in moulds of 70mm x 40mm x 18mm. Then the green bodies are heat treated at 950°C for two hours following the treatment curves used in ceramic industry. The ceramic probes are characterized by several techniques: density, porosity and water absorption, permanent volumetric variation, loss on ignition, microscopies analysis, and mechanical properties. DTA-TGA analysis of corncobs shows in the range 20°-250°C a small loss in TGA curve and exothermic peaks at 250°-500°C. FTIR spectrum of the corncobs sample shows the characteristic pattern of this kind of organic matter with stretching vibration bands of adsorbed water, methyl groups, C–O and C–C bonds, and the complex form of the cellulose and hemicellulose glycosidic bonds. The obtained ceramic bodies present external good characteristics without loose edges and adequate properties for the market requirements. The porosity values of the sintered pieces are higher than those of the reference sample without waste addition. The results generally indicate that it is possible to use corncobs as porosity former in ceramic bodies without modifying the usual sintering temperatures employed in the industry.

Keywords: ceramic industry, biomass, recycling, hemicellulose glycosidic bonds

Procedia PDF Downloads 385
114 Identification of Body Fluid at the Crime Scene by DNA Methylation Markers for Use in Forensic Science

Authors: Shirin jalili, Hadi Shirzad, Mahasti Modarresi, Samaneh Nabavi, Somayeh Khanjani

Abstract:

Identifying the source tissue of biological material found at crime scenes can be very informative in a number of cases. Despite their usefulness, current visual, catalytic, enzymatic, and immunologic tests for presumptive and confirmatory tissue identification are applicable only to a subset of samples, might suffer limitations such as low specificity, lack of sensitivity, and are substantially impacted by environmental insults. In addition their results are operator-dependent. Recently the possibility of discriminating body fluids using mRNA expression differences in tissues has been described but lack of long term stability of that Molecule and the need to normalize samples for each individual are limiting factors. The use of DNA should solve these issues because of its long term stability and specificity to each body fluid. Cells in the human body have a unique epigenome, which includes differences in DNA methylation in the promoter of genes. DNA methylation, which occurs at the 5′-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers.The presence or absence of a methyl group on the 5’ carbon of the cytosine pyridine ring in CpG dinucleotide regions called ‘CpG islands’ dictates whether the gene is expressed or silenced in the particular body fluid. Were described methylation patterns at tissue specific differentially methylated regions (tDMRs) to be stable and specific, making them excellent markers for tissue identification. The results demonstrate that methylation-based tissue identification is more than a proof-of-concept. The methodology holds promise as another viable forensic DNA analysis tool for characterization of biological materials.

Keywords: DNA methylation, forensic science, epigenome, tDMRs

Procedia PDF Downloads 403
113 Ethyl Methane Sulfonate-Induced Dunaliella salina KU11 Mutants Affected for Growth Rate, Cell Accumulation and Biomass

Authors: Vongsathorn Ngampuak, Yutachai Chookaew, Wipawee Dejtisakdi

Abstract:

Dunaliella salina has great potential as a system for generating commercially valuable products, including beta-carotene, pharmaceuticals, and biofuels. Our goal is to improve this potential by enhancing growth rate and other properties of D. salina under optimal growth conditions. We used ethyl methane sulfonate (EMS) to generate random mutants in D. salina KU11, a strain classified in Thailand. In a preliminary experiment, we first treated D. salina cells with 0%, 0.8%, 1.0%, 1.2%, 1.44% and 1.66% EMS to generate a killing curve. After that, we randomly picked 30 candidates from approximately 300 isolated survivor colonies from the 1.44% EMS treatment (which permitted 30% survival) as an initial test of the mutant screen. Among the 30 survivor lines, we found that 2 strains (mutant #17 and #24) had significantly improved growth rates and cell number accumulation at stationary phase approximately up to 1.8 and 1.45 fold, respectively, 2 strains (mutant #6 and #23) had significantly decreased growth rates and cell number accumulation at stationary phase approximately down to 1.4 and 1.35 fold, respectively, while 26 of 30 lines had similar growth rates compared with the wild type control. We also analyzed cell size for each strain and found there was no significant difference comparing all mutants with the wild type. In addition, mutant #24 had shown an increase of biomass accumulation approximately 1.65 fold compared with the wild type strain on day 5 that was entering early stationary phase. From these preliminary results, it could be feasible to identify D. salina mutants with significant improved growth rate, cell accumulation and biomass production compared to the wild type for the further study; this makes it possible to improve this microorganism as a platform for biotechnology application.

Keywords: Dunaliella salina, ethyl methyl sulfonate, growth rate, biomass

Procedia PDF Downloads 213
112 Synthesis and Characterization of Cobalt Oxide and Cu-Doped Cobalt Oxide as Photocatalyst for Model Dye Degradation

Authors: Vrinda P. S. Borker

Abstract:

Major water pollutants are dyes from effluents of industries. Different methods have been tried to degrade or treat the effluent before it is left to the environment. In order to understand the degradation process and later apply it to effluents, solar degradation study of methylene blue (MB) and methyl red (MR), the model dyes was carried out in the presence of photo-catalysts, the oxides of cobalt oxide Co₃O₄, and copper doped cobalt oxides (Co₀.₉Cu₀.₁)₃O₄ and (Co₀.₉₅Cu₀.₀₅)₃O₄. They were prepared from oxalate complex and hydrazinated oxalate complex of cobalt as well as mix metals, copper, and cobalt. The complexes were synthesized and characterized by FTIR. Complexes were decomposed to form oxides and were characterized by XRD. They were found to be monophasic. Solar degradation of MR and MB was carried out in presence of these oxides in acidic and basic medium. Degradation was faster in alkaline medium in the presence of Co₃O₄ obtained from hydrazinated oxalate. Doping of nanomaterial oxides modifies their characteristics. Doped cobalt oxides are found to photo-decolourise MR in alkaline media efficiently. In the absence of photocatalyst, solar degradation of alkaline MR does not occur. In acidic medium, MR is minimally decolorized even in the presence of photocatalysts. The industrial textile effluent contains chemicals like NaCl and Na₂CO₃ along with the unabsorbed dye. It is reported that these two chemicals hamper the degradation of dye. The chemicals like K₂S₂O₈ and H₂O₂ are reported to enhance degradation. The solar degradation study of MB in presence of photocatalyst (Co₀.₉Cu₀.₁)₃O₄ and these four chemicals reveals that presence of K₂S₂O₈ and H₂O₂ enhances degradation. It proves that H₂O₂ generates hydroxyl ions required for degradation of dye and the sulphate anion radical being strong oxidant attacks dye molecules leading to its fragmentation rapidly. Thus addition of K₂S₂O₈ and H₂O₂ during solar degradation in presence of (Co₀.₉Cu₀.₁)₃O₄ helps to break the organic moiety efficiently.

Keywords: cobalt oxides, Cu-doped cobalt oxides, H₂O₂ in dye degradation, photo-catalyst, solar dye degradation

Procedia PDF Downloads 151
111 Identification of the Key Enzyme of Roseoflavin Biosynthesis

Authors: V. Konjik, J. Schwartz, R. Sandhoff, M. Mack

Abstract:

The rising number of multi-resistant pathogens demands the development of new antibiotics in order to reduce the lethal risk of infections. Here, we investigate roseoflavin, a vitamin B2 analogue which is produced by Streptomyces davawensis and Streptomyces cinnabarinus. We consider roseoflavin to be a 'Trojan horse' compound. Its chemical structure is very similar to riboflavin but in fact it is a toxin. Furthermore, it is a clever strategy with regard to the delivery of an antibiotic to its site of action but also with regard to the production of this chemical: The producer cell has only to convert a vitamin (which is already present in the cytoplasm) into a vitamin analog. Roseoflavin inhibits the activity of Flavin depending proteins, which makes up to 3.5 % of predicted proteins in organisms sequenced so far. We sequentially knocked out gene clusters and later on single genes in order to find the ones which are involved in the roseoflavin biosynthesis. Consequently, we identified the gene rosB, coding for the protein carrying out the first step of roseoflavin biosynthesis, starting form Flavin mononucleotide. Here we show, that the protein RosB has so far unknown features. It is per se an oxidoreductase, a decarboxylase and an aminotransferase, all rolled into one enzyme. A screen of cofactors revealed needs of oxygen, NAD+, thiamine and glutamic acid to carry out its function. Surprisingly, thiamine is not only needed for the decaboxylation step, but also for the oxidation of 8-demethyl-8-formyl Flavin mononucleotide. We had managed to isolate three different Flavin intermediates with different oxidation states, which gave us a mechanistic insight of RosB functionality. Our work points to a so far new function of thiamine in Streptomyces davawensis. Additionally, RosB could be extremely useful for chemical synthesis. Careful engineering of RosB may allow the site-specific replacement of methyl groups by amino groups in polyaromatic compounds of commercial interest. Finally, the complete clarification of the roseoflavin biosynthesis opens the possibility of engineering cost-effective roseoflavin producing strains.

Keywords: antibiotic, flavin analogue, roseoflavin biosynthesis, vitamin B2

Procedia PDF Downloads 218
110 Single-Molecule Optical Study of Cholesterol-Mediated Dimerization Process of EGFRs in Different Cell Lines

Authors: Chien Y. Lin, Jung Y. Huang, Leu-Wei Lo

Abstract:

A growing body of data reveals that the membrane cholesterol molecules can alter the signaling pathways of living cells. However, the understanding about how membrane cholesterol modulates receptor proteins is still lacking. Single-molecule tracking can effectively probe into the microscopic environments and thermal fluctuations of receptor proteins in a living cell. In this study we applies single-molecule optical tracking on ligand-induced dimerization process of EGFRs in the plasma membranes of two cancer cell lines (HeLa and A431) and one normal endothelial cell line (MCF12A). We tracked individual EGFR and dual receptors, diffusing in a correlated manner in the plasma membranes of live cells. We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to help extracting important information from single-molecule trajectories. From the study, we discovered that ligand-bound EGFRs move from non-raft areas into lipid raft domains. This ligand-induced motion is a common behavior in both cancer and normal cells. By manipulating the total amount of membrane cholesterol with methyl-β-cyclodextrin and the local concentration of membrane cholesterol with nystatin, we further found that the amount of cholesterol can affect the stability of EGFR dimers. The EGFR dimers in the plasma membrane of normal cells are more sensitive to the local concentration changes of cholesterol than EGFR dimers in the cancer cells. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.

Keywords: membrane proteins, single-molecule tracking, Cahn-Hilliard equation, EGFR dimers

Procedia PDF Downloads 388
109 Performance Study of Experimental Ferritic Alloy with High Content of Molybdenum in Corrosive Environment of Soybean Methyl Biodiesel

Authors: Maurício N. Kleinberg, Ana P. R. N. Barroso, Frederico R. Silva, Natasha l. Gomes, Rodrigo F. Guimarães, Marcelo M. V. Parente, Jackson Q. Malveira

Abstract:

Increased production of biofuels, especially biodiesel, as an option to replace the diesel derived from oil is already a reality in countries seeking a renewable and environmentally friendly fuel, as is the case in Brazil. However, it is known that the use of fuels, renewable or not, implies that it is in contact with various metallic materials which may cause corrosion. In the search for more corrosion resistant materials has been experimentally observed that the addition of molybdenum in ferritic steels increases their protective character without significantly burdening the cost of production. In order to evaluate the effect of adding molybdenum, samples of commercial steel (austenitic, ferritic and carbon steel) and the experimental ferritic alloy with a high molybdenum content (5.3%) were immersed separately into biodiesel derived from transesterification of soy oil to monitor the corrosion process of these metal samples, and in parallel to analyze the oxidative degradation of biodiesel itself. During the immersion time of 258 days, biodiesel samples were taken for analysis of acidity, kinematic viscosity, density and refraction. Likewise, the metal samples were taken from the biodiesel to be weighed and microstructurally analyzed by light microscopy. The results obtained at the end of 258 days shown that biodiesel presented a considerable increase on the values of the studied parameters for all the samples. However, this increase was not able to produce significant mass loss in metallic samples. As regards the microstructural analysis, it showed the onset of surface oxidation on the carbon steel sample. As for the other samples, no significant surface changes were shown. These results are consistent with literature for short immersion times. It is concluded that the increase in the values of the studied parameters is not significant yet, probably due to the low time of immersion and exposure of the samples. Thus, it is necessary to continue the tests so that the objectives of this work are achieved.

Keywords: biodiesel, corrosion, immersion, experimental alloy

Procedia PDF Downloads 418
108 Comparison of Process Slaughtered on Beef Cattle Based on Level of Cortisol and Fourier Transform Infrared Spectroscopy (FTIR)

Authors: Pudji Astuti, C. P. C. Putro, C. M. Airin, L. Sjahfirdi, S. Widiyanto, H. Maheshwari

Abstract:

Stress of slaughter animals starting long before until at the time of process of slaughtering which cause misery and decrease of meat quality. Meanwhile, determination of animal stress using hormonal such as cortisol is expensive and less practical so that portable stress indicator for cows based on Fourier Transform Infrared Spectroscopy (FTIR) must be provided. The aims of this research are to find out the comparison process of slaughter between Rope Casting Local (RCL) and Restraining Box Method (RBM) by measuring of cortisol and wavelength in FTIR methods. Thirty two of male Ongole crossbred cattle were used in this experiment. Blood sampling was taken from jugular vein when they were rested and repeated when slaughtered. All of blood samples were centrifuged at 3000 rpm for 20 minutes to get serum, and then divided into two parts for cortisol assayed using ELISA and for measuring the wavelength using FTIR. The serum then measured at the wavelength between 4000-400 cm-1 using MB3000 FTIR. Band data absorption in wavelength of FTIR is analyzed descriptively by using FTIR Horizon MBTM. For RCL, average of serum cortisol when the animals rested were 11.47 ± 4.88 ng/mL, when the time of slaughter were 23.27 ± 7.84 ng/mL. For RBM, level of cortisol when rested animals were 13.67 ± 3.41 ng/mL and 53.47 ± 20.25 ng/mL during the slaughter. Based on student t-Test, there were significantly different between RBM and RCL methods when beef cattle were slaughtered (P < 0.05), but no significantly different when animals were rested (P > 0.05). Result of FTIR with the various of wavelength such as methyl group (=CH3) 2986cm-1, methylene (=CH2) 2827 cm-1, hydroxyl (-OH) 3371 cm-1, carbonyl (ketones) (C=O) 1636 cm-1, carboxyl (COO-1) 1408 cm-1, glucosa 1057 cm-1, urea 1011 cm-1have been obtained. It can be concluded that the RCL slaughtered method is better than the RBM method based on the increase of cortisol as an indicator of stress in beef cattle (P<0.05). FTIR is really possible to be used as stub of stress tool due to differentiate of resting and slaughter condition by recognizing the increase of absorption and the separation of component group at the wavelength.

Keywords: cows, cortisol, FTIR, RBM, RCL, stress indicator

Procedia PDF Downloads 618
107 Development of Excellent Water-Repellent Coatings for Metallic and Ceramic Surfaces

Authors: Aditya Kumar

Abstract:

One of the most fascinating properties of various insects and plant surfaces in nature is their water-repellent (superhydrophobicity) capability. The nature offers new insights to learn and replicate the same in designing artificial superhydrophobic structures for a wide range of applications such as micro-fluidics, micro-electronics, textiles, self-cleaning surfaces, anti-corrosion, anti-fingerprint, oil/water separation, etc. In general, artificial superhydrophobic surfaces are synthesized by creating roughness and then treating the surface with low surface energy materials. In this work, various super-hydrophobic coatings on metallic surfaces (aluminum, steel, copper, steel mesh) were synthesized by chemical etching process using different etchants and fatty acid. Also, SiO2 nano/micro-particles embedded polyethylene, polystyrene, and poly(methyl methacrylate) superhydrophobic coatings were synthesized on glass substrates. Also, the effect of process parameters such as etching time, etchant concentration, and particle concentration on wettability was studied. To know the applications of the coatings, surface morphology, contact angle, self-cleaning, corrosion-resistance, and water-repellent characteristics were investigated at various conditions. Furthermore, durabilities of coatings were also studied by performing thermal, ultra-violet, and mechanical stability tests. The surface morphology confirms the creation of rough microstructures by chemical etching or by embedding particles, and the contact angle measurements reveal the superhydrophobic nature. Experimentally it is found that the coatings have excellent self-cleaning, anti-corrosion and water-repellent nature. These coatings also withstand mechanical disturbances such surface bending, adhesive peeling, and abrasion. Coatings are also found to be thermal and ultra-violet stable. Additionally, coatings are also reproducible. Hence aforesaid durable superhydrophobic surfaces have many potential industrial applications.

Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning

Procedia PDF Downloads 271
106 S. cerevisiae Strains Co-Cultured with Isochrysis Galbana Create Greater Biomass for Biofuel Production than Nannochloropsis sp.

Authors: Madhalasa Iyer

Abstract:

The increase in sustainable practices have encouraged the research and production of alternative fuels. New techniques of bio flocculation with the addition of yeast and bacteria strains have increased the efficiency of biofuel production. Fatty acid methyl ester (FAME) analysis in previous research has indicated that yeast can serve as a plausible enhancer for microalgal lipid production. The research hopes to identify the yeast and microalgae treatment group that produces the largest algae biomass. The mass of the dried algae is used as a proxy for TAG production correlating to the cultivation of biofuels. The study uses a model bioreactor created and built using PVC pipes, 8-port sprinkler system manifold, CO2 aquarium tank, and disposable water bottles to grow the microalgae. Nannochloropsis sp., and Isochrysis galbanawere inoculated separately in experimental group 1 and 2 with no treatments and in experimental groups 3 and 4 with each algaeco-cultured with Saccharomyces cerevisiae in the medium of standard garden stone fertilizer. S. cerevisiae was grown in a petri dish with nutrient agar medium before inoculation. A Secchi stick was used before extraction to collect data for the optical density of the microalgae. The biomass estimator was then used to measure the approximate production of biomass. The microalgae were grown and extracted with a french press to analyze secondary measurements using the dried biomass. The experimental units of Isochrysis galbana treated with the baker’s yeast strains showed an increase in the overall mass of the dried algae. S. cerevisiae proved to be an accurate and helpful addition to the solution to provide for the growth of algae. The increase in productivity of this fuel source legitimizes the possible replacement of non-renewable sources with more promising renewable alternatives. This research furthers the notion that yeast and mutants can be engineered to be employed in efficient biofuel creation.

Keywords: biofuel, co-culture, S. cerevisiae, microalgae, yeast

Procedia PDF Downloads 84
105 Multifunctional Plasmonic Ag-TiO2 Nano-biocompoistes: Surface Enhanced Raman Scattering and Anti-microbial Properties

Authors: Jai Prakash, Promod Kumar, Chantel Swart, J. H. Neethling, A. Janse van Vuuren, H. C. Swart

Abstract:

Ag nanoparticles (NPs) have been used as functional nanomaterials due to their optical and antibacterial properties. Similarly, TiO2 photocatalysts have also been used as suitable nanomaterials for killing cancer cells, viruses and bacteria. Here, we report on multifunctional plasmonic Ag-TiO2 nano-biocomposite synthesized by the sol-gel technique and their optical, surface enhanced Raman scattering (SERS) and antibacterial activities. The as-prepared composites of Ag–TiO2 with different silver content and TiO2 nanopowder were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersed X-ray analysis (EDX), UV-vis and Raman spectroscopy. The Ag NPs were found to be uniformly distributed and strongly attached to the TiO2 matrix. The novel optical response of the Ag-TiO2 nanocomposites is due to the strong electric field from the surface plasmon excitation of the Ag NPs. The Raman spectrum of Ag-TiO2 nanocomposite was found to be enhanced as compared to TiO2. The enhancement of the low frequency band is evident. This indicates the SERS effect of the TiO2 NPs in close vicinity of Ag NPs. In addition, nanocomposites showed enhancement in the SERS signals of methyl orange (MO) dye molecules with increasing Ag content. The localized electromagnetic field from the surface plasmon excitation of the Ag NPs was responsible for the SERS signals of the TiO2 NPs and MO molecules. The antimicrobial effect of the Ag–TiO2 nanocomposites with different silver content and TiO2 nanopowder were carried out against the bacterium Staphylococcus aureus. The Ag–TiO2 composites showed antibacterial activity towards S. aureus with increasing Ag content as compared to the TiO2 nanopowder. These results foresee promising applications of the functional plasmonic metal−semiconductor based nanobiocomposites for both chemical and biological samples.

Keywords: metal-Semiconductor, nano-Biocomposites, anti-microbial activity, surface enhanced Raman scattering

Procedia PDF Downloads 210
104 Tomato Endophytes Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B Exhibits Plant Growth-Promotion and Fusarium Wilt Suppression

Authors: Bandana Saikia, Ashok Bhattacharyya

Abstract:

Endophytic microbes and their metabolites positively impact overall plant health, which may have a potential implication in agriculture. In the present study, 177 bacterial endophytes and 57 fungal endophytes were isolated, with the highest recovery rate from tomato roots. A maximum of 112 endophytes were isolated during monsoon, followed by 64 isolates and 58 isolates isolated during pre-monsoon and post-monsoon periods, respectively, indicating the rich diversity in bacterial and fungal endophytes of tomato crops from different locations of Assam, India. Further, the endophytes were evaluated for their antagonistic potential against Fusarium oxysporum f. sp. lycopersici. Fungal endophytic isolate AAUTLF (Endophytic Fungi of Tomato Leaf from Assam Agricultural University, Assam, India area) and bacterial endophyte D1B (Endophytic bacteria of tomato from Dhemiji, India district) showed the highest antifungal activity against the pathogen both in vitro and in vivo. Based on 5.8 rDNA sequence analysis of fungal and 16S rDNA sequence of bacteria endophytes, the most effective fungal and bacterial isolates against FOL were identified as Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B, respectively. The isolates showed an antagonistic effect against Fusarium oxysporum f.sp. lycopersici in-vitro and reduced the disease index of Fusarium wilt in tomatoes by 64.4% under pot conditions. Trichoderma asperellum AAUTLF produced an antifungal compound viz., 6-pentyl-2H-pyran-2-one, which also possesses growth-promoting characteristics. The bacteria Stenotrophomonas maltophilia D1B produced antifungal compounds, including benzothiazole, oleic acid, phenylacetic acid, and 3-(Hydroxy-phenyl-methyl)-2,3-dimethyl-octan-4-one. This would be of high importance for the source of antagonistic strains and biocontrol of tomato Fusarium wilt, as well as other plant fungal diseases.

Keywords: root endophytes, Stemotrophomonas, Trichoderma, benzothiazole, 6-pentyl-2H-pyran-2-one

Procedia PDF Downloads 48
103 DNA Methylation Changes in Response to Ocean Acidification at the Time of Larval Metamorphosis in the Edible Oyster, Crassostrea hongkongensis

Authors: Yong-Kian Lim, Khan Cheung, Xin Dang, Steven Roberts, Xiaotong Wang, Vengatesen Thiyagarajan

Abstract:

Unprecedented rate of increased CO₂ level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g., some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors, including OA, can influence the addition and removal of methyl groups through epigenetic modification (e.g., DNA methylation) process to turn gene expression “on or off” as part of a rapid adaptive mechanism to cope with OA. In this study, the above hypothesis was tested through testing the effect of OA, using decreased pH 7.4 as a proxy, on the DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis, at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1; however, over one-third of the larvae raised at pH 7.4 failed to attach to an optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.

Keywords: adaptive plasticity, DNA methylation, larval metamorphosis, ocean acidification

Procedia PDF Downloads 114
102 Culturable Microbial Diversity and Adaptation Strategy in the Jutulsessen and Ahlmannryggen of Western Dronning Maud Land, Antarctica

Authors: Shiv Mohan Singh, Gwyneth Matcher

Abstract:

To understand the culturable microbial composition and diversity patterns, soil samples were collected from inland nunataks of Jutulsessen and Ahlmannryggen ranges in Dronning Maud Land, Antarctica. 16S rRNA, ITS and the D1/D2 domain sequencing techniques were used for characterization of microbial communities of these geographical areas. The total 37 species of bacteria such as Arthrobacter agilis, Acinetobacter baumannii, Arthrobacter flavus, Arthrobacter ginsengisoli, Arthrobacter oxydans, Arthrobacter oryzae, Arthrobacter polychromogenes, Arthrobacter sulfonivorans, Bacillus altitudinis, Bacillus cereus, Bacillus paramycoides, Brevundimonas vesicularis, Brachybacterium rhamnosum, Curtobacterium luteum, Dermacoccus nishinomiyaensis, Dietzia aerolata, Janibacter indicus, Knoellia subterranean, Kocuria palustris, Kytococcus aerolatus, Lysinibacillus sphaericus, Microbacterium phyllosphaerae, Micrococcus yunnanensis, Methylobacterium rhodesianum, Moraxella osloensis, Paracoccus acridae, Pontibacter amylolyticus, Pseudomonas hunanensis, Pseudarthrobacter siccitolerans, Pseudarthrobacter phenanthrenivorans, Rhodococcus aerolatus, Rhodococcus sovatensis, Sphingomonas daechungensis, Sphingomonas sanguinis, Stenotrophomonas pavanii, Staphylococcus gallinarum, Staphylococcus arlettae and 9 species of fungi such as Candida davisiana, Cosmospora arxii, Geomyces destructans, Lecanicillium muscarium, Memnoniella humicola, Paecilomyces lilacinus, Pseudogymnoascus verrucosus, Phaeophlebiopsis ignerii and Thyronectria caraganae were recorded. Fatty acid methyl esters (FAME) analyses of representative species of each genus have shown predominance branched and unsaturated fatty acids indicate its adaptation strategy in Antarctic cold environment. To the best of our knowledge, this is the first record of culturable bacterial communities from Jutulsessen and Ahlmannryggen ranges in Western Dronning Maud Land, Antarctica.

Keywords: antarctica, microbe, adaptation, polar

Procedia PDF Downloads 46
101 Yellow Necklacepod and Shih-Balady: Possible Promising Sources Against Human Coronaviruses

Authors: Howaida I. Abd-Alla, Omnia Kutkat, Yassmin Moatasim, Magda T. Ibrahim, Marwa A. Mostafa, Mohamed GabAllah, Mounir M. El-Safty

Abstract:

Artemisia judaica (known shih-balady), Azadirachta indica and Sophora tomentosa (known yellow necklace pod) are members of available medicinal plants well-known for their traditional medical use in Egypt which suggests that they probably harbor broad-spectrum antiviral, immunostimulatory and anti-inflammatory functions. Their ethyl acetate-dichloromethane (1:1, v/v) extracts were evaluated for the potential anti-Middle East respiratory syndrome-related coronavirus (anti-MERS-CoV) activity. Their cytotoxic activity was tested in Vero-E6 cells using 3-(4,-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method with minor modification. The plot of percentage cytotoxicity for each extract concentration has calculated the concentration which exhibited 50% cytotoxic concentration (TC50). A plaque reduction assay was employed using safe dose of extract to evaluate its effect on virus propagation. The highest inhibition percentage was recorded for the yellow necklace pod, followed by Shih-balady. The possible mode of action of virus inhibition was studied at three different levels viral replication, viral adsorption and virucidal activity. The necklace pod leaves have induced virucidal effects and direct effects on the replication of virus. Phytochemical investigation of the promising necklace pod led to the isolation and structure determination of nine compounds. The structure of each compound was determined by a variety of spectroscopic methods. Compounds 4-O-methyl sorbitol 1, 8-methoxy daidzin 6 and 6-methoxy apigenin-7-O-β-D-glucopyranoside 8 were isolated for the first time from the Sophora genus and the other six compounds were the first time that they were isolated from this species according to available works of literature. Generally, the highest anti-CoV 2 activity of S. tomentosa was associated with the crude ethanolic extract, indicating the possibility of synergy among the antiviral phytochemical constituents (1-9).

Keywords: coronavirus, MERS-CoV, mode of action, necklace pod, shih-balady

Procedia PDF Downloads 181
100 Comparison of 18F-FDG and 11C-Methionine PET-CT for Assessment of Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Carcinoma

Authors: Sonia Mahajan Dinesh, Anant Dinesh, Madhavi Tripathi, Vinod Kumar Ramteke, Rajnish Sharma, Anupam Mondal

Abstract:

Background: Neo-adjuvant chemotherapy plays an important role in treatment of breast cancer by decreasing the tumour load and it offers an opportunity to evaluate response of primary tumour to chemotherapy. Standard anatomical imaging modalities are unable to accurately reflect the response to chemotherapy until several cycles of drug treatment have been completed. Metabolic imaging using tracers like 18F-fluorodeoxyglucose (FDG) as a marker of glucose metabolism or amino acid tracers like L-methyl-11C methionine (MET) have potential role for the measurement of treatment response. In this study, our objective was to compare these two PET tracers for assessment of response to neoadjuvant chemotherapy, in locally advanced breast carcinoma. Methods: In our prospective study, 20 female patients with histology proven locally advanced breast carcinoma underwent PET-CT imaging using FDG and MET before and after three cycles of neoadjuvant chemotherapy (CAF regimen). Thereafter, all patients were taken for MRM and the resected specimen was sent for histo-pathological analysis. Tumour response to the neoadjuvant chemotherapy was evaluated by PET-CT imaging using PERCIST criteria and correlated with histological results. Responses calculated were compared for statistical significance using paired t- test. Results: Mean SUVmax for primary lesion in FDG PET and MET PET was 15.88±11.12 and 5.01±2.14 respectively (p<0.001) and for axillary lymph nodes was 7.61±7.31 and 2.75±2.27 respectively (p=0.001). Statistically significant response in primary tumour and axilla was noted on both FDG and MET PET after three cycles of NAC. Complete response in primary tumour was seen in only 1 patient in FDG and 7 patients in MET PET (p=0.001) whereas there was no histological complete resolution of tumor in any patient. Response to therapy in axillary nodes noted on both PET scans were similar (p=0.45) and correlated well with histological findings. Conclusions: For the primary breast tumour, FDG PET has a higher sensitivity and accuracy than MET PET and for axilla both have comparable sensitivity and specificity. FDG PET shows higher target to background ratios so response is better predicted for primary breast tumour and axilla. Also, FDG-PET is widely available and has the advantage of a whole body evaluation in one study.

Keywords: 11C-methionine, 18F-FDG, breast carcinoma, neoadjuvant chemotherapy

Procedia PDF Downloads 480
99 Comparison of Fatty Acids Composition of Three Commercial Fish Species Farmed in the Adriatic Sea

Authors: Jelka Pleadin, Greta Krešić, Tina Lešić, Ana Vulić, Renata Barić, Tanja Bogdanović, Dražen Oraić, Ana Legac, Snježana Zrnčić

Abstract:

Fish has been acknowledged as an integral component of a well-balanced diet, providing a healthy source of energy, high-quality proteins, vitamins, essential minerals and, especially, n-3 long-chain polyunsaturated fatty acids (n-3 LC PUFA), mainly eicosapentaenoic acid (20:5 n-3 EPA), and docosahexaenoicacid, (22:6 n-3 DHA), whose pleiotropic effects in terms of health promotion and disease prevention have been increasingly recognised. In this study, the fatty acids composition of three commercially important farmed fish species: sea bream (Sparus aurata), sea bass (Dicentrarchus labrax) and dentex (Dentex dentex) was investigated. In total, 60 fish samples were retrieved during 2015 (n = 30) and 2016 (n = 30) from different locations in the Adriatic Sea. Methyl esters of fatty acids were analysed using gas chromatography (GC) with flame ionization detection (FID). The results show that the most represented fatty acid in all three analysed species is oleic acid (C18:1n-9, OA), followed by linoleic acid (C18:2n-6, LA) and palmitic acid (C16:0, PA). Dentex was shown to have two to four times higher eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid content as compared to sea bream and sea bass. The recommended n-6/n-3 ratio was determined in all fish species but obtained results pointed to statistically significant differences (p < 0.05) in fatty acid composition among the analysed fish species and their potential as a dietary source of valuable fatty acids. Sea bass and sea bream had a significantly higher proportion of n-6 fatty acids, while dentex had a significantly higher proportion of n-3 (C18:4n-3, C20:4n-3, EPA, DHA) fatty acids. A higher hypocholesterolaemic and hypercholesterolaemic fatty acids (HH) ratio was determined for sea bass and sea bream, which comes as the consequence of a lower share of SFA determined in these two species in comparison to dentex. Since the analysed fish species vary in their fatty acids composition consumption of diverse fish species would be advisable. Based on the established lipid quality indicators, dentex, a fish species underutilised by the aquaculture, seems to be a highly recommendable and important source of fatty acids recommended to be included into the human diet.

Keywords: dentex, fatty acids, farmed fish, sea bass, sea bream

Procedia PDF Downloads 366
98 Hydroponic Cultivation Enhances the Morpho-Physiological Traits and Quality Flower Production in Tagetes patula L

Authors: Ujala, Diksha Sharma, Mahinder Partap, Ashish R. Warghat, Bhavya Bhargava

Abstract:

In soil-less agriculture, hydroponic is considered a potential farming system for the production of uniform quality plant material in significantly less time. Therefore, for the first time, the current investigation corroborates the effect of different cultivation conditions (open-field, poly-house, and hydroponic) on morpho-physiological traits, phenolic content, and essential oil components analysis in three flower color variants (yellow, scarlet red, and orange) of Tagetes patula. The results revealed that the maximum plant height, number of secondary branches, number of flowers, photosynthesis, stomatal conductance, and transpiration rate were observed under the hydroponic system as compared to other conditions. However, the maximum content of gallic acid (0.82 mg/g DW), syringic acid (3.98 mg/g DW), epicatechin (0.48 mg/g DW), p-coumaric acid (7.28 mg/g DW), protocatechuic acid (0.59 mg/g DW), ferulic acid (2.58 mg/g DW), and luteolin (8.24 mg/g DW) were quantified maximally under open-field conditions. However, under hydroponic conditions, the higher content of vanillic acid (0.43 mg/g DW), caffeic acid (0.49 mg/g DW), and quercetin (0.92 mg/g DW) were quantified. Moreover, a total of nineteen volatile components were identified in the essential oil of different flower color variants of T. patula cultivated under different conditions. The major reported volatile components in essential oil were (-)-caryophyllene oxide, trans-β-caryophyllene, trans-geraniol, 3 methyl-benzyl alcohol, and 2,2’:5’,2”-terthiophene. It has also been observed that the volatile component percentage range in all variants was observed in open-field (70.85 % to 90.54 %), poly-house (59.03 % to 77.93 %), and hydroponic (68.78 % to 89.41 %). In conclusion, the research highlighted that morpho-physiological performance with flower production was enhanced in the hydroponic system. However, phenolic content and volatile components were maximally observed in open-field conditions. However, significant results have been reported under hydroponic conditions in all studied parameters, so it could be a potential strategy for quality biomass production in T. patula.

Keywords: Tagetes patula, cultivation conditions, hydroponic, morpho-physiology

Procedia PDF Downloads 45
97 Hybrid Nanostructures of Acrylonitrile Copolymers

Authors: A. Sezai Sarac

Abstract:

Acrylonitrile (AN) copolymers with typical comonomers of vinyl acetate (VAc) or methyl acrylate (MA) exhibit better mechanical behaviors than its homopolymer. To increase processability of conjugated polymer, and to obtain a hybrid nano-structure multi-stepped emulsion polymerization was applied. Such products could be used in, i.e., drug-delivery systems, biosensors, gas-sensors, electronic compounds, etc. Incorporation of a number of flexible comonomers weakens the dipolar interactions among CN and thereby decreases melting point or increases decomposition temperatures of the PAN based copolymers. Hence, it is important to consider the effect of comonomer on the properties of PAN-based copolymers. Acrylonitrile vinylacetate (AN–VAc ) copolymers have the significant effect to their thermal behavior and are also of interest as precursors in the production of high strength carbon fibers. AN is copolymerized with one or two comonomers, particularly with vinyl acetate The copolymer of AN and VAc can be used either as a plastic (VAc > 15 wt %) or as microfibers (VAc < 15 wt %). AN provides the copolymer with good processability, electrochemical and thermal stability; VAc provides the mechanical stability. The free radical copolymerization of AN and VAc copolymer and core Shell structure of polyprrole composites,and nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends were recently studied. Free radical copolymerization of acrylonitrile (AN) – with different comonomers, i.e. acrylates, and styrene was realized using ammonium persulfate (APS) in the presence of a surfactant and in-situ polymerization of conjugated polymers was performed in this reaction medium to obtain core-shell nano particles. Nanofibers of such nanoparticles were obtained by electrospinning. Morphological properties of nanofibers are investigated by scanning electron microscopy (SEM) and atomic force spectroscopy (AFM). Nanofibers are characterized using Fourier Transform Infrared - Attenuated Total Reflectance spectrometer (FTIR-ATR), Nuclear Magnetic Resonance Spectroscopy (1H-NMR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), and Electrochemical Impedance Spectroscopy. The electrochemical Impedance results of the nanofibers were fitted to an equivalent curcuit by modelling (ECM).

Keywords: core shell nanoparticles, nanofibers, ascrylonitile copolymers, hybrid nanostructures

Procedia PDF Downloads 363
96 Effect of Nigella sativa on Blood Pressure, Vascular Reactivity, Inflammatory Biomarkers and Nitric Oxide in L-Name-Induced Hypertensive Rats

Authors: Kamsiah Jaarin, Yusof Kamisah, Faizah Othman Nurul Akmal Muhammad, Zakiah Jubri, Qodriyah Mohd Saad, Srijit Das

Abstract:

Forty (40) normotensive adult male Sprague-Dawley rats aged three months weighing 180-200 g were divided into 4 groups with 10 rats per group: (1) normotensive control; (2) hypertensive rats; (3) hypertensive rats treated with Nigella sativa (2.5 ml/kg/day); and (4) hypertensive rats treated with nicardipine (5 mg/kg/day). After acclimatization, the hypertensive rats of the group 2, 3 and 4 were induced to be hypertensive by giving NW–nitro-L-arginine methyl ester (L-NAME; 30 mg/kg/day) in their drinking water for consecutive 7 days. After one week, rats in the group 3 were given a daily oral dose of 2.5 ml/kg/day of Nigella sativa (NS) by oral gavage. Rats in the group 4 were given nicardipine (5 mg/kg/day) via oral gavages. All rats in this study received L-NAME continuously throughout the treatment duration. The blood pressure will be measured pre-treatment and weekly for 8 weeks using power lab. Blood was taken before and at the end of study for measurement of nitric oxide. At the end of 8 weeks, the rats are sacrificed and descending thoracic aorta was disserted for measurement of vascular reactivity, and intracellular adhesion molecules (ICAM-1) and vascular cell adhesion molecules (VCAM-1). Nigella sativa reduced both systolic and diastolic BP compared to control and L-name group. The BP lowering effect of NS was comparable to nicardipine a calcium antagonist. The blood pressure lowering effect of NS was accompanied with an increasing relaxation response to nitroprusside and acetylcholine and reducing vasoconstriction response to epinephrine. L-NAME and nicardipine on the other hand, reduced plasma nitric oxide concentration. In contrast, NS increased NO concentration. However, Nigella sativa had no significant effect on aortic VCAM- 1 and ICAM-1 expression. In conclusion; Nigella sativa oil reduces both systolic and diastolic blood pressure in L-NAME treated rats. The antihypertensive effect of NS was comparable to nicardipine. The BP lowering effect may be mediated via stimulating nitric oxide release from vascular endothelium.

Keywords: Nigella sativa, ICAM, VCAM, blood pressure, vascular reactivity

Procedia PDF Downloads 398