Search results for: magnesium matrix composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4025

Search results for: magnesium matrix composite

305 A Method and System for Secure Authentication Using One Time QR Code

Authors: Divyans Mahansaria

Abstract:

User authentication is an important security measure for protecting confidential data and systems. However, the vulnerability while authenticating into a system has significantly increased. Thus, necessary mechanisms must be deployed during the process of authenticating a user to safeguard him/her from the vulnerable attacks. The proposed solution implements a novel authentication mechanism to counter various forms of security breach attacks including phishing, Trojan horse, replay, key logging, Asterisk logging, shoulder surfing, brute force search and others. QR code (Quick Response Code) is a type of matrix barcode or two-dimensional barcode that can be used for storing URLs, text, images and other information. In the proposed solution, during each new authentication request, a QR code is dynamically generated and presented to the user. A piece of generic information is mapped to plurality of elements and stored within the QR code. The mapping of generic information with plurality of elements, randomizes in each new login, and thus the QR code generated for each new authentication request is for one-time use only. In order to authenticate into the system, the user needs to decode the QR code using any QR code decoding software. The QR code decoding software needs to be installed on handheld mobile devices such as smartphones, personal digital assistant (PDA), etc. On decoding the QR code, the user will be presented a mapping between the generic piece of information and plurality of elements using which the user needs to derive cipher secret information corresponding to his/her actual password. Now, in place of the actual password, the user will use this cipher secret information to authenticate into the system. The authentication terminal will receive the cipher secret information and use a validation engine that will decipher the cipher secret information. If the entered secret information is correct, the user will be provided access to the system. Usability study has been carried out on the proposed solution, and the new authentication mechanism was found to be easy to learn and adapt. Mathematical analysis of the time taken to carry out brute force attack on the proposed solution has been carried out. The result of mathematical analysis showed that the solution is almost completely resistant to brute force attack. Today’s standard methods for authentication are subject to a wide variety of software, hardware, and human attacks. The proposed scheme can be very useful in controlling the various types of authentication related attacks especially in a networked computer environment where the use of username and password for authentication is common.

Keywords: authentication, QR code, cipher / decipher text, one time password, secret information

Procedia PDF Downloads 246
304 The Effect of Organic Matter Maturation and Porosity Evolution on Methane Storage Potential in Shale-Gas Reservoirs

Authors: T. Topór, A. Derkowski, P. Ziemiański

Abstract:

Formation of organic matter (OM)-hosted nanopores upon thermal maturation are one of the key factor controlling methane storage potential in unconventional shale-gas reservoirs. In this study, the subcritical CO₂ and N₂ gas adsorption measurements combined with scanning electron microscopy and supercritical methane adsorption have been used to characterize pore system and methane storage potential in black shales from the Baltic Basin (Poland). The samples were collected from a virtually equivalent Llandovery strata across the basin and represent a complete digenetic sequence, from thermally immature to overmature. The results demonstrate that the thermal maturation is a dominant mechanism controlling the formation of OM micro- and mesopores in the Baltic Basin shales. The formation of micro- and mesopores occurs in the oil window (vitrinite reflectance; leavedVR; ~0.5-0.9%) as a result of oil expulsion from kerogenleft OM highly porous. The generated hydrocarbons then turn into solid bitumen causing pore blocking and substantial decrease in micro- and mesopore volume in late-mature shales (VR ~0.9-1.2%). Both micro- and mesopores are regenerated in a middle of the catagenesis range (VR 1.4-1.9%) due to secondary cracking of OM and gas formation. The micropore volume in investigated shales is almost exclusively controlled by the OM content. The contribution of clay minerals to micropore volume is insignificant and masked by a strong contribution from OM. Methane adsorption capacity in the Baltic Basin shales is predominantly controlled by microporous OM with pores < 1.5 nm. The mesopore volume (2-50 nm) and mesopore surface area have no effect on methane sorption behavior. The adsorbed methane density equivalent, calculated as absolute methane adsorption divided by micropore volume, reviled a decrease of the methane loading potential in micropores with increasing maturity. The highest methane loading potential in micropores is observed for OM before metagenesis (VR < 2%), where the adsorbed methane density equivalent is greater than the density of liquid methane. This implies that, in addition to physical adsorption, absorption of methane in OM may occur before metagenesis. After OM content reduction using NaOCl solution methane adoption capacity substantially decreases, suggesting significantly greater adsorption potential for OM microstructure than for the clay minerals matrix.

Keywords: maturation, methane sorption, organic matter, porosity, shales

Procedia PDF Downloads 215
303 Interpretation of Heritage Revitalization

Authors: Jarot Mahendra

Abstract:

The primary objective of this paper is to provide a view in the interpretation of the revitalization of heritage buildings. This objective is achieved by analyzing the concept of interpretation that is oriented in the perspective of law, urban spatial planning, and stakeholder perspective, and then develops the theoretical framework of interpretation in the cultural resources management through issues of identity, heritage as a process, and authenticity in heritage. The revitalization of heritage buildings with the interpretation of these three issues is that interpretation can be used as a communication process to express the meaning and relation of heritage to the community so as to avoid the conflict that will arise and develop as a result of different perspectives of stakeholders. Using case studies in Indonesia, this study focuses on the revitalization of heritage sites in the National Gallery of Indonesia (GNI). GNI is a cultural institution that uses several historical buildings that have been designated as heritage and have not been designated as a heritage according to the regulations applicable in Indonesia, in carrying out its function as the center of Indonesian art development and art museums. The revitalization of heritage buildings is taken as a step to meet space needs in running the current GNI function. In the revitalization master plan, there are physical interventions on the building of heritage and the removal of some historic buildings which will then be built new buildings at that location. The research matrix was used to map out the main elements of the study (the concept of GNI revitalization, heritage as identity, heritage as a process, and authenticity in the heritage). Expert interviews and document studies are the main tools used in collecting data. Qualitative data is then analyzed through content analysis and template analysis. This study identifies the significance of historic buildings (heritage buildings and buildings not defined as heritage) as an important value of history, architecture, education, and culture. The significance becomes the basis for revisiting the revitalization master plan which is then reviewed according to applicable regulations and the spatial layout of Jakarta. The interpretation that is built is (1) GNI is one of the elements of the embodiment of the National Cultural Center in the context of the region, where there are National Monument, National Museum and National Library in the same area, so the heritage not only gives identity to the past culture but the culture of current community; (2) The heritage should be seen as a dynamic cultural process towards the cultural change of community, where heritage must develop along with the urban development, so that the heritage buildings can remain alive and side by side with modern buildings but still observe the principles of preservation of heritage; (3) The authenticity of heritage should be able to balance the cultural heritage conservation approach with urban development, where authenticity can serve as a 'Value Transmitter' so that authenticity can be used to evaluate, preserve and manage heritage buildings by considering tangible and intangible aspects.

