Search results for: material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6482

Search results for: material

6152 Development of Nanostructured Materials for the Elimination of Emerging Pollutants in Water through Adsorption Processes

Authors: J. Morillo, Otal E., A. Caballero, R. M. Pereñiguez, J. Usero

Abstract:

The present work shows in the first place, the manufacture of the perovskitic material used as adsorbent, by means of two different methods to obtain two types of perovskites (LaFeO₃ and BiFeO₃). The results of this work show the characteristics of this manufactured material, as well as the synthesis yields obtained, achieving a better result for the self-combustion synthesis. Secondly, from the manufactured perovskites, an adsorption system has been developed, at the laboratory level, for the adsorption of the emerging pollutants Trimethoprim, Ciprofloxacin and Ibuprofen.

Keywords: nanostructured materials, emerging pollutants, water, adsorption processes

Procedia PDF Downloads 119
6151 X-Ray Diffraction Technique as a Means for Degradation Assessment of Welded Joints

Authors: Jaroslav Fiala, Jaroslav Kaiser, Pavel Zlabek, Vaclav Mentl

Abstract:

The X-ray diffraction technique was recognized as a useful tool for the assessment of material degradation degree after a long-time service. In many industrial applications materials are subjected to degradation of mechanical properties as a result of real service conditions. The assessment of the remnant lifetime of components and structures is commonly based on correlated procedures including numerous destructive, non-destructive and mathematical techniques that should guarantee reasonable precise assessment of the current damage extent of materials in question and the remnant lifetime assessment. This paper summarizes results of an experimental programme concentrated on mechanical properties degradation of welded components. Steel an Al-alloy test specimens of base metal, containing welds and simple weldments were fatigue loaded at room temperature to obtain Woehler S-N curve. X-ray diffraction technique was applied to assess the degradation degree of material as a result of cyclic loading.

Keywords: fatigue loading, material degradation, steels, AL-alloys, X-ray diffraction

Procedia PDF Downloads 411
6150 Democratic Action as Insurgency: On Claude Lefort's Concept of the Political Regime

Authors: Lorenzo Buti

Abstract:

This paper investigates the nature of democratic action through a critical reading of Claude Lefort’s notion of the democratic ‘regime’. Lefort provides one of the most innovative accounts of the essential features of a democratic regime. According to him, democracy is a political regime that acknowledges the indeterminacy of a society and stages it as a contestation between competing political actors. As such, democracy provides the symbolic markers of society’s openness towards the future. However, despite their democratic features, the recent decades in late capitalist societies attest to a sense of the future becoming fixed and predetermined. This suggests that Lefort’s conception of democracy harbours a misunderstanding of the character and experience of democratic action. This paper examines this underlying tension in Lefort’s work. It claims that Lefort underestimates how a democratic regime, next to its symbolic function, also takes a materially constituted form with its particular dynamics of power relations. Lefort’s systematic dismissal of this material dimension for democratic action can lead to the contemporary paradoxical situation where democracy’s symbolic markers are upheld (free elections, public debate, dynamic between government and opposition in parliament,…) but the room for political decision-making is constrained due to a myriad of material constraints (e.g., market pressures, institutional inertias). The paper draws out the implications for the notion of democratic action. Contra Lefort, it argues that democratic action necessarily targets the material conditions that impede the capacity for decision-making on the basis of equality and liberty. This analysis shapes our understanding of democratic action in two ways. First, democratic action takes an asymmetrical, insurgent form, as a contestation of material power relations from below. Second, it reveals an ambivalent position vis-à-vis the political regime: democratic action is symbolically made possible by the democratic dispositive, but it contests the constituted form that the democratic regime takes.

Keywords: Claude Lefort, democratic action, material constitution, political regime

Procedia PDF Downloads 114
6149 INNPT Nano Particles Material Technology as Enhancement Technology for Biological WWTP Performance and Capacity

Authors: Medhat Gad

Abstract:

Wastewater treatment became a big issue in this decade due to shortage of water resources, growth of population and modern live requirements. Reuse of treated wastewater in industrial and agriculture sectors has a big demand to substitute the shortage of clean water supply as well as to save the eco system from dangerous pollutants in insufficient treated wastewater In last decades, most of wastewater treatment plants are built using primary or secondary biological treatment technology which almost does not provide enough treatment and removal of phosphorus and nitrogen. those plants which built ten to 15 years ago also now suffering from overflow which decrease the treatment efficiency of the plant. Discharging treated wastewater which contains phosphorus and nitrogen to water reservoirs and irrigation canals destroy ecosystem and aquatic life. Using chemical material to enhance treatment efficiency for domestic wastewater but it leads to huge amount of sludge which cost a lot of money. To enhance wastewater treatment, we used INNPT nano material which consists of calcium, aluminum and iron oxides and compounds plus silica, sodium and magnesium. INNPT nano material used with a dose of 100 mg/l to upgrade SBR treatment plant in Cairo Egypt -which has three treatment tanks each with a capacity of 2500 cubic meters per day - to tertiary treatment level by removing Phosphorus, Nitrogen and increase dissolved oxygen in final effluent. The results showed that the treatment retention time decreased from 9 hours in SBR system to one hour using INNPT nano material with improvement in effluent quality while increasing plant capacity to 20 k cubic meters per day. Nitrogen removal efficiency achieved 77%, while phosphorus removal efficiency achieved 90% and COD removal efficiency was 93% which all comply with tertiary treatment limits according to Egyptian law.

