Search results for: map labeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 155

Search results for: map labeling

155 Characteristics and Feature Analysis of PCF Labeling among Construction Materials

Authors: Sung-mo Seo, Chang-u Chae

Abstract:

The Product Carbon Footprint Labeling has been run for more than four years by the Ministry of Environment and there are number of products labeled by KEITI, as for declaring products with their carbon emission during life cycle stages. There are several categories for certifying products by the characteristics of usage. Building products which are applied to a building as combined components. In this paper, current status of PCF labeling has been compared with LCI DB for data composition. By this comparative analysis, we suggest carbon labeling development.

Keywords: carbon labeling, LCI DB, building materials, life cycle assessment

Procedia PDF Downloads 421
154 Employee Aggression, Labeling and Emotional Intelligence

Authors: Martin Popescu D. Dana Maria

Abstract:

The aims of this research are to broaden the study on the relationship between emotional intelligence and counterproductive work behavior (CWB). The study sample consisted in 441 Romanian employees from companies all over the country. Data has been collected through web surveys and processed with SPSS. The results indicated an average correlation between the two constructs and their sub variables, employees with a high level of emotional intelligence tend to be less aggressive. In addition, labeling was considered an individual difference which has the power to influence the level of employee aggression. A regression model was used to underline the importance of emotional intelligence together with labeling as predictors of CWB. Results have shown that this regression model enforces the assumption that labeling and emotional intelligence, taken together, predict CWB. Employees, who label themselves as victims and have a low degree of emotional intelligence, have a higher level of CWB.

Keywords: aggression, CWB, emotional intelligence, labeling

Procedia PDF Downloads 473
153 The Role of Food Labeling on Consumers’ Buying Decision: Georgian Case

Authors: Nugzar Todua

Abstract:

The paper studies the role of food labeling in order to promote healthy eating issue in Georgia. The main focus of the research is directed to consumer attitudes regarding food labeling. The methodology of the paper is based on the focus group work, as well as online and face to face surveys. The data analysis has been provided through ANOVA. The study proves that the impact of variables such as the interest, awareness, reliability, assurance and satisfaction of consumers' on buying decision, is statistically important. The study reveals that consumers’ perception regarding to food labeling is positive, but their level of knowledge and ability is rather low. It is urgent to strengthen marketing promotions strategies in the process of implementations of food security policy in Georgia.

Keywords: food labeling, buying decision, Georgian consumers, marketing research

Procedia PDF Downloads 164
152 A Supervised Face Parts Labeling Framework

Authors: Khalil Khan, Ikram Syed, Muhammad Ehsan Mazhar, Iran Uddin, Nasir Ahmad

Abstract:

Face parts labeling is the process of assigning class labels to each face part. A face parts labeling method (FPL) which divides a given image into its constitutes parts is proposed in this paper. A database FaceD consisting of 564 images is labeled with hand and make publically available. A supervised learning model is built through extraction of features from the training data. The testing phase is performed with two semantic segmentation methods, i.e., pixel and super-pixel based segmentation. In pixel-based segmentation class label is provided to each pixel individually. In super-pixel based method class label is assigned to super-pixel only – as a result, the same class label is given to all pixels inside a super-pixel. Pixel labeling accuracy reported with pixel and super-pixel based methods is 97.68 % and 93.45% respectively.

Keywords: face labeling, semantic segmentation, classification, face segmentation

Procedia PDF Downloads 255
151 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: computer vision, deep learning, object detection, semiconductor

Procedia PDF Downloads 136
150 An Algorithm for the Map Labeling Problem with Two Kinds of Priorities

Authors: Noboru Abe, Yoshinori Amai, Toshinori Nakatake, Sumio Masuda, Kazuaki Yamaguchi

Abstract:

We consider the problem of placing labels of the points on a plane. For each point, its position, the size of its label and a priority are given. Moreover, several candidates of its label positions are prespecified, and each of such label positions is assigned a priority. The objective of our problem is to maximize the total sum of priorities of placed labels and their points. By refining a labeling algorithm that can use these priorities, we propose a new heuristic algorithm which is more suitable for treating the assigned priorities.