Keywords: authenticity, culture process, identity, interpretation, revitalization

Procedia PDF Downloads 124
302 Associations among Fetuin A, Cortisol and Thyroid Hormones in Children with Morbid Obesity and Metabolic Syndrome

Authors: Mustafa Metin Donma, Orkide Donma

Abstract:

Obesity is a disease with an ever-increasing prevalence throughout the world. The metabolic network associated with obesity is very complicated. In metabolic syndrome (MetS), it becomes even more difficult to understand. Within this context, hormones, cytokines, and many others participate in this complex matrix. The collaboration among all of these parameters is a matter of great wonder. Cortisol, as a stress hormone, is closely associated with obesity. Thyroid hormones are involved in the regulation of energy as well as glucose metabolism with all of its associates. Fetuin A is known for years; however, the involvement of this parameter in obesity discussions is rather new. Recently, it has been defined as one of the new generation markers of obesity. In this study, the aim was to introduce complex interactions among all to be able to make clear comparisons, at least for a part of this complicated matter. Morbid obese (MO) children participated in the study. Two groups with 46 MO children and 43 with MetS were constituted. All children included in the study were above 99th age- and sex-adjusted body mass index (BMI) percentiles according to World Health Organization criteria. Forty-three morbid obese children in the second group had also MetS components. Informed consent forms were filled by the parents of the participants. The institutional ethics committee has given approval for the study protocol. Data as well as the findings of the study were evaluated from a statistical point of view. Two groups were matched for their age and gender compositions. Significantly higher body mass index (BMI), waist circumference, thyrotropin, and insulin values were observed in the MetS group. Triiodothyronine concentrations did not differ between the groups. Elevated levels for thyroxin, cortisol, and fetuin-A were detected in the MetS group compared to the first group (p > 0.05). In MO MetS- group, cortisol was correlated with thyroxin and fetuin-A (p < 0.05). In the MO MetS+ group, none of these correlations were present. Instead, a correlation between cortisol and thyrotropin was found (p < 0.05). In conclusion, findings have shown that cortisol was the key player in severely obese children. The association of this hormone with the participants of thyroid hormone metabolism was quite important. The lack of association with fetuin A in the morbid obese MetS+ group has suggested the possible interference of MetS components in the behavior of this new generation obesity marker. The most remarkable finding of the study was the unique correlation between cortisol and thyrotropin in the morbid obese MetS+ group, suggesting that thyrotropin may serve as a target along with cortisol in the morbid obese MetS+ group. This association may deserve specific attention during the development of remedies against MetS in the pediatric population.

Keywords: children, cortisol, fetuin A, morbid obesity, thyrotropin

Procedia PDF Downloads 154
301 Management of Pressure Ulcer with a Locally Constructed Negative Pressure Device (NPD) in Traumatic Paraplegia Patients: A Randomized Controlled Clinical Trial

Authors: Mukesh K. Dwivedi, Rajeshwar N. Srivastava, Amit K. Bhagat, Saloni Raj

Abstract:

Introduction: Management of Pressure Ulcer (PU) is an ongoing clinical challenge particularly in traumatic paraplegia patients in developing countries where socio economic conditions often dictate treatment modalities. When negative pressure wound therapy (NPWT) was introduced, there were a series of devices (V.A.C., KCI, San Antonio, TX) manufactured. These devices for NPWT are costly and hard to afford by patients in developing countries like India. Considering this limitation, this study was planned to design an RCT to compare NPWT by an indigenized locally constructed NPD and conventional gauze dressing for the treatment of PU. Material and Methods: This RCT (CTRI/2014/09/0050) was conducted in the Department of Orthopaedic Surgery at King George’s Medical University (KGMU), India. Thirty-four (34) subjects of traumatic paraplegia having PU of stage 3 or 4, were enrolled and randomized in two treatment groups (NPWT Group & Conventional dressing group). The outcome measures of this study were surface area and depth of PU, exudates, microorganisms and matrix metalloproteinase-8 (MMP-8) during 0 to 9 weeks follow-ups. Levels of MMP-8 were analyzed in the tissues of PU at week 0, 3, 6 and week 9 by Enzyme Linked Immuno Sorbent Assay (ELISA). Results: Significantly reduced length of PU in NPWT group was observed at week 6 (p=0.04) which further reduced at week 9 (p=0.001) as compared to conventionally treated group. Similarly significant reduction of width and depth of PU was observed in NPWT at week 9 (p<0.05). The exudate became significantly (p=0.001) lower in NPWT group as compared with conventionally treated group from 6th to 9th week. Clearance and conversion of slough into red granulation tissue was significantly higher in NPWT group (p=0.001). At week 9, the wound culture was negative in all the subjects of NPWT group, while it was positive in 10 (41⋅6%) subjects of conventional group. Significantly lower level of MMP-8 was observed in subjects of NPWT group at week 6 (0.006**), and continually more reduction was observed at week 9 (<0.0001**) as compared to the conventional group. Conclusion: NPWT by locally constructed NPD is better wound care procedure for management of PU. Our device gave similar results as commercially available devices. Reduction of level of MMP-8 and increased rate of healing was achieved by negative pressure wound therapy (NPWT) as compared to conventional dressing.

Keywords: NPWT, NPD, MMP8, ELISA

Procedia PDF Downloads 233
300 Synthesis and Analytical Characterisation of Polymer-Silica Nanoparticles Composite for the Protection and Preservation of Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi

Abstract:

Historical stone surfaces and architectural heritage may undergo unwanted changes due to the exposure to many physical and chemical deterioration factors, the innovative properties of the nano - materials can have advantageous application in the restoration and conservation of the cultural heritage with relation to the tailoring of new products for protection and consolidation of stone. The current work evaluates the effectiveness of inorganic compatible treatments; based on nanosized particles of silica (SiO2) dispersed in silicon based product, commonly used as a water-repellent/ consolidation for the construction materials affected by different kinds of decay. The nanocomposites obtained by dispersing the silica nanoparticles in polymeric matrices SILRES® BS OH 100 (solventless mixtures of ethyl silicates), in order to obtain a new nanocomposite, with hydrophobic and consolidation properties, to improve the physical and mechanical properties of the stone material. The nanocomposites obtained and pure SILRES® BS OH 100 were applied by brush Experimental stone blocks. The efficacy of the treatments has been evaluated after consolidation and artificial Thermal aging, through capillary water absorption measurements, Ultraviolet-light exposure to evaluate photo-induced and the hydrophobic effects of the treated surface, Scanning electron microscopy (SEM) examination is performed to evaluate penetration depth, re-aggregating effects of the deposited phase and the surface morphology before and after artificialaging. Sterio microscopy investigation is performed to evaluate the resistant to the effects of the erosion, acids and salts. Improving of stone mechanical properties were evaluated by compressive strength tests, colorimetric measurements were used to evaluate the optical appearance. All the results get together with the apparent effect that, silica/polymer nanocomposite is efficient material for the consolidation of artistic and architectural sandstone monuments, completely compatible, enhanced the durability of sandstone toward thermal and UV aging. In addition, the obtained nanocomposite improved the stone mechanical properties and the resistant to the effects of the erosion, acids and salts compared to the samples treated with pure SILRES® BS OH 100 without silica nanoparticles.

Keywords: colorimetric measurements, compressive strength, nanocomposites, porous stone consolidation, silica nanoparticles, sandstone

Procedia PDF Downloads 228
299 Experimental Study on Bending and Torsional Strength of Bulk Molding Compound Seat Back Frame Part

Authors: Hee Yong Kang, Hyeon Ho Shin, Jung Cheol Yoo, Il Taek Lee, Sung Mo Yang

Abstract:

Lightweight technology using composites is being developed for vehicle seat structures, and its design must meet the safety requirements. According to the Federal Motor Vehicle Safety Standard (FMVSS) 207 seating systems test procedure, the back moment load is applied to the seat back frame structure for the safety evaluation of the vehicle seat. The seat back frame using the composites is divided into three parts: upper part frame, and left- and right-side frame parts following the manufacturing process. When a rear moment load is applied to the seat back frame, the side frame receives the bending load and the torsional load at the same time. This results in the largest loaded strength. Therefore, strength test of the component unit is required. In this study, a component test method based on the FMVSS 207 seating systems test procedure was proposed for the strength analysis of bending load and torsional load of the automotive Bulk Molding Compound (BMC) Seat Back Side Frame. Moreover, strength evaluation according to the carbon band reinforcement was performed. The back-side frame parts of the seat that are applied to the test were manufactured through BMC that is composed of vinyl ester Matrix and short carbon fiber. Then, two kinds of reinforced and non-reinforced parts of carbon band were formed through a high-temperature compression molding process. In addition, the structure that is applied to the component test was constructed by referring to the FMVSS 207. Then, the bending load and the torsional load were applied through the displacement control to perform the strength test for four load conditions. The results of each test are shown through the load-displacement curves of the specimen. The failure strength of the parts caused by the reinforcement of the carbon band was analyzed. Additionally, the fracture characteristics of the parts for four strength tests were evaluated, and the weakness structure of the back-side frame of the seat structure was confirmed according to the test conditions. Through the bending and torsional strength test methods, we confirmed the strength and fracture characteristics of BMC Seat Back Side Frame according to the carbon band reinforcement. And we proposed a method of testing the part strength of a seat back frame for vehicles that can meet the FMVSS 207.

Keywords: seat back frame, bending and torsional strength, BMC (Bulk Molding Compound), FMVSS 207 seating systems

Procedia PDF Downloads 186
298 Integration of the Electro-Activation Technology for Soy Meal Valorization

Authors: Natela Gerliani, Mohammed Aider

Abstract:

Nowadays, the interest of using sustainable technologies for protein extraction from underutilized oilseeds is growing. Currently, a major disposal problem for the oil industry is by-products of plant food processing such as soybean meal. That is why valorization of soybean meal is important for the oil industry since it contains high-quality proteins and other valuable components. Generally, soybean meal is used in livestock and poultry feed but is rarely used in human feed. Though chemical composition of this meal compensate nutritional deficiency and can be used to balance protein in human food. Regarding the efficiency of soybean meal valorization, extraction is a key process for obtaining enriched protein ingredient, which can be incorporated into the food matrix. However, most of the food components such as proteins extracted from oilseeds by-products imply the utilization of organic and inorganic chemicals (e.g. acids, bases, TCA-acetone) having a significant environmental impact. In a context of sustainable production, the use of an electro-activation technology seems to be a good alternative. Indeed, the electro-activation technology requires only water, food grade salt and electricity as main materials. Moreover, this innovative technology helps to avoid special equipment and trainings for workers safety as well as transport and storage of hazardous materials. Electro-activation is a technology based on applied electrochemistry for the generation of acidic and alkaline solutions on the basis of the oxidation-reduction reactions that occur at the vicinity electrode/solution interfaces. It is an eco-friendly process that can be used to replace the conventional acidic and alkaline extraction. In this research, the electro-activation technology for protein extraction from soybean meal was carried out in the electro-activation reactor. This reactor consists of three compartments separated by cation and anion exchange membranes that allow creating non-contacting acidic and basic solutions. Different current intensities (150 mA, 300 mA and 450 mA) and treatment durations (10 min, 30 min and 50 min) were tested. The results showed that the extracts obtained by the electro-activation method have good quality in comparison to conventional extracts. For instance, extractability obtained with electro-activation method was 55% whereas with the conventional method it was only 36%. Moreover, a maximum protein quantity of 48 % in the extract was obtained with the electro-activation technology comparing to the maximum amount of protein obtained by conventional extraction of 41 %. Hence, the environmentally sustainable electro-activation technology seems to be a promising type of protein extraction that can replace conventional extraction technology.

Keywords: by-products, eco-friendly technology, electro-activation, soybean meal

Procedia PDF Downloads 203
297 Gait Analysis in Total Knee Arthroplasty

Authors: Neeraj Vij, Christian Leber, Kenneth Schmidt

Abstract:

Introduction: Total knee arthroplasty is a common procedure. It is well known that the biomechanics of the knee do not fully return to their normal state. Motion analysis has been used to study the biomechanics of the knee after total knee arthroplasty. The purpose of this scoping review is to summarize the current use of gait analysis in total knee arthroplasty and to identify the preoperative motion analysis parameters for which a systematic review aimed at determining the reliability and validity may be warranted. Materials and Methods: This IRB-exempt scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist strictly. Five search engines were searched for a total of 279 articles. Articles underwent a title and abstract screening process followed by full-text screening. Included articles were placed in the following sections: the role of gait analysis as a research tool for operative decisions, other research applications for motion analysis in total knee arthroplasty, gait analysis as a tool in predicting radiologic outcomes, gait analysis as a tool in predicting clinical outcomes. Results: Eleven articles studied gait analysis as a research tool in studying operative decisions. Motion analysis is currently used to study surgical approaches, surgical techniques, and implant choice. Five articles studied other research applications for motion analysis in total knee arthroplasty. Other research applications for motion analysis currently include studying the role of the unicompartmental knee arthroplasty and novel physical therapy protocols aimed at optimizing post-operative care. Two articles studied motion analysis as a tool for predicting radiographic outcomes. Preoperative gait analysis has identified parameters than can predict postoperative tibial component migration. 15 articles studied motion analysis in conjunction with clinical scores. Conclusions: There is a broad range of applications within the research domain of total knee arthroplasty. The potential application is likely larger. However, the current literature is limited by vague definitions of ‘gait analysis’ or ‘motion analysis’ and a limited number of articles with preoperative and postoperative functional and clinical measures. Knee adduction moment, knee adduction impulse, total knee range of motion, varus angle, cadence, stride length, and velocity have the potential for integration into composite clinical scores. A systematic review aimed at determining the validity, reliability, sensitivities, and specificities of these variables is warranted.

Keywords: motion analysis, joint replacement, patient-reported outcomes, knee surgery

Procedia PDF Downloads 67
296 Metabolic Profiling in Breast Cancer Applying Micro-Sampling of Biological Fluids and Analysis by Gas Chromatography – Mass Spectrometry

Authors: Mónica P. Cala, Juan S. Carreño, Roland J.W. Meesters

Abstract:

Recently, collection of biological fluids on special filter papers has become a popular micro-sampling technique. Especially, the dried blood spot (DBS) micro-sampling technique has gained much attention and is momently applied in various life sciences reserach areas. As a result of this popularity, DBS are not only intensively competing with the venous blood sampling method but are at this moment widely applied in numerous bioanalytical assays. In particular, in the screening of inherited metabolic diseases, pharmacokinetic modeling and in therapeutic drug monitoring. Recently, microsampling techniques were also introduced in “omics” areas, whereunder metabolomics. For a metabolic profiling study we applied micro-sampling of biological fluids (blood and plasma) from healthy controls and from women with breast cancer. From blood samples, dried blood and plasma samples were prepared by spotting 8uL sample onto pre-cutted 5-mm paper disks followed by drying of the disks for 100 minutes. Dried disks were then extracted by 100 uL of methanol. From liquid blood and plasma samples 40 uL were deproteinized with methanol followed by centrifugation and collection of supernatants. Supernatants and extracts were evaporated until dryness by nitrogen gas and residues derivated by O-methyxyamine and MSTFA. As internal standard C17:0-methylester in heptane (10 ppm) was used. Deconvolution and alignment of and full scan (m/z 50-500) MS data were done by AMDIS and SpectConnect (http://spectconnect.mit.edu) software, respectively. Statistical Data analysis was done by Principal Component Analysis (PCA) using R software. The results obtained from our preliminary study indicate that the use of dried blood/plasma on paper disks could be a powerful new tool in metabolic profiling. Many of the metabolites observed in plasma (liquid/dried) were also positively identified in whole blood samples (liquid/dried). Whole blood could be a potential substitute matrix for plasma in Metabolomic profiling studies as well also micro-sampling techniques for the collection of samples in clinical studies. It was concluded that the separation of the different sample methodologies (liquid vs. dried) as observed by PCA was due to different sample treatment protocols applied. More experiments need to be done to confirm obtained observations as well also a more rigorous validation .of these micro-sampling techniques is needed. The novelty of our approach can be found in the application of different biological fluid micro-sampling techniques for metabolic profiling.

Keywords: biofluids, breast cancer, metabolic profiling, micro-sampling

Procedia PDF Downloads 388
295 Safety and Feasibility of Distal Radial Balloon Aortic Valvuloplasty - The DR-BAV Study

Authors: Alexandru Achim, Tamás Szűcsborus, Viktor Sasi, Ferenc Nagy, Zoltán Jambrik, Attila Nemes, Albert Varga, Călin Homorodean, Olivier F. Bertrand, Zoltán Ruzsa

Abstract:

Aim: Our study aimed to establish the safety and the technical success of distal radial access for balloon aortic valvuloplasty (DR-BAV). The secondary objective was to determine the effectiveness and appropriate role of DR-BAV within half year follow-up. Methods: Clinical and angiographic data from 32 consecutive patients with symptomatic aortic stenosis were evaluated in a prospective pilot single-center study. Between 2020 and 2021, the patients were treated utilizing dual distal radial access with 6-10F compatible balloons. The efficacy endpoint was divided into technical success (successful valvuloplasty balloon inflation at the aortic valve and absence of intra- or periprocedural major complications), hemodynamic success (a reduction of the mean invasive gradient >30%), and clinical success (an improvement of at least one clinical category in the NYHA classification). The safety endpoints were vascular complications (major and minor Valve Academic Research Consortium (VARC)-2 bleeding, diminished or lost arterial pulse or the presence of any pseudo-aneurysm or arteriovenous fistula during the clinical follow-up) and major adverse events, MAEs (the composite of death, stroke, myocardial infarction, and urgent major aortic valve replacement or implantation during the hospital stay and or at one-month follow-up). Results: 32 patients (40 % male, mean age 80 ± 8,5) with severe aortic valve stenosis were included in the study and 4 patients were excluded. Technical success was achieved in all patients (100%). Hemodynamic success was achieved in 30 patients (93,75%). Invasive max and mean gradients were reduced from 73±22 mm Hg and 49±22 mm Hg to 49±19 mm Hg and 20±13 mm Hg, respectively (p = <.001). Clinical success was achieved in 29 patients (90,6%). In total, no major adverse cardiac or cerebrovascular event nor vascular complications (according to VARC 2 criteria) occurred during the intervention. All-cause death at 6 months was 12%. Conclusion: According to our study, dual distal radial artery access is a safe and effective option for balloon aortic valvuloplasty in patients with severe aortic valve stenosis and can be performed in all patients with sufficient lumen diameter. Future randomized studies are warranted to investigate whether this technique is superior to other approaches.

Keywords: mean invasive gradient, distal radial access for balloon aortic valvuloplasty (DR-BAV), aortic valve stenosis, pseudo-aneurysm, arteriovenous fistula, valve academic research consortium (VARC)-2

Procedia PDF Downloads 58
294 Nanoparticles Modification by Grafting Strategies for the Development of Hybrid Nanocomposites

Authors: Irati Barandiaran, Xabier Velasco-Iza, Galder Kortaberria

Abstract:

Hybrid inorganic/organic nanostructured materials based on block copolymers are of considerable interest in the field of Nanotechnology, taking into account that these nanocomposites combine the properties of polymer matrix and the unique properties of the added nanoparticles. The use of block copolymers as templates offers the opportunity to control the size and the distribution of inorganic nanoparticles. This research is focused on the surface modification of inorganic nanoparticles to reach a good interface between nanoparticles and polymer matrices which hinders the nanoparticle aggregation. The aim of this work is to obtain a good and selective dispersion of Fe3O4 magnetic nanoparticles into different types of block copolymers such us, poly(styrene-b-methyl methacrylate) (PS-b-PMMA), poly(styrene-b-ε-caprolactone) (PS-b-PCL) poly(isoprene-b-methyl methacrylate) (PI-b-PMMA) or poly(styrene-b-butadiene-b-methyl methacrylate) (SBM) by using different grafting strategies. Fe3O4 magnetic nanoparticles have been surface-modified with polymer or block copolymer brushes following different grafting methods (grafting to, grafting from and grafting through) to achieve a selective location of nanoparticles into desired domains of the block copolymers. Morphology of fabricated hybrid nanocomposites was studied by means of atomic force microscopy (AFM) and with the aim to reach well-ordered nanostructured composites different annealing methods were used. Additionally, nanoparticle amount has been also varied in order to investigate the effect of the nanoparticle content in the morphology of the block copolymer. Nowadays different characterization methods were using in order to investigate magnetic properties of nanometer-scale electronic devices. Particularly, two different techniques have been used with the aim of characterizing synthesized nanocomposites. First, magnetic force microscopy (MFM) was used to investigate qualitatively the magnetic properties taking into account that this technique allows distinguishing magnetic domains on the sample surface. On the other hand, magnetic characterization by vibrating sample magnetometer and superconducting quantum interference device. This technique demonstrated that magnetic properties of nanoparticles have been transferred to the nanocomposites, exhibiting superparamagnetic behavior similar to that of the maghemite nanoparticles at room temperature. Obtained advanced nanostructured materials could found possible applications in the field of dye-sensitized solar cells and electronic nanodevices.

Keywords: atomic force microscopy, block copolymers, grafting techniques, iron oxide nanoparticles

Procedia PDF Downloads 239
293 Optimization of Mechanical Properties of Alginate Hydrogel for 3D Bio-Printing Self-Standing Scaffold Architecture for Tissue Engineering Applications

Authors: Ibtisam A. Abbas Al-Darkazly

Abstract:

In this study, the mechanical properties of alginate hydrogel material for self-standing 3D scaffold architecture with proper shape fidelity are investigated. In-lab built 3D bio-printer extrusion-based technology is utilized to fabricate 3D alginate scaffold constructs. The pressure, needle speed and stage speed are varied using a computer-controlled system. The experimental result indicates that the concentration of alginate solution, calcium chloride (CaCl2) cross-linking concentration and cross-linking ratios lead to the formation of alginate hydrogel with various gelation states. Besides, the gelling conditions, such as cross-linking reaction time and temperature also have a significant effect on the mechanical properties of alginate hydrogel. Various experimental tests such as the material gelation, the material spreading and the printability test for filament collapse as well as the swelling test were conducted to evaluate the fabricated 3D scaffold constructs. The result indicates that the fabricated 3D scaffold from composition of 3.5% wt alginate solution, that is prepared in DI water and 1% wt CaCl2 solution with cross-linking ratios of 7:3 show good printability and sustain good shape fidelity for more than 20 days, compared to alginate hydrogel that is prepared in a phosphate buffered saline (PBS). The fabricated self-standing 3D scaffold constructs measured 30 mm × 30 mm and consisted of 4 layers (n = 4) show good pore geometry and clear grid structure after printing. In addition, the percentage change of swelling degree exhibits high swelling capability with respect to time. The swelling test shows that the geometry of 3D alginate-scaffold construct and of the macro-pore are rarely changed, which indicates the capability of holding the shape fidelity during the incubation period. This study demonstrated that the mechanical and physical properties of alginate hydrogel could be tuned for a 3D bio-printing extrusion-based system to fabricate self-standing 3D scaffold soft structures. This 3D bioengineered scaffold provides a natural microenvironment present in the extracellular matrix of the tissue, which could be seeded with the biological cells to generate the desired 3D live tissue model for in vitro and in vivo tissue engineering applications.

Keywords: biomaterial, calcium chloride, 3D bio-printing, extrusion, scaffold, sodium alginate, tissue engineering

Procedia PDF Downloads 89
292 Investigations Of The Service Life Of Different Material Configurations At Solid-lubricated Rolling Bearings

Authors: Bernd Sauer, Michel Werner, Stefan Emrich, Michael Kopnarski, Oliver Koch

Abstract:

Friction reduction is an important aspect in the context of sustainability and energy transition. Rolling bearings are therefore used in many applications in which components move relative to each other. Conventionally lubricated rolling bearings are used in a wide range of applications, but are not suitable under certain conditions. Conventional lubricants such as grease or oil cannot be used at very high or very low temperatures. In addition, these lubricants evaporate at very low ambient pressure, e.g. in a high vacuum environment, making the use of solid lubricated bearings unavoidable. With the use of solid-lubricated bearings, predicting the service life becomes more complex. While the end of the service life of bearings with conventional lubrication is mainly caused by the failure of the bearing components due to material fatigue, solid-lubricated bearings fail at the moment when the lubrication layer is worn and the rolling elements come into direct contact with the raceway during operation. In order to extend the service life of these bearings beyond the service life of the initial coating, the use of transfer lubrication is recommended, in which pockets or sacrificial cages are used in which the balls run and can thus absorb the lubricant, which is then available for lubrication in tribological contact. This contribution presents the results of wear and service life tests on solid-lubricated rolling bearings with sacrificial cage pockets. The cage of the bearing consists of a polyimide (PI) matrix with 15% molybdenum disulfide (MoS2) and serves as a lubrication depot alongside the silver-coated balls. The bearings are tested under high vacuum (pE < 10-2 Pa) at a temperature of 300 °C on a four-bearing test rig. First, investigations of the bearing system within the bearing service life are presented and the torque curve, the wear mass and surface analyses are discussed. With regard to wear, it can be seen that the bearing rings tend to increase in mass over the service life of the bearing, while the balls and the cage tend to lose mass. With regard to the elementary surface properties, the surfaces of the bearing rings and balls are examined in terms of the mass of the elements on them. Furthermore, service life investigations with different material pairings are presented, whereby the focus here is on the service life achieved in addition to the torque curve, wear development and surface analysis. It was shown that MoS2 in the cage leads to a longer service life, while a silver (Ag) coating on the balls has no positive influence on the service life and even appears to reduce it in combination with MoS2.

Keywords: ball bearings, molybdenum disulfide, solid lubricated bearings, solid lubrication mechanisms

Procedia PDF Downloads 19
291 Influence of Thermal Ageing on Microstructural Features and Mechanical Properties of Reduced Activation Ferritic/Martensitic Grades

Authors: Athina Puype, Lorenzo Malerba, Nico De Wispelaere, Roumen Petrov, Jilt Sietsma

Abstract:

Reduced Activation Ferritic/Martensitic (FM) steels like EUROFER are of interest for first wall application in the future demonstration (DEMO) fusion reactor. Depending on the final design codes for the DEMO reactor, the first wall material will have to function in low-temperature mode or high-temperature mode, i.e. around 250-300°C of above 550°C respectively. However, the use of RAFM steels is limited up to a temperature of about 550°C. For the low-temperature application, the material suffers from irradiation embrittlement, due to a shift of ductile-to-brittle transition temperature (DBTT) towards higher temperatures upon irradiation. The high-temperature response of the material is equally insufficient for long-term use in fusion reactors, due to the instability of the matrix phase and coarsening of the precipitates at prolonged high-temperature exposure. The objective of this study is to investigate the influence of thermal ageing for 1000 hrs and 4000 hrs on microstructural features and mechanical properties of lab-cast EUROFER. Additionally, the ageing behavior of the lab-cast EUROFER is compared with the ageing behavior of standard EUROFER97-2 and T91. The microstructural features were investigated with light optical microscopy (LOM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the microstructural features and mechanical properties of four different F/M grades, i.e. T91, EUROFER97-2 and two lab-casted EUROFER grades. After ageing for 1000 hrs, the microstructures exhibit similar martensitic block sizes independent on the grain size before ageing. With respect to the initial coarser microstructures, the aged microstructures displayed a dislocation structure which is partially fragmented by polygonization. On the other hand, the initial finer microstructures tend to be more stable up to 1000hrs resulting in similar grain sizes for the four different steels. Increasing the ageing time to 4000 hrs, resulted in an increase of lath thickness and coarsening of M23C6 precipitates leading to a deterioration of tensile properties.

Keywords: ageing experiments, EUROFER, ferritic/martensitic steels, mechanical properties, microstructure, T91

Procedia PDF Downloads 235
290 Site Suitability of Offshore Wind Energy: A Combination of Geographic Referenced Information and Analytic Hierarchy Process

Authors: Ayat-Allah Bouramdane

Abstract:

Power generation from offshore wind energy does not emit carbon dioxide or other air pollutants and therefore play a role in reducing greenhouse gas emissions from the energy sector. In addition, these systems are considered more efficient than onshore wind farms, as they generate electricity from the wind blowing across the sea, thanks to the higher wind speed and greater consistency in direction due to the lack of physical interference that the land or human-made objects can present. This means offshore installations require fewer turbines to produce the same amount of energy as onshore wind farms. However, offshore wind farms require more complex infrastructure to support them and, as a result, are more expensive to construct. In addition, higher wind speeds, strong seas, and accessibility issues makes offshore wind farms more challenging to maintain. This study uses a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP) to identify the most suitable sites for offshore wind farm development in Morocco, with a particular focus on the Dakhla city. A range of environmental, socio-economic, and technical criteria are taken into account to solve this complex Multi-Criteria Decision-Making (MCDM) problem. Based on experts' knowledge, a pairwise comparison matrix at each level of the hierarchy is performed, and fourteen sub-criteria belong to the main criteria have been weighted to generate the site suitability of offshore wind plants and obtain an in-depth knowledge on unsuitable areas, and areas with low-, moderate-, high- and very high suitability. We find that wind speed is the most decisive criteria in offshore wind farm development, followed by bathymetry, while proximity to facilities, the sediment thickness, and the remaining parameters show much lower weightings rendering technical parameters most decisive in offshore wind farm development projects. We also discuss the potential of other marine renewable energy potential, in Morocco, such as wave and tidal energy. The proposed approach and analysis can help decision-makers and can be applied to other countries in order to support the site selection process of offshore wind farms.

Keywords: analytic hierarchy process, dakhla, geographic referenced information, morocco, multi-criteria decision-making, offshore wind, site suitability

Procedia PDF Downloads 120
289 Radar Cross Section Modelling of Lossy Dielectrics

Authors: Ciara Pienaar, J. W. Odendaal, J. Joubert, J. C. Smit

Abstract:

Radar cross section (RCS) of dielectric objects play an important role in many applications, such as low observability technology development, drone detection, and monitoring as well as coastal surveillance. Various materials are used to construct the targets of interest such as metal, wood, composite materials, radar absorbent materials, and other dielectrics. Since simulated datasets are increasingly being used to supplement infield measurements, as it is more cost effective and a larger variety of targets can be simulated, it is important to have a high level of confidence in the predicted results. Confidence can be attained through validation. Various computational electromagnetic (CEM) methods are capable of predicting the RCS of dielectric targets. This study will extend previous studies by validating full-wave and asymptotic RCS simulations of dielectric targets with measured data. The paper will provide measured RCS data of a number of canonical dielectric targets exhibiting different material properties. As stated previously, these measurements are used to validate numerous CEM methods. The dielectric properties are accurately characterized to reduce the uncertainties in the simulations. Finally, an analysis of the sensitivity of oblique and normal incidence scattering predictions to material characteristics is also presented. In this paper, the ability of several CEM methods, including method of moments (MoM), and physical optics (PO), to calculate the RCS of dielectrics were validated with measured data. A few dielectrics, exhibiting different material properties, were selected and several canonical targets, such as flat plates and cylinders, were manufactured. The RCS of these dielectric targets were measured in a compact range at the University of Pretoria, South Africa, over a frequency range of 2 to 18 GHz and a 360° azimuth angle sweep. This study also investigated the effect of slight variations in the material properties on the calculated RCS results, by varying the material properties within a realistic tolerance range and comparing the calculated RCS results. Interesting measured and simulated results have been obtained. Large discrepancies were observed between the different methods as well as the measured data. It was also observed that the accuracy of the RCS data of the dielectrics can be frequency and angle dependent. The simulated RCS for some of these materials also exhibit high sensitivity to variations in the material properties. Comparison graphs between the measured and simulation RCS datasets will be presented and the validation thereof will be discussed. Finally, the effect that small tolerances in the material properties have on the calculated RCS results will be shown. Thus the importance of accurate dielectric material properties for validation purposes will be discussed.

Keywords: asymptotic, CEM, dielectric scattering, full-wave, measurements, radar cross section, validation

Procedia PDF Downloads 218
288 Polymeric Composites with Synergetic Carbon and Layered Metallic Compounds for Supercapacitor Application

Authors: Anukul K. Thakur, Ram Bilash Choudhary, Mandira Majumder

Abstract:

In this technologically driven world, it is requisite to develop better, faster and smaller electronic devices for various applications to keep pace with fast developing modern life. In addition, it is also required to develop sustainable and clean sources of energy in this era where the environment is being threatened by pollution and its severe consequences. Supercapacitor has gained tremendous attention in the recent years because of its various attractive properties such as it is essentially maintenance-free, high specific power, high power density, excellent pulse charge/discharge characteristics, exhibiting a long cycle-life, require a very simple charging circuit and safe operation. Binary and ternary composites of conducting polymers with carbon and other layered transition metal dichalcogenides have shown tremendous progress in the last few decades. Compared with bulk conducting polymer, these days conducting polymers have gained more attention because of their high electrical conductivity, large surface area, short length for the ion transport and superior electrochemical activity. These properties make them very suitable for several energy storage applications. On the other hand, carbon materials have also been studied intensively, owing to its rich specific surface area, very light weight, excellent chemical-mechanical property and a wide range of the operating temperature. These have been extensively employed in the fabrication of carbon-based energy storage devices and also as an electrode material in supercapacitors. Incorporation of carbon materials into the polymers increases the electrical conductivity of the polymeric composite so formed due to high electrical conductivity, high surface area and interconnectivity of the carbon. Further, polymeric composites based on layered transition metal dichalcogenides such as molybdenum disulfide (MoS2) are also considered important because they are thin indirect band gap semiconductors with a band gap around 1.2 to 1.9eV. Amongst the various 2D materials, MoS2 has received much attention because of its unique structure consisting of a graphene-like hexagonal arrangement of Mo and S atoms stacked layer by layer to give S-Mo-S sandwiches with weak Van-der-Waal forces between them. It shows higher intrinsic fast ionic conductivity than oxides and higher theoretical capacitance than the graphite.

Keywords: supercapacitor, layered transition-metal dichalcogenide, conducting polymer, ternary, carbon

Procedia PDF Downloads 227
287 Torn Between the Lines of Border: The Pakhtuns of Pakistan and Afghanistan in Search of Identity

Authors: Priyanka Dutta Chowdhury

Abstract:

A globalized connected world, calling loud for a composite culture, was still not able to erase the pain of a desired nationalism based on cultural identity. In the South Asian region, the random drawing of the boundaries without taking the ethnic aspect into consideration have always challenged the very basis of the existence of certain groups. The urge to reunify with the fellow brothers on both sides of the border have always called for a chaos and schism in the countries of this region. Sometimes this became a tool to bargain with the state and find a favorable position in the power structure on the basis of cultural identity. In Pakistan and Afghanistan, the Pakhtuns who are divided across the border of the two countries, from the inception of creation of Pakistan have posed various challenges and hampered the growth of a consolidated nation. The Pakhtuns or Pashtuns of both Pakistan and Afghanistan have a strong cultural affinity which blurs their physical distancing and calls for a nationalism based on this ethnic affiliation. Both the sides wanted to create Pakhtunistan unifying all the Pakhtuns of the region. For long, this group have denied to accept the Durand line separating the two. This was an area of concern especially for the Pakhtuns of Pakistan torn between the decision either to join Afghanistan, create a nation of their own or be a part of Pakistan. This ethnic issue became a bone of contention between the two countries. Later, though well absorbed and recognized in the respective countries, they have fought for their identity and claimed for a dominant position in the politics of the nations. Because of the porous borders often influx of refugees was seen especially during Afghan Wars and later many extremists’ groups were born from them especially the Taliban. In the recent string of events, when the Taliban, who are mostly Pakhtuns ethnically, came in power in Afghanistan, a wave of sympathy arose in Pakistan. This gave a strengthening position to the religious Pakhtuns across the border. It is to be noted here that a fragmented Pakhtun identity between the religious and seculars were clearly visible, voicing for their place in the political hierarchy of the country with a vision distinct from each other especially in Pakistan. In this context the paper tries to evaluate the reasons for this cultural turmoil between the countries and this ethnic group. It also aims to analyze the concept of how the identity politics still holds its relevance in the contemporary world. Additionally, the recent trend of fragmented identity points towards instrumentalization of this ethnic groups, who are engaged in the bargaining process with the state for a robust position in the power structure. In the end, the paper aims to deduct from the theoretical conditions of identity politics, whether this is a primordial or a situational tool to have a visibility in the power structure of the contemporary world.

Keywords: cultural identity, identity politics, instrumentalization of identity pakhtuns, power structure

Procedia PDF Downloads 65
286 Particle Separation Using Individually-Controlled Magnetic Soft Artificial Cilia

Authors: Yau-Luen Ng, Nathan Banka, Santosh Devasia

Abstract:

In this paper, a method based on soft artificial cilia is introduced to separate particles based on size and mass. In nature, cilia are used for fluid propulsion in the mammalian circulatory system, as well as for swimming and size-selective particle entrainment for feeding in microorganisms. Inspired by biological cilia, an array of artificial cilia was fabricated using Polydimethylsiloxane (PDMS) to simulate the actual motion. A row of four individually-controlled magnetic artificial cilia in a semi-circular channel are actuated by the magnetic fields from four permanent magnets. Each cilium is a slender rectangular cantilever approximately 13mm long made from a composite of PDMS and carbonyl iron particles. A time-varying magnetic force is achieved by periodically varying the out-of-plane distance from the permanent magnets to the cilia, resulting in large-amplitude deflections of the cilia that can be used to drive fluid motion. Previous results have shown that this system of individually-controlled magnetic cilia can generate effective mixing flows; the purpose of the present work is to apply the individual cilia control to a particle separation task. Based on the observed beating patterns of cilia arrays in nature, the experimental beating patterns were selected as a metachronal wave, in which a fixed phase lead or lag is imposed between adjacent cilia. Additionally, the beating frequency was varied. For each set of experimental parameters, the channel was filled with water and polyethylene microspheres introduced at the center of the cilia array. Two types of particles were used: large red microspheres with density 0.9971 g/cm³ and 850-1000 μm avg. diameter, and small blue microspheres with density 1.06 g/cm³ and diameter 30 μm. At low beating frequencies, all particles were propelled in the mean flow direction. However, the large particles were observed to reverse directions above about 4.8 Hz, whereas reversal of the small particle transport direction did not occur until 6 Hz. Between these two transition frequencies, the large and small particles can be separated as they move in opposite directions. The experimental results show that selecting an appropriate cilia beating pattern can lead to selective transport of neutrally-buoyant particles based on their size. Importantly, the separation threshold can be chosen dynamically by adjusting the actuation frequency. However, further study is required to determine the range of particle sizes that can be effectively separated for a given system geometry.

Keywords: magnetic cilia, particle separation, tunable separation, soft actutors

Procedia PDF Downloads 178
285 Medial Temporal Tau Predicts Memory Decline in Cognitively Unimpaired Elderly

Authors: Angela T. H. Kwan, Saman Arfaie, Joseph Therriault, Zahra Azizi, Firoza Z. Lussier, Cecile Tissot, Mira Chamoun, Gleb Bezgin, Stijn Servaes, Jenna Stevenon, Nesrine Rahmouni, Vanessa Pallen, Serge Gauthier, Pedro Rosa-Neto

Abstract:

Alzheimer’s disease (AD) can be detected in living people using in vivo biomarkers of amyloid-β (Aβ) and tau, even in the absence of cognitive impairment during the preclinical phase. [¹⁸F