Keywords: INNPT technology, nanomaterial, tertiary wastewater treatment, capacity extending

Procedia PDF Downloads 129
6148 A Study of Shigeru Ban's Environmentally-Sensitive Design Approach

Authors: Duygu Merve Bulut, Fehime Yesim Gurani

Abstract:

The Japanese architect Shigeru Ban has succeeded in bringing a different understanding to the modern architectural design approach with both the material selection and the techniques he used while combining the material with the design. Ban, who reflects his respect to people and nature with his designs, has encouraged that design should be done with economic materials, easily accessible and understandable for everyone. Because of this, Ban has attracted attention and appreciated in the architectural world with his environmentally-sensitive design ideology and humanitarian projects. In order to understand Ban’s environmentally-sensitive design approach, with this article, Ban’s projects which have used natural materials; the projects of Ban’s Japenese Pavilion in Germany, Papertainer Museum in South Korea, Centre Pompidou-Metz in France and Cardboard Cathedral in New Zealand were examined and analyzed. In the following parts, 'paper tube' technology that creates awareness in architectural area, which developed and applied by Ban; has been examined in terms of building material and structure of sustainable space design. As a result of this review, Ban’s approach is evaluated in terms of its contribution to the understanding of sustainable design.

Keywords: ecological design, environmentally-sensitive design, paper tube, Shigeru Ban, sustainability

Procedia PDF Downloads 455
6147 The Effects of Agricultural Waste Compost Applications on Soil Properties

Authors: Ilker Sönmez, Mustafa Kaplan

Abstract:

The wastes that come out as a result of agricultural productions are disposed randomly and always by burning. Agricultural wastes have a great volume and agricultural wastes cause environmental pollution. Spent mushroom compost and cut flower carnation wastes have a serious potential in Turkey and especially in Antalya. One of the best evaluation methods of agricultural wastes is composting methods and so agricultural wastes transformed for a new product. In this study, agricultural wastes were evaluated the effects of compost and organic material on soil pH, EC, soil organic matter, and macro-micro nutrient contents of soil that it growth carnation. The effects of compost applications on soils were found to be statistically significant. Organic material applications have caused an increase in all physical and chemical parameters except for pH that pH decreased with compost added in soils. The best results among the compost applications were determined R1 compost that R1 compost included %75 Carnation Wastes + %25 Spent Mushroom Compost. The structural properties of soils can be improved with reusing of agricultural wastes by composting so it can be provided that decreasing the harmful effects of organic wastes on the environment.

Keywords: agricultural wastes, carnation wastes, composting, organic material, spent mushroom compost

Procedia PDF Downloads 353
6146 Mechanical Behaviour of Sisal Fibre Reinforced Cement Composites

Authors: M. Aruna

Abstract:

Emphasis on the advancement of new materials and technology has been there for the past few decades. The global development towards using cheap and durable materials from renewable resources contributes to sustainable development. An experimental investigation of mechanical behaviour of sisal fiber-reinforced concrete is reported for making a suitable building material in terms of reinforcement. Fibre reinforced composite is one such material, which has reformed the concept of high strength. Sisal fibres are abundantly available in the hot areas. The sisal fiber has emerged as a reinforcing material for concretes, used in civil structures. In this work, properties such as hardness and tensile strength of sisal fibre reinforced cement composites with 6, 12, 18, and 24% by weight of sisal fibres were assessed. Sisal fiber reinforced cement composite slabs with long sisal fibers were manufactured using a cast hand layup technique. Mechanical response was measured under tension. The high energy absorption capacity of the developed composite system was reflected in high toughness values under tension respectively.

Keywords: sisal fibre, fiber-reinforced concrete, mechanical behaviour, composite materials

Procedia PDF Downloads 228
6145 A Novel Technological Approach to Maintaining the Cold Chain during Transportation

Authors: Philip J. Purnell

Abstract:

Innovators propose to use the Internet of Things to solve the problem of maintaining the cold chain during the transport of biopharmaceutical products. Sending a data logger with refrigerated goods is only useful to inform the recipient of the goods that they have either breached the cold chain and are therefore potentially spoiled or that they have not breached it and are therefore assumed to be in good condition. Connecting the data logger to the Internet of Things means that the supply chain manager will be informed in real-time of the exact location and the precise temperature of the material at any point on earth. Readable using a simple online interface, the supply chain manager will watch the progress of their material on a Google map together with accurate and crucially real-time temperature readings. The data logger will also send alarms to the supply chain manager if a cold chain breach becomes imminent allowing them time to contact the transporter and restore the cold chain before the material is affected. This development is expected to save billions of dollars in wasted biologics that currently arrive either spoiled or in an unreliable condition.

Keywords: internet of things, cold chain, data logger, transportation

Procedia PDF Downloads 413
6144 Influence of the Quality Differences in the Same Type of Bitumen and Dosage Rate of Reclaimed Asphalt on Lifetime

Authors: Pahirangan Sivapatham, , Esser Barbara

Abstract:

The impacts of the asphalt mix design, the properties of aggregates and quality differences in the same type of bitumen, as well as the dosage rate of reclaimed asphalt on the relevant material parameter of the analytical pavement design method are not known. Due to that, in this study, the influence of the above mentioned characteristics on relevant material parameters has been determined and analyzed by means of the analytical pavement calculations method. Therefore, material parameters for several asphalt mixes for asphalt wearing course, asphalt binder course and asphalt base course have been determined. Thereby several bitumens of the same type from different producer’s have been used. In addition, asphalt base course materials with three different dosages of reclaimed asphalt have been produced and tested. As material parameter according to the German analytical pavement design guide(RDO Asphalt), the stiffness’s at different temperatures and fatigue behavior have been determined. The findings of asphalt base course materials produced with several pen graded bitumen from different producers and different dosages of reclaimed asphalt indicate the distinct impact on fatigue behaviors and mechanical properties. The calculated test results of the analytical pavement design method show significant differences in the lifetimes. The pavement design calculation is to carry out by means of the actual material parameter. The calculated lifetime of the asphalt base course materials differentiates by the factor 3.2. The determining test results of bitumen characteristics meet the requirement according to the German Standards. But, further investigations of bitumen in different aging conditions show significant differences in their quality. The fatigue behavior and stiffness of asphalt pavement improves with increasing dosage of reclaimed asphalt. Furthermore, the type of aggregates used shows no significant influences.

Keywords: reclaimed asphalt pavement, quality differences in the bitumen, life time calculation, Asphalt mix with RAP

Procedia PDF Downloads 155
6143 Experimental Research of Corrosion Resistance Desalination Plant Pipe According to Weld Overlay Layers

Authors: Ryu Wonjin, Choi Hyeok, Park Joonhong

Abstract:

Overlay welding for improving surface properties is a method of the surface treatments which improve surface properties of material by welding materials of alloy having corrosion resistance on the basic material surface. Overlay welding affects contents of chemical components and weld hardness from different parts by dilution of the lamination layer thickness, and it determines surface properties. Therefore, overlay welding has to take into account thickness of the lamination layers with the process. As a result in this study examined contents of Fe, weldability of the base metal and monel materials, hardness and surface flatness from different parts according to each the lamination layer parameters by overlay welding monel materials with corrosion resources to the base material of carbon steel. Through this, evaluated effect by the lamination layer parameters of welding and presented decision methods of the lamination layer parameters of the overlay welding by the purpose of use.

Keywords: clad pipe, lamination layer parameters, monel, overlay welding

Procedia PDF Downloads 238
6142 Landfill Failure Mobility Analysis: A Probabilistic Approach

Authors: Ali Jahanfar, Brajesh Dubey, Bahram Gharabaghi, Saber Bayat Movahed

Abstract:

Ever increasing population growth of major urban centers and environmental challenges in siting new landfills have resulted in a growing trend in design of mega-landfills some with extraordinary heights and dangerously steep slopes. Landfill failure mobility risk analysis is one of the most uncertain types of dynamic rheology models due to very large inherent variabilities in the heterogeneous solid waste material shear strength properties. The waste flow of three historic dumpsite and two landfill failures were back-analyzed using run-out modeling with DAN-W model. The travel distances of the waste flow during landfill failures were calculated approach by taking into account variability in material shear strength properties. The probability distribution function for shear strength properties of the waste material were grouped into four major classed based on waste material compaction (landfills versus dumpsites) and composition (high versus low quantity) of high shear strength waste materials such as wood, metal, plastic, paper and cardboard in the waste. This paper presents a probabilistic method for estimation of the spatial extent of waste avalanches, after a potential landfill failure, to create maps of vulnerability scores to inform property owners and residents of the level of the risk.

Keywords: landfill failure, waste flow, Voellmy rheology, friction coefficient, waste compaction and type

Procedia PDF Downloads 258
6141 Development of Thermal Regulating Textile Material Consisted of Macrocapsulated Phase Change Material

Authors: Surini Duthika Fernandopulle, Kalamba Arachchige Pramodya Wijesinghe

Abstract:

Macrocapsules containing phase change material (PCM) PEG4000 as core and Calcium Alginate as the shell was synthesized by in-situ polymerization process, and their suitability for textile applications was studied. PCM macro-capsules were sandwiched between two polyurethane foams at regular intervals, and the sandwiched foams were subsequently covered with 100% cotton woven fabrics. According to the mathematical modelling and calculations 46 capsules were required to provide cooling for a period of 2 hours at 56ºC, so a panel of 10 cm x 10 cm area with 25 parts (having 5 capsules in each for 9 parts are 16 parts spaced for air permeability) were effectively merged into one textile material without changing the textile's original properties. First, the available cooling techniques related to textiles were considered and the best cooling techniques suiting the Sri Lankan climatic conditions were selected using a survey conducted for Sri Lankan Public based on ASHRAE-55-2010 standard and it consisted of 19 questions under 3 sections categorized as general information, thermal comfort sensation and requirement of Personal Cooling Garments (PCG). The results indicated that during daytime, majority of respondents feel warm and during nighttime also majority have responded as slightly warm. The survey also revealed that around 85% of the respondents are willing to accept a PCG. The developed panels were characterized using Fourier-transform infrared spectroscopy (FTIR) and Thermogravimetric Analysis (TGA) tests and the findings from FTIR showed that the macrocapsules consisted of PEG 4000 as the core material and Calcium Alginate as the shell material and findings from TGA showed that the capsules had the average weight percentage for core with 61,9% and shell with 34,7%. After heating both control samples and samples incorporating PCM panels, it was discovered that only the temperature of the control sample increased after 56ºC, whereas the temperature of the sample incorporating PCM panels began to regulate the temperature at 56ºC, preventing a temperature increase beyond 56ºC.

Keywords: phase change materials, thermal regulation, textiles, macrocapsules

Procedia PDF Downloads 94
6140 Effect of Tool Size and Cavity Depth on Response Characteristics during Electric Discharge Machining on Superalloy Metal - An Experimental Investigation

Authors: Sudhanshu Kumar

Abstract:

Electrical discharge machining, also known as EDM, process is one of the most applicable machining process for removal of material in hard to machine materials like superalloy metals. EDM process utilizes electrical energy into sparks to erode the metals in presence of dielectric medium. In the present investigation, superalloy, Inconel 718 has been selected as workpiece and electrolytic copper as tool electrode. Attempt has been made to understand the effect of size of tool with varying cavity depth during drilling of hole through EDM process. In order to systematic investigate, tool size in terms of tool diameter and cavity depth along with other important electrical parameters namely, peak current, pulse-on time and servo voltage have been varied at three different values and the experiments has been designed using fractional factorial (Taguchi) method. Each experiment has been repeated twice under the same condition in order to understand the variability within the experiments. The effect of variations in parameters has been evaluated in terms of material removal rate, tool wear rate and surface roughness. Results revel that change in tool diameter during machining affects the response characteristics significantly. Larger tool diameter yielded 13% more material removal rate than smaller tool diameter. Analysis of the effect of variation in cavity depth is notable. There is no significant effect of cavity depth on material removal rate, tool wear rate and surface quality. This indicates that number of experiments can be performed to analyze other parameters effect even at smaller depth of cavity which can reduce the cost and time of experiments. Further, statistical analysis has been carried out to identify the interaction effect between parameters.

Keywords: EDM, Inconel 718, material removal rate, roughness, tool wear, tool size

Procedia PDF Downloads 176
6139 Research and Development of Methodology, Tools, Techniques and Methods to Analyze and Design Interface, Media, Pedagogy for Educational Topics to be Delivered via Mobile Technology

Authors: Shimaa Nagro, Russell Campion

Abstract:

Mobile devices are becoming ever more widely available, with growing functionality, and they are increasingly used as enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material's user interfaces for mobile devices is beset by many unresolved research problems such as those arising from constraints associated with mobile devices or from issues linked to effective learning. The proposed research aims to produce: (i) a method framework for the design and evaluation of educational material’s interfaces to be delivered on mobile devices, in multimedia form based on Human Computer Interaction strategies; and (ii) a software tool implemented as a fast-track alternative to use the method framework in full. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the method framework. The method framework is a framework to enable an educational designer to effectively and efficiently create educational multimedia interfaces to be used on mobile devices by following a particular methodology that contains practical and usable tools and techniques. It is a method framework that accepts any educational material in its final lesson plan and deals with this plan as a static element, it will not suggest any changes in any information given in the lesson plan but it will help the instructor to design his final lesson plan in a multimedia format to be presented in mobile devices.

Keywords: mobile learning, M-Learn, HCI, educational multimedia, interface design

Procedia PDF Downloads 341
6138 Optimization of Ultrasound Assisted Extraction of Polysaccharides from Plant Waste Materials: Selected Model Material is Hazelnut Skin

Authors: T. Yılmaz, Ş. Tavman

Abstract:

In this study, optimization of ultrasound assisted extraction (UAE) of hemicellulose based polysaccharides from plant waste material has been studied. Selected material is hazelnut skin. Extraction variables for the operation are extraction time, amplitude and application temperature. Optimum conditions have been evaluated depending on responses such as amount of wet crude polysaccharide, total carbohydrate content and dried sample. Pretreated hazelnut skin powders were used for the experiments. 10 grams of samples were suspended in 100 ml water in a jacketed vessel with additional magnetic stirring. Mixture was sonicated by immersing ultrasonic probe processor. After the extraction procedures, ethanol soluble and insoluble sides were separated for further examinations. The obtained experimental data were analyzed by analysis of variance (ANOVA). Second order polynomial models were developed using multiple regression analysis. The individual and interactive effects of applied variables were evaluated by Box Behnken Design. The models developed from the experimental design were predictive and good fit with the experimental data with high correlation coefficient value (R2 more than 0.95). Extracted polysaccharides from hazelnut skin are assumed to be pectic polysaccharides according to the literature survey of Fourier Transform Spectrometry (FTIR) analysis results. No more change can be observed between spectrums of different sonication times. Application of UAE at optimized condition has an important effect on extraction of hemicellulose from plant material by satisfying partial hydrolysis to break the bounds with other components in plant cell wall material. This effect can be summarized by varied intensity of microjets and microstreaming at varied sonication conditions.

Keywords: hazelnut skin, optimization, polysaccharide, ultrasound assisted extraction

Procedia PDF Downloads 304
6137 NaCl Erosion-Corrosion of Mild Steel under Submerged Impingement Jet

Authors: M. Sadique, S. Ainane, Y. F. Yap, P. Rostron, E. Al Hajri

Abstract:

The presence of sand in production lines in the oil and gas industries causes material degradation due to erosion-corrosion. The material degradation caused by erosion-corrosion in pipelines can result in a high cost of monitoring and maintenance and in major accidents. The process of erosion-corrosion consists of erosion, corrosion, and their interactions. Investigating and understanding how the erosion-corrosion process affects the degradation process in certain materials will allow for a reduction in economic loss and help prevent accidents. In this study, material loss due to erosion-corrosion of mild steel under impingement of sand-laden water at 90˚ impingement angle is investigated using a submerged impingement jet (SIJ) test. In particular, effects of jet velocity and sand loading on TWL due to erosion-corrosion, weight loss due to pure erosion and erosion-corrosion interactions, at a temperature of 29-33 °C in sea water environment (3.5% NaCl), are analyzed. The results show that the velocity and sand loading have a great influence on the removal of materials, and erosion is more dominant under all conditions studied. Changes in the surface characteristics of the specimen after impingement test are also discussed.

Keywords: erosion-corrosion, flow velocity, jet impingement, sand loading

Procedia PDF Downloads 242
6136 Review on the Role of Sustainability Techniques in Development of Green Building

Authors: Ubaid Ur Rahman, Waqar Younas, Sooraj Kumar Chhabira

Abstract:

Environmentally sustainable building construction has experienced significant growth during the past 10 years at international level. This paper shows that the conceptual framework adopts sustainability techniques in construction to develop environment friendly building called green building. Waste occurs during the different construction phases which causes the environmental problems like, deposition of waste on ground surface creates major problems such as bad smell. It also gives birth to different health diseases and produces toxic waste agent which is specifically responsible for making soil infertile. Old recycled building material is used in the construction of new building. Sustainable construction is economical and saves energy sources. Sustainable construction is the major responsibility of designer and project manager. The designer has to fulfil the client demands while keeping the design environment friendly. Project manager has to deliver and execute sustainable construction according to sustainable design. Steel is the most appropriate sustainable construction material. It is more durable and easily recyclable. Steel occupies less area and has more tensile and compressive strength than concrete, making it a better option for sustainable construction as compared to other building materials. New technology like green roof has made the environment pleasant, and has reduced the construction cost. It minimizes economic, social and environmental issues. This paper presents an overview of research related to the material use of green building and by using this research recommendation are made which can be followed in the construction industry. In this paper, we go through detailed analysis on construction material. By making suitable adjustments to project management practices it is shown that a green building improves the cost efficiency of the project, makes it environmental friendly and also meets future generation demands.

Keywords: sustainable construction, green building, recycled waste material, environment

Procedia PDF Downloads 210
6135 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material

Authors: Sukhbir Singh

Abstract:

This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.

Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector

Procedia PDF Downloads 92
6134 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium

Authors: Nidhal Jamia, Sami El-Borgi

Abstract:

In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.

Keywords: functionally graded piezoelectric material (FGPM), mixed-mode crack, non-local theory, Schmidt method

Procedia PDF Downloads 280
6133 Active-Material Variation Analysis of a Lithium-Ion Battery

Authors: Muhammad Husnat Khalid, Stephan Bihn, Dirk Uwe Sauer, Nisai Fuengwarodsakul

Abstract:

To combat the effects of climate change, lithium-ion batteries are getting a lot of attention for energy storage. However, due to its diverse range of applications extending from small electronics equipment to energy storage systems, its output requirements, as well as limitations, vary significantly. Many efforts are underway to increase the power and energy output of the cells without any significant compromise on their size and weight. In this paper, different active materials are explored for an existing cell Kokam that initially has graphite as anode and NCO as cathode material. The Pareto front optimization tool is then utilized to pick a cell that gives the optimum results in terms of energy, power, or both. The parameter variation of the cells is done in the MATLAB application ISEA Cell and Pack Database (ICPD) created by the Institute of Power Electronics and Electrical Drives (ISEA) RWTH Aachen, University that creates the physical-chemical model of the existing cells.

Keywords: battery storage system, lithium-ion battery, active material variation, cell design optimization

Procedia PDF Downloads 64
6132 Field Application of Reduced Crude Conversion Spent Lime

Authors: Brian H. Marsh, John H. Grove

Abstract:

Gypsum is being applied to ameliorate subsoil acidity and to overcome the problem of very slow lime movement from surface lime applications. Reduced Crude Conversion Spent Lime (RCCSL) containing anhydrite was evaluated for use as a liming material with specific consideration given to the movement of sulfate into the acid subsoil. Agricultural lime and RCCSL were applied at 0, 0.5, 1.0, and 1.5 times the lime requirement of 6.72 Mg ha-1 to an acid Trappist silt loam (Typic Hapuldult). Corn [Zea mays (L.)]was grown following lime material application and soybean [Glycine max (L.) Merr.]was grown in the second year. Soil pH increased rapidly with the addition of the RCCSL material. Over time there was no difference in soil pH between the materials but there was with increasing rate. None of the observed changes in plant nutrient concentration had an impact on yield. Grain yield was higher for the RCCSL amended treatments in the first year but not in the second. There was a significant increase in soybean grain yield from the full lime requirement treatments over no lime.

Keywords: soil acidity, corn, soybean, liming materials

Procedia PDF Downloads 323
6131 Synthesis and Properties of Photocured Surface Modified Polyaniline Hybrid Composites

Authors: Asli Beyler Çi̇ği̇l, Memet Vezi̇r Kahraman

Abstract:

Organic–inorganic hybrids have become an effective source of advanced materials because they combine the advantages of both the organic moiety such as flexibility, low dielectric constant, and processability, and inorganic moiety as rigidity, strength, durability, and thermal stability. By incorporating cross-linkable side chains, the hybrid materials can be made photosensitive and UV curable, which offers many advantages including low processing temperature, low equipment cost and compatibility. In this study, uv-curable organic-inorganic hybrid material, which was contained surface modified polyaniline particles (PANI), was prepared. PANI surface photografted with hydroxy ethyl methacrylate (HEMA) to produce hydroxyl groups. Hydroxyl functionalized PANI/HEMA was acrylated using isocyanato ethyl methacrylate (IEM) in order to improve the dispersion and interfacial interaction in composites. UV-curable formulation was prepared by mixing the surface modified PANI, polyethylene glycol diacrylate (PEGDA), trimethylolpropane triacrylate (TMPTA), hydrolized 3- methacryloxypropyltrimethoxysilane (hyd. MEMO) and photoinitiator. Chemical structure of nano-hybrid material was characterized by FTIR. FTIR spectra showed that the photografting of PANI was prepared successfully. Thermal properties of the nano-hybrid material were determined by thermogravimetric analysis (TGA). The morphology of the nano-hybrid material was performed by scanning electron microscopy (SEM).

Keywords: polyaniline, photograft, sol-gel, uv-curable polymer

Procedia PDF Downloads 268
6130 Real-Time Scheduling and Control of Supply Chain Networks: Challenges and Graph-Based Solution Approach

Authors: Jens Ehm

Abstract:

Manufacturing in supply chains requires an efficient organisation of production and transport processes in order to guarantee the supply of all partners within the chain with the material that is needed for the reliable fulfilment of tasks. If one partner is not able to supply products for a certain period, these products might be missing as the working material for the customer to perform the next manufacturing step, potentially as supply for further manufacturing steps. This way, local disruptions can influence the whole supply chain. In order to avoid material shortages, an efficient scheduling of tasks is necessary. However, the occurrence of unexpected disruptions cannot be eliminated, so that a modification of the schedule should be arranged as fast as possible. This paper discusses the challenges for the implementation of real-time scheduling and control methods and presents a graph-based approach that enables the integrated scheduling of production and transport processes for multiple supply chain partners and offers the potential for quick adaptations to parts of the initial schedule.

Keywords: production, logistics, integrated scheduling, real-time scheduling

Procedia PDF Downloads 344
6129 A Novel Cold Asphalt Concrete Mixture for Heavily Trafficked Binder Course

Authors: Anmar Dulaimi, Hassan Al Nageim, Felicite Ruddock, Linda Seton

Abstract:

Cold bituminous asphalt mixture (CBEM) provide a sustainable, cost effective and energy efficiency alternative to traditional hot mixtures. However, these mixtures have a comparatively low initial strength and as it is considered as evolutionary materials, mainly in the early life where the initial cohesion is low and builds up slowly. On the other hand, asphalt concrete is, by far, the most common mixtures in use as binder course and base in road pavement in the UK having a continuous grade offer a good aggregate interlock results in this material having very good load-spreading properties as well as a high resistance to permanent deformation. This study aims at developing a novel fast curing cold asphalt concrete binder course mixtures by using Ordinary Portland Cement (OPC) as a replacement to conventional mineral filler (0%-100%) while new by-product material (LJMU-A2) was used as a supplementary cementitious material. With this purpose, cold asphalt concrete binder course mixtures with cationic emulsions were studied by means of stiffness modulus whereas water sensitivity was approved by assessing the stiffness modulus ratio before and after sample conditioning. The results indicate that a substantial enhancement in the stiffness modulus and a considerable improvement of water sensitivity resistance by adding of LJMU-A2 to the cold asphalt mixtures as a supplementary cementitious material. Moreover, the addition of LJMU-A2 to those mixtures leads to stiffness modulus after 2- day curing comparable to those obtained with Portland cement after 7-day curing.

Keywords: cold mix asphalt, binder course, cement, stiffness modulus, water sensitivity

Procedia PDF Downloads 280
6128 The Effect of Mgo and Rubber Nanofillers on Electrical Treeing Characteristic of XLPE Based Nanocomposites

Authors: Nur Amira nor Arifin, Tashia Marie Anthony, Mohd Ruzlin Mokhtar, Huzainie Shafi Abd Halim

Abstract:

Cross-linked polyethylene (XLPE) material is being used as the cable insulation for the past decades due to its higher working temperature of 90 ˚C and some other advantages. However, the use of XLPE as an insulating material for underground distribution cables may have subjected to the unforeseeable weather and uncontrollable environmental condition. These unfavorable condition when combine with high electric field may lead to the initiation and growth of water tree in XLPE insulation. There are several studies on numerous nanofillers incorporate into polymer matrix to hinder the growth of tree propagation. Hence, in this study aims to investigate the effect of MgO and rubber nanofillers at different concentration on the electrical tree of XLPE. The nanofillers and XLPE were mixed and later extruded. After extrusion, the material were then fabricated into the desired shape for experimental purposes. The result shows that the electrical tree propagation of XLPE filled with optimize concentration of nanofillers were much slower compared to pure XLPE. In this paper, the effect of nanofillers towards electrical treeing characteristic will be discussed.

Keywords: electrical trees, nanofillers, polymer nanocomposites, XLPE

Procedia PDF Downloads 109
6127 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans

Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti

Abstract:

There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.

Keywords: cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material

Procedia PDF Downloads 102
6126 The Effects of Spatial Dimensions and Relocation and Dimensions of Sound Absorbers in a Space on the Objective Parameters of Sound

Authors: Mustafa Kavraz

Abstract:

This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes. This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes.

Keywords: sound absorber, room model, objective parameters of sound, jnd

Procedia PDF Downloads 352
6125 Heat Forging Analysis Method on Blank Consist of Two Metals

Authors: Takashi Ueda, Shinichi Enoki

Abstract:

Forging parts is used to automobiles. Because they have high strength and it is possible to press them into complicated shape. When it is possible to manufacture hollow forging parts, it leads to reduce weight of the automobiles. But, hollow forging parts are confined to axisymmetrical shape. Hollow forging parts that were pressed to complicated shape are expected. Therefore, we forge a blank that aluminum alloy was inserted in stainless steel. After that, we can provide complex forging parts that are reduced weight, if it is possible to be melted the aluminum alloy away by using different of melting points. It is necessary to establish heat forging analysis method on blank consist of stainless steel and aluminum alloy. Because, this forging is different from conventional forging and this technology is not confirmed. In this study, we compared forging experiment with numerical analysis on the view point of forming load and shape after forming and establish how to set the material temperatures of two metals and material property of stainless steel on the analysis method. Consequently, temperature difference of stainless steel and aluminum alloy was obtained by experiment. We got material property of stainless steel on forging experimental by compression tests. We had compared numerical analysis that was used the temperature difference of two metals and the material property of stainless steel on forging experimental with forging experiment. Forging analysis method on blank consist of two metals was established by result of numerical analysis having agreed with result of forging experiment.

Keywords: forging, lightweight, analysis, hollow

Procedia PDF Downloads 386
6124 Evaluation of Modulus of Elasticity by Non-Destructive Method of Hybrid Fiber Reinforced Concrete

Authors: Erjola Reufi, Thomas Beer

Abstract:

Plain, unreinforced concrete is a brittle material, with a low tensile strength, limited ductility and little resistance to cracking. In order to improve the inherent tensile strength of concrete there is a need of multi directional and closely spaced reinforcement, which can be provided in the form of randomly distributed fibers. Fiber reinforced concrete (FRC) is a composite material consisting of cement, sand, coarse aggregate, water and fibers. In this composite material, short discrete fibers are randomly distributed throughout the concrete mass. The behavioral efficiency of this composite material is far superior to that of plain concrete and many other construction materials of equal cost. The present experimental study considers the effect of steel fibers and polypropylene fiber on the modulus of elasticity of concrete. Hook end steel fibers of length 5 cm and 3 cm at volume fraction of 0.25%, 0.5% and 1.% were used. Also polypropylene fiber of length 12, 6, 3 mm at volume fraction 0.1, 0.25, and 0.4 % were used. Fifteen mixtures has been prepared to evaluate the effect of fiber on modulus of elasticity of concrete. Ultrasonic pulse velocity (UPV) and resonant frequency methods which are two non-destructive testing techniques have been used to measure the elastic properties of fiber reinforced concrete. This study found that ultrasonic wave propagation is the most reliable, easy and cost effective testing technique to use in the determination of the elastic properties of the FRC mix used in this study.

Keywords: fiber reinforced concrete(FRC), polypropylene fiber, resonance, ultrasonic pulse velocity, steel fiber

Procedia PDF Downloads 271
6123 Coil-Over Shock Absorbers Compared to Inherent Material Damping

Authors: Carina Emminger, Umut D. Cakmak, Evrim Burkut, Rene Preuer, Ingrid Graz, Zoltan Major

Abstract:

Damping accompanies us daily in everyday life and is used to protect (e.g., in shoes) and make our life more comfortable (damping of unwanted motion) and calm (noise reduction). In general, damping is the absorption of energy which is either stored in the material (vibration isolation systems) or changed into heat (vibration absorbers). In case of the last, the damping mechanism can be split in active, passive, as well as semi-active (a combination of active and passive). Active damping is required to enable an almost perfect damping over the whole application range and is used, for instance, in sport cars. In contrast, passive damping is a response of the material due to external loading. Consequently, the material composition has a huge influence on the damping behavior. For elastomers, the material behavior is inherent viscoelastic, temperature, and frequency dependent. However, passive damping is not adjustable during application. Therefore, it is of importance to understand the fundamental viscoelastic behavior and the dissipation capability due to external loading. The objective of this work is to assess the limitation and applicability of viscoelastic material damping for applications in which currently coil-over shock absorbers are utilized. Coil-over shock absorbers are usually made of various mechanical parts and incorporate fluids within the damper. These shock absorbers are well-known and studied in the industry, and when needed, they can be easily adjusted during their product lifetime. In contrary, dampers made of – ideally – a single material are more resource efficient, have an easier serviceability, and are easier manufactured. However, they lack of adaptability and adjustability in service. Therefore, a case study with a remote-controlled sport car was conducted. The original shock absorbers were redesigned, and the spring-dashpot system was replaced by both an elastomer and a thermoplastic-elastomer, respectively. Here, five different formulations of elastomers were used, including a pure and an iron-particle filled thermoplastic poly(urethan) (TPU) and blends of two different poly(dimethyl siloxane) (PDMS). In addition, the TPUs were investigated as full and hollow dampers to investigate the difference between solid and structured material. To get comparative results each material formulation was comprehensively characterized, by monotonic uniaxial compression tests, dynamic thermomechanical analysis (DTMA), and rebound resilience. Moreover, the new material-based shock absorbers were compared with spring-dashpot shock absorbers. The shock absorbers were analyzed under monotonic and cyclic loading. In addition, an impact loading was applied on the remote-controlled car to measure the damping properties in operation. A servo-hydraulic high-speed linear actuator was utilized to apply the loads. The acceleration of the car and the displacement of specific measurement points were recorded while testing by a sensor and high-speed camera, respectively. The results prove that elastomers are suitable in damping applications, but they are temperature and frequency dependent. This is a limitation in applicability of viscous material damper. Feasible fields of application may be in the case of micromobility, like bicycles, e-scooters, and e-skateboards. Furthermore, the viscous material damping could be used to increase the inherent damping of a whole structure, e.g., in bicycle-frames.

Keywords: damper structures, material damping, PDMS, TPU

Procedia PDF Downloads 88