Keywords: map labeling, greedy algorithm, heuristic algorithm, priority

Procedia PDF Downloads 433
149 The Impact of Implementing European Quality Labeling System on the Supply Chain Performance of Food Industry: An Empirical Study of the Egyptian Traditional Food Sector

Authors: Nourhan A. Saad, Sara Elgazzar, Gehan Saleh

Abstract:

The food industry nowadays is becoming customer-oriented and needs faster response time to deal with food incidents. There is a deep need for good traceability systems to help the supply chain (SC) partners to minimize production and distribution of unsafe or poor quality products, which in turn will enhance the food SC performance. The current food labeling systems implemented in developing countries cannot guarantee that food is authentic, safe and of good quality. Therefore, the use of origin labels, mainly the geographical indications (GIs), allows SC partners to define quality standards and defend their products' reputation. According to our knowledge there are no studies discussed the use of GIs in developing countries. This research represents a research schema about the implementation of European quality labeling system in developing countries and its impact on enhancing SC performance. An empirical study was conducted on the Egyptian traditional food sector based on a sample of seven restaurants implementing the Med-diet labeling system. First, in-depth interviews were carried out to analyze the Egyptian traditional food SC. Then, a framework was developed to link the European quality labeling system and SC performance. Finally, a structured survey was conducted based on the applied framework to investigate the impact of Med-diet labeling system on the SC performance. The research provides an applied framework linking Med-diet quality labeling system to SC performance of traditional food sector in developing countries generally and especially in the Egyptian traditional food sector. The framework can be used as a SC performance management tool to increase the effectiveness and efficiency of food industry's SC performance.

Keywords: food supply chain, med-diet labeling system, quality labeling system, supply chain performance

Procedia PDF Downloads 312
148 Lane Detection Using Labeling Based RANSAC Algorithm

Authors: Yeongyu Choi, Ju H. Park, Ho-Youl Jung

Abstract:

In this paper, we propose labeling based RANSAC algorithm for lane detection. Advanced driver assistance systems (ADAS) have been widely researched to avoid unexpected accidents. Lane detection is a necessary system to assist keeping lane and lane departure prevention. The proposed vision based lane detection method applies Canny edge detection, inverse perspective mapping (IPM), K-means algorithm, mathematical morphology operations and 8 connected-component labeling. Next, random samples are selected from each labeling region for RANSAC. The sampling method selects the points of lane with a high probability. Finally, lane parameters of straight line or curve equations are estimated. Through the simulations tested on video recorded at daytime and nighttime, we show that the proposed method has better performance than the existing RANSAC algorithm in various environments.

Keywords: Canny edge detection, k-means algorithm, RANSAC, inverse perspective mapping

Procedia PDF Downloads 243
147 Novel Adomet Analogs as Tools for Nucleic Acids Labeling

Authors: Milda Nainyte, Viktoras Masevicius

Abstract:

Biological methylation is a methyl group transfer from S-adenosyl-L-methionine (AdoMet) onto N-, C-, O- or S-nucleophiles in DNA, RNA, proteins or small biomolecules. The reaction is catalyzed by enzymes called AdoMet-dependent methyltransferases (MTases), which represent more than 3 % of the proteins in the cell. As a general mechanism, the methyl group from AdoMet replaces a hydrogen atom of nucleophilic center producing methylated DNA and S-adenosyl-L-homocysteine (AdoHcy). Recently, DNA methyltransferases have been used for the sequence-specific, covalent labeling of biopolymers. Two types of MTase catalyzed labeling of biopolymers are known, referred as two-step and one-step. During two-step labeling, an alkylating fragment is transferred onto DNA in a sequence-specific manner and then the reporter group, such as biotin, is attached for selective visualization using suitable chemistries of coupling. This approach of labeling is quite difficult and the chemical hitching does not always proceed at 100 %, but in the second step the variety of reporter groups can be selected and that gives the flexibility for this labeling method. In the one-step labeling, AdoMet analog is designed with the reporter group already attached to the functional group. Thus, the one-step labeling method would be more comfortable tool for labeling of biopolymers in order to prevent additional chemical reactions and selection of reaction conditions. Also, time costs would be reduced. However, effective AdoMet analog appropriate for one-step labeling of biopolymers and containing cleavable bond, required for reduction of PCR interferation, is still not known. To expand the practical utility of this important enzymatic reaction, cofactors with activated sulfonium-bound side-chains have been produced and can serve as surrogate cofactors for a variety of wild-type and mutant DNA and RNA MTases enabling covalent attachment of these chains to their target sites in DNA, RNA or proteins (the approach named methyltransferase-directed Transfer of Activated Groups, mTAG). Compounds containing hex-2-yn-1-yl moiety has proved to be efficient alkylating agents for labeling of DNA. Herein we describe synthetic procedures for the preparation of N-biotinoyl-N’-(pent-4-ynoyl)cystamine starting from the coupling of cystamine with pentynoic acid and finally attaching the biotin as a reporter group. The synthesis of the first AdoMet based cofactor containing a cleavable reporter group and appropriate for one-step labeling was developed.

Keywords: adoMet analogs, DNA alkylation, cofactor, methyltransferases

Procedia PDF Downloads 195
146 Addressing the Exorbitant Cost of Labeling Medical Images with Active Learning

Authors: Saba Rahimi, Ozan Oktay, Javier Alvarez-Valle, Sujeeth Bharadwaj

Abstract:

Successful application of deep learning in medical image analysis necessitates unprecedented amounts of labeled training data. Unlike conventional 2D applications, radiological images can be three-dimensional (e.g., CT, MRI), consisting of many instances within each image. The problem is exacerbated when expert annotations are required for effective pixel-wise labeling, which incurs exorbitant labeling effort and cost. Active learning is an established research domain that aims to reduce labeling workload by prioritizing a subset of informative unlabeled examples to annotate. Our contribution is a cost-effective approach for U-Net 3D models that uses Monte Carlo sampling to analyze pixel-wise uncertainty. Experiments on the AAPM 2017 lung CT segmentation challenge dataset show that our proposed framework can achieve promising segmentation results by using only 42% of the training data.

Keywords: image segmentation, active learning, convolutional neural network, 3D U-Net

Procedia PDF Downloads 155
145 Label Survey in Romania: A Study on How Consumers Use Food Labeling

Authors: Gabriela Iordachescu, Mariana Cretu Stuparu, Mirela Praisler, Camelia Busila, Doina Voinescu, Camelia Vizireanu

Abstract:

The aim of the study was to evaluate the consumers’ degree of confidence in food labeling, how they use and understand the label and respectively food labeling elements. The label is a bridge between producers, suppliers, and consumers. It has to offer enough information in terms of public health and food safety, statement of ingredients, nutritional information, warnings and advisory statements, producing date and shelf-life, instructions for storage and preparation (if required). The survey was conducted on 500 consumers group in Romania, aged 15+, males and females, from urban and rural areas and with different graduation levels. The questionnaire was distributed face to face and online. It had single or multiple choices questions and label images for the efficiency and best understanding of the question. The law 1169/2011 applied to food products from 13 of December 2016 improved and adapted the requirements for labeling in a clear manner. The questions were divided on following topics: interest and general trust in labeling, use and understanding of label elements, understanding of the ingredient list and safety information, nutrition information, advisory statements, serving sizes, best before/use by meanings, intelligent labeling, and demographic data. Three choice selection exercises were also included. In this case, the consumers had to choose between two similar products and evaluate which label element is most important in product choice. The data were analysed using MINITAB 17 and PCA analysis. Most of the respondents trust the food label, taking into account some elements especially when they buy the first time the product. They usually check the sugar content and type of sugar, saturated fat and use the mandatory label elements and nutrition information panel. Also, the consumers pay attention to advisory statements, especially if one of the items is relevant to them or the family. Intelligent labeling is a challenging option. In addition, the paper underlines that the consumer is more careful and selective with the food consumption and the label is the main helper for these.

Keywords: consumers, food safety information, labeling, labeling nutritional information

Procedia PDF Downloads 218
144 A Fully Automated New-Fangled VESTAL to Label Vertebrae and Intervertebral Discs

Authors: R. Srinivas, K. V. Ramana

Abstract:

This paper presents a novel method called VESTAL to label vertebrae and inter vertebral discs. Each vertebra has certain statistical features properties. To label vertebrae and discs, a new equation to model the path of spinal cord is derived using statistical properties of the spinal canal. VESTAL uses this equation for labeling vertebrae and discs. For each vertebrae and inter vertebral discs both posterior, interior width, height are measured. The calculated values are compared with real values which are measured using venires calipers and the comparison produced 95% efficiency and accurate results. The VESTAL is applied on 50 patients 350 MR images and obtained 100% accuracy in labeling.

Keywords: spine, vertebrae, inter vertebral disc, labeling, statistics, texture, disc

Procedia PDF Downloads 363
143 Image Segmentation of Visual Markers in Robotic Tracking System Based on Differential Evolution Algorithm with Connected-Component Labeling

Authors: Shu-Yu Hsu, Chen-Chien Hsu, Wei-Yen Wang

Abstract:

Color segmentation is a basic and simple way for recognizing the visual markers in a robotic tracking system. In this paper, we propose a new method for color segmentation by incorporating differential evolution algorithm and connected component labeling to autonomously preset the HSV threshold of visual markers. To evaluate the effectiveness of the proposed algorithm, a ROBOTIS OP2 humanoid robot is used to conduct the experiment, where five most commonly used color including red, purple, blue, yellow, and green in visual markers are given for comparisons.

Keywords: color segmentation, differential evolution, connected component labeling, humanoid robot

Procedia PDF Downloads 605
142 Evaluation of Labelling Conditions, Quality Control, and Biodistribution Study of 99mTc- D-Aminolevulinic Acid (5-ALA)

Authors: Kalimullah Khan, Samina Roohi, Mohammad Rafi, Rizwana Zahoor

Abstract:

Labeling of 5-Aminolevulinic acid (5-ALA) with 99 mTc was achieved by using tin chloride dihydrate (Sncl2.2H2O) as reducing agent. Radiochemical purity and labeling efficiency was determined by Whattman paper No.3 and instant thin layer chromatographic strips impregnated with silica gel (ITLC/SG). Labeling efficiency was dependent on many parameters such as amount of ligand, reducing agent, pH, and incubation time. Therefore, optimum conditions for maximum labeling were selected. Stability of 99 mTc- 5-ALA was also checked in fresh human serum. Tissue bio-distribution of 99 mTc-5-ALA was evaluated in Spargue Dawley rats. 5-ALA was 98% labeled with 99 mTc under optimum conditions, i.e. 100µg of 5-ALA, pH: 4, 10µg of Sncl2.2H2O and 30 minutes incubation at room temperature. 99 mTc labelled 5- ALA remained stable for 24 hours in human serum. Bio-distribution study (%ID/gm) in rats revealed that maximum accumulation of 99 mTc-5-ALA was in liver, spleen, stomach and intestine after half hour, 4 hours, and 24 hours. Significant activity in bladder and urine indicated urinary mode of excretion.

Keywords: 99mTc-ALA, aminolevulinic acid, quality control, radiopharmaceuticals

Procedia PDF Downloads 384
141 Heat: A Healthy Eating Programme

Authors: Osagbai Joshua Eriki, Ngozi Agunwamba, Alice Hill, Lorna Almond, Maniya Duffy, Devashini Naidoo, David Ho, Raman Deo

Abstract:

Aims: To evaluate the baseline eating pattern in a psychiatric hospital through quantifying purchases of food and drink items at the hospital shop and to implement a traffic light healthy eating labeling system. Method: A electronic till with reporting capabilities was purchased. A two-week period of baseline data collection was conducted. Thereafter, a system for labeling items based on the nutritional value of the food items at the hospital shop was implemented. Green labeling represented the items with the lowest calories and red the most. Further data was collated on the number and types of items purchased by patients according to the category, and the initial effectiveness of the system was evaluated. Result: Despite the implementation of the traffic light system, the red category had the highest number of items purchased by patients, highlighting the importance of promoting healthy eating choices. However, the study also showed that the system was effective in promoting healthy options, as the number of items purchased from the green category increased during the study period. Conclusion: The implementation of a traffic light labeling system for items sold at the hospital shop offers a promising approach to promoting healthy eating habits and choices. This is likely to contribute to a toolkit of measures when considering the multifactorial challenges that obesity and weight issues pose for long-stay psychiatric inpatients

Keywords: mental health, nutrition, food, healthy

Procedia PDF Downloads 99
140 Awareness of Genetically Modified Products Among Malaysian Consumers

Authors: Muhamad Afiq Faisal, Yahaya, Mohd Faizal, Hamzah

Abstract:

Genetic modification technology allows scientists to alter the genetic information of a particular organism. The technology allows the production of genetically modified organism (GMO) that has the enhanced property compared to the unmodified organism. The application of such technology is not only in agriculture industry, it is now has been applied extensively in biopharmaceutical industry such as transgenic vaccines. In Malaysia, Biosafety Act 2007 has been enacted in which all GMO-based products must be labeled with adequate information before being marketed. This paper aims to determine the awareness level amongst Malaysian consumers on the GM products available in the market and the efficiency of information supplied in the GM product labeling. The result of the survey will serve as a guideline for Malaysia government agency bodies to provide comprehensive yet efficient information to consumers for the purpose of GM product labeling in the near future. In conclusion, the efficiency of information delivery plays a vital role in ensuring that the information is being conveyed clearly to Malaysian consumers during the selection process of GM products available in the market.

Keywords: genetic modification technology, genetically modified organisms, genetically modified organism products labeling, Biosafety Act 2007

Procedia PDF Downloads 362
139 Challenges and Pitfalls of Nutrition Labeling Policy in Iran: A Policy Analysis

Authors: Sareh Edalati, Nasrin Omidvar, Arezoo Haghighian Roudsari, Delaram Ghodsi, Azizollaah Zargaran

Abstract:

Background and aim: Improving consumer’s food choices and providing a healthy food environment by governments is one of the essential approaches to prevent non-communicable diseases and to fulfill the sustainable development goals (SDGs). The present study aimed to provide an analysis of the nutrition labeling policy as one of the main components of the healthy food environment to provide learning lessons for the country and other low and middle-income countries. Methods: Data were collected by reviewing documents and conducting semi-structured interviews with stakeholders. Respondents were selected through purposive and snowball sampling and continued until data saturation. MAXQDA software was used to manage data analysis. A deductive content analysis was used by applying the Kingdon multiple streams and the policy triangulation framework. Results: Iran is the first country in the Middle East and North Africa region, which has implemented nutrition traffic light labeling. The implementation process has gone through two phases: voluntary and mandatory. In the voluntary labeling, volunteer food manufacturers who chose to have the labels would receive an honorary logo and this helped to reduce the food-sector resistance gradually. After this phase, the traffic light labeling became mandatory. Despite these efforts, there has been poor involvement of media for public awareness and sensitization. Also, the inconsistency of nutrition traffic light colors which are based on food standard guidelines, lack of consistency between nutrition traffic light colors, the healthy/unhealthy nature of some food products such as olive oil and diet cola and the absence of a comprehensive evaluation plan were among the pitfalls and policy challenges identified. Conclusions: Strengthening the governance through improving collaboration within health and non-health sectors for implementation, more transparency of truthfulness of nutrition traffic labeling initiating with real ingredients, and applying international and local scientific evidence or any further revision of the program is recommended. Also, developing public awareness campaigns and revising school curriculums to improve students’ skills on nutrition label applications should be highly emphasized.

Keywords: nutrition labeling, policy analysis, food environment, Iran

Procedia PDF Downloads 191
138 VideoAssist: A Labelling Assistant to Increase Efficiency in Annotating Video-Based Fire Dataset Using a Foundation Model

Authors: Keyur Joshi, Philip Dietrich, Tjark Windisch, Markus König

Abstract:

In the field of surveillance-based fire detection, the volume of incoming data is increasing rapidly. However, the labeling of a large industrial dataset is costly due to the high annotation costs associated with current state-of-the-art methods, which often require bounding boxes or segmentation masks for model training. This paper introduces VideoAssist, a video annotation solution that utilizes a video-based foundation model to annotate entire videos with minimal effort, requiring the labeling of bounding boxes for only a few keyframes. To the best of our knowledge, VideoAssist is the first method to significantly reduce the effort required for labeling fire detection videos. The approach offers bounding box and segmentation annotations for the video dataset with minimal manual effort. Results demonstrate that the performance of labels annotated by VideoAssist is comparable to those annotated by humans, indicating the potential applicability of this approach in fire detection scenarios.

Keywords: fire detection, label annotation, foundation models, object detection, segmentation

Procedia PDF Downloads 6
137 Rapid Detection System of Airborne Pathogens

Authors: Shigenori Togashi, Kei Takenaka

Abstract:

We developed new processes which can collect and detect rapidly airborne pathogens such as the avian flu virus for the pandemic prevention. The fluorescence antibody technique is known as one of high-sensitive detection methods for viruses, but this needs up to a few hours to bind sufficient fluorescence dyes to viruses for detection. In this paper, we developed a mist-labeling can detect substitution viruses in a short time to improve the binding rate of fluorescent dyes and substitution viruses by the micro reaction process. Moreover, we developed the rapid detection system with the above 'mist labeling'. The detection system set with a sampling bag collecting patient’s breath and a cartridge can detect automatically pathogens within 10 minutes.

Keywords: viruses, sampler, mist, detection, fluorescent dyes, microreaction

Procedia PDF Downloads 475
136 Semantic Differences between Bug Labeling of Different Repositories via Machine Learning

Authors: Pooja Khanal, Huaming Zhang

Abstract:

Labeling of issues/bugs, also known as bug classification, plays a vital role in software engineering. Some known labels/classes of bugs are 'User Interface', 'Security', and 'API'. Most of the time, when a reporter reports a bug, they try to assign some predefined label to it. Those issues are reported for a project, and each project is a repository in GitHub/GitLab, which contains multiple issues. There are many software project repositories -ranging from individual projects to commercial projects. The labels assigned for different repositories may be dependent on various factors like human instinct, generalization of labels, label assignment policy followed by the reporter, etc. While the reporter of the issue may instinctively give that issue a label, another person reporting the same issue may label it differently. This way, it is not known mathematically if a label in one repository is similar or different to the label in another repository. Hence, the primary goal of this research is to find the semantic differences between bug labeling of different repositories via machine learning. Independent optimal classifiers for individual repositories are built first using the text features from the reported issues. The optimal classifiers may include a combination of multiple classifiers stacked together. Then, those classifiers are used to cross-test other repositories which leads the result to be deduced mathematically. The produce of this ongoing research includes a formalized open-source GitHub issues database that is used to deduce the similarity of the labels pertaining to the different repositories.

Keywords: bug classification, bug labels, GitHub issues, semantic differences

Procedia PDF Downloads 200
135 Multiscale Connected Component Labelling and Applications to Scientific Microscopy Image Processing

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

In this paper, a new method is proposed to extending the method of connected component labeling from processing binary images to multi-scale modeling of images. By using the adaptive threshold of multi-scale attributes, this approach minimizes the possibility of missing those important components with weak intensities. In addition, the computational cost of this approach remains similar to that of the typical approach of component labeling. Then, this methodology is applied to grain boundary detection and Drosophila Brain-bow neuron segmentation. These demonstrate the feasibility of the proposed approach in the analysis of challenging microscopy images for scientific discovery.

Keywords: microscopic image processing, scientific data mining, multi-scale modeling, data mining

Procedia PDF Downloads 434
134 Collect Meaningful Information about Stock Markets from the Web

Authors: Saleem Abuleil, Khalid S. Alsamara

Abstract:

Events represent a significant source of information on the web; they deliver information about events that occurred around the world in all kind of subjects and areas. These events can be collected and organized to provide valuable and useful information for decision makers, researchers, as well as any person seeking knowledge. In this paper, we discuss an ongoing research to target stock markets domain to observe and record changes (events) when they happen, collect them, understand the meaning of each one of them, and organize the information along with meaning in a well-structured format. By using Semantic Role Labeling (SRL) technique, we identified four factors for each event in this paper: verb of action and three roles associated with it, entity name, attribute, and attribute value. We have generated a set of rules and techniques to support our approach to analyze and understand the meaning of the events taking place in stock markets.

Keywords: natuaral language processing, Arabic language, event extraction and understanding, sematic role labeling, stock market

Procedia PDF Downloads 393
133 Improvement of Ground Truth Data for Eye Location on Infrared Driver Recordings

Authors: Sorin Valcan, Mihail Gaianu

Abstract:

Labeling is a very costly and time consuming process which aims to generate datasets for training neural networks in several functionalities and projects. For driver monitoring system projects, the need for labeled images has a significant impact on the budget and distribution of effort. This paper presents the modifications done to an algorithm used for the generation of ground truth data for 2D eyes location on infrared images with drivers in order to improve the quality of the data and performance of the trained neural networks. The algorithm restrictions become tougher, which makes it more accurate but also less constant. The resulting dataset becomes smaller and shall not be altered by any kind of manual label adjustment before being used in the neural networks training process. These changes resulted in a much better performance of the trained neural networks.

Keywords: labeling automation, infrared camera, driver monitoring, eye detection, convolutional neural networks

Procedia PDF Downloads 117
132 Grammar as a Logic of Labeling: A Computer Model

Authors: Jacques Lamarche, Juhani Dickinson

Abstract:

This paper introduces a computational model of a Grammar as Logic of Labeling (GLL), where the lexical primitives of morphosyntax are phonological matrixes, the form of words, understood as labels that apply to realities (or targets) assumed to be outside of grammar altogether. The hypothesis is that even though a lexical label relates to its target arbitrarily, this label in a complex (constituent) label is part of a labeling pattern which, depending on its value (i.e., N, V, Adj, etc.), imposes language-specific restrictions on what it targets outside of grammar (in the world/semantics or in cognitive knowledge). Lexical forms categorized as nouns, verbs, adjectives, etc., are effectively targets of labeling patterns in use. The paper illustrates GLL through a computer model of basic patterns in English NPs. A constituent label is a binary object that encodes: i) alignment of input forms so that labels occurring at different points in time are understood as applying at once; ii) endocentric structuring - every grammatical constituent has a head label that determines the target of the constituent, and a limiter label (the non-head) that restricts this target. The N or A values are restricted to limiter label, the two differing in terms of alignment with a head. Consider the head initial DP ‘the dog’: the label ‘dog’ gets an N value because it is a limiter that is evenly aligned with the head ‘the’, restricting application of the DP. Adapting a traditional analysis of ‘the’ to GLL – apply label to something familiar – the DP targets and identifies one reality familiar to participants by applying to it the label ‘dog’ (singular). Consider next the DP ‘the large dog’: ‘large dog’ is nominal by even alignment with ‘the’, as before, and since ‘dog’ is the head of (head final) ‘large dog’, it is also nominal. The label ‘large’, however, is adjectival by narrow alignment with the head ‘dog’: it doesn’t target the head but targets a property of what dog applies to (a property or value of attribute). In other words, the internal composition of constituents determines that a form targets a property or a reality: ‘large’ and ‘dog’ happen to be valid targets to realize this constituent. In the presentation, the computer model of the analysis derives the 8 possible sequences of grammatical values with three labels after the determiner (the x y z): 1- D [ N [ N N ]]; 2- D [ A [ N N ] ]; 3- D [ N [ A N ] ]; 4- D [ A [ A N ] ]; 5- D [ [ N N ] N ]; 5- D [ [ A N ] N ]; 6- D [ [ N A ] N ] 7- [ [ N A ] N ] 8- D [ [ Adv A ] N ]. This approach that suggests that a computer model of these grammatical patterns could be used to construct ontologies/knowledge using speakers’ judgments about the validity of lexical meaning in grammatical patterns.

Keywords: syntactic theory, computational linguistics, logic and grammar, semantics, knowledge and grammar

Procedia PDF Downloads 38
131 Supermarket Shoppers Perceptions to Genetically Modified Foods in Trinidad and Tobago: Focus on Health Risks and Benefits

Authors: Safia Hasan Varachhia, Neela Badrie, Marsha Singh

Abstract:

Genetic modification of food is an innovative technology that offers a host of benefits and advantages to consumers. Consumer attitudes towards GM food and GM technologies can be identified a major determinant in conditioning market force and encouraging policy makers and regulators to recognize the significance of consumer influence on the market. This study aimed to investigate and evaluate the extent of consumer awareness, knowledge, perception and acceptance of GM foods and its associated health risks and benefit in Trinidad and Tobago, West Indies. The specific objectives of this study were to (determine consumer awareness to GM foods, ascertain their perspectives on health and safety risks and ethical issues associated with GM foods and determine whether labeling of GM foods and ingredients will influence consumers’ willingness to purchase GM foods. A survey comprising of a questionnaire consisting of 40 questions, both open-ended and close-ended was administered to 240 shoppers in small, medium and large-scale supermarkets throughout Trinidad between April-May, 2015 using convenience sampling. This survey investigated consumer awareness, knowledge, perception and acceptance of GM foods and its associated health risks/benefits. The data was analyzed using SPSS 19.0 and Minitab 16.0. One-way ANOVA investigated the effects categories of supermarkets and knowledge scores on shoppers’ awareness, knowledge, perception and acceptance of GM foods. Linear Regression tested whether demographic variables (category of supermarket, age of consumer, level of were useful predictors of consumer’s knowledge of GM foods). More than half of respondents (64.3%) were aware of GM foods and GM technologies, 28.3% of consumers indicated the presence of GM foods in local supermarkets and 47.1% claimed to be knowledgeable of GM foods. Furthermore, significant associations (P < 0.05) were observed between demographic variables (age, income, and education), and consumer knowledge of GM foods. Also, significant differences (P < 0.05) were observed between demographic variables (education, gender, and income) and consumer knowledge of GM foods. In addition, age, education, gender and income (P < 0.05) were useful predictors of consumer knowledge of GM foods. There was a contradiction as whilst 35% of consumers considered GM foods safe for consumption, 70% of consumers were wary of the unknown health risks of GM foods. About two-thirds of respondents (67.5%) considered the creation of GM foods morally wrong and unethical. Regarding GM food labeling preferences, 88% of consumers preferred mandatory labeling of GM foods and 67% of consumers specified that any food product containing a trace of GM food ingredients required mandatory GM labeling. Also, despite the declaration of GM food ingredients on food labels and the reassurance of its safety for consumption by food safety and regulatory institutions, the majority of consumers (76.1%) still preferred conventionally produced foods over GM foods. The study revealed the need to inform shoppers of the presence of GM foods and technologies, present the scientific evidence as to the benefits and risks and the need for a policy on labeling so that informed choices could be taken.

Keywords: genetically modified foods, income, labeling consumer awareness, ingredients, morality and ethics, policy

Procedia PDF Downloads 328
130 Consumer Knowledge of Food Quality Assurance and Use of Food Labels in Trinidad, West Indies

Authors: Daryl Clement Knutt, Neela Badrie, Marsha Singh

Abstract:

Quality assurance and product labelling are vital in the food and drink industry, as a tactical tool in a competitive environment. The food label is a principal marketing tool which also serves as a regulatory mechanism in the safeguarding of consumer well –being. The objective of this study was to evaluate the level of consumers’ use and understanding of food labeling information and knowledge pertaining to food quality assurance systems. The study population consisted of Trinidadian adults, who were over the age of 18 (n=384). Data collection was conducted via a self-administered questionnaire, which contained 31 questions, comprising of four sections: I. socio demographic information; II. food quality and quality assurance; III. use of Labeling information; and IV. laws and regulations. Sampling was conducted at six supermarkets, in five major regions of the country over a period of three weeks in 2014. The demographic profile of the shoppers revealed that majority was female (63.6%). The gender factor and those who were concerned about the nutrient content of their food, were predictive indicators of those who read food labels. Most (93.1%) read food labels before purchase, 15.4% ‘always’; 32.5% ‘most times’ and 45.2% ‘sometimes’. Some (42%) were often satisfied with the information presented on food labels, whilst 35.7% of consumers were unsatisfied. When the respondents were questioned on their familiarity with terms ‘food quality’ and ‘food quality assurance’, 21.3% of consumers replied positively - ‘I have heard the terms and know a lot’ whilst 37% were only ‘somewhat familiar’. Consumers were mainly knowledgeable of the International Standard of Organization (ISO) (51.5%) and Good Agricultural Practices GAP (38%) as quality tools. Participants ranked ‘nutritional information’ as the number one labeling element that should be better presented, followed by ‘allergy notes’ and ‘best before date’. Females were more inclined to read labels being the household shoppers. The shoppers would like better presentation of the food labelling information so as to guide their decision to purchase a product.

Keywords: food labels, food quality, nutrition, marketing, Trinidad, Tobago

Procedia PDF Downloads 489
129 The Role of Named Entity Recognition for Information Extraction

Authors: Girma Yohannis Bade, Olga Kolesnikova, Grigori Sidorov

Abstract:

Named entity recognition (NER) is a building block for information extraction. Though the information extraction process has been automated using a variety of techniques to find and extract a piece of relevant information from unstructured documents, the discovery of targeted knowledge still poses a number of research difficulties because of the variability and lack of structure in Web data. NER, a subtask of information extraction (IE), came to exist to smooth such difficulty. It deals with finding the proper names (named entities), such as the name of the person, country, location, organization, dates, and event in a document, and categorizing them as predetermined labels, which is an initial step in IE tasks. This survey paper presents the roles and importance of NER to IE from the perspective of different algorithms and application area domains. Thus, this paper well summarizes how researchers implemented NER in particular application areas like finance, medicine, defense, business, food science, archeology, and so on. It also outlines the three types of sequence labeling algorithms for NER such as feature-based, neural network-based, and rule-based. Finally, the state-of-the-art and evaluation metrics of NER were presented.

Keywords: the role of NER, named entity recognition, information extraction, sequence labeling algorithms, named entity application area

Procedia PDF Downloads 80
128 Brief Guide to Cloud-Based AI Prototyping: Key Insights from Selected Case Studies Using Google Cloud Platform

Authors: Kamellia Reshadi, Pranav Ragji, Theodoros Soldatos

Abstract:

Recent advancements in cloud computing and storage, along with rapid progress in artificial intelligence (AI), have transformed approaches to developing efficient, scalable applications. However, integrating AI with cloud computing poses challenges as these fields are often disjointed, and many advancements remain difficult to access, obscured in complex documentation or scattered across research reports. For this reason, we share experiences from prototype projects combining these technologies. Specifically, we focus on Google Cloud Platform (GCP) functionalities and describe vision and speech activities applied to labeling, subtitling, and urban traffic flow tasks. We describe challenges, pricing, architecture, and other key features, considering the goal of real-time performance. We hope our demonstrations provide not only essential guidelines for using these functionalities but also enable more similar approaches.

Keywords: artificial intelligence, cloud computing, real-time applications, case studies, knowledge management, research and development, text labeling, video annotation, urban traffic analysis, public safety, prototyping, Google Cloud Platform

Procedia PDF Downloads 9
127 Correlation Mapping for Measuring Platelet Adhesion

Authors: Eunseop Yeom

Abstract:

Platelets can be activated by the surrounding blood flows where a blood vessel is narrowed as a result of atherosclerosis. Numerous studies have been conducted to identify the relation between platelets activation and thrombus formation. To measure platelet adhesion, this study proposes an image analysis technique. Blood samples are delivered in the microfluidic channel, and then platelets are activated by a stenotic micro-channel with 90% severity. By applying proposed correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (APlatelet) was estimated without labeling platelets. In order to evaluate the performance of correlation mapping on the detection of platelet adhesion, the effect of tile size was investigated by calculating 2D correlation coefficients with binary images obtained by manual labeling and the correlation mapping method with different sizes of the square tile ranging from 3 to 50 pixels. The maximum 2D correlation coefficient is observed with the optimum tile size of 5×5 pixels. As the area of the platelet adhesion increases, the platelets plug the channel and there is only a small amount of blood flows. This image analysis could provide new insights for better understanding of the interactions between platelet aggregation and blood flows in various physiological conditions.

Keywords: platelet activation, correlation coefficient, image analysis, shear rate

Procedia PDF Downloads 335
126 Automatic Music Score Recognition System Using Digital Image Processing

Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng

Abstract:

Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.

Keywords: connected component labeling, image processing, morphological processing, optical musical recognition

Procedia PDF Downloads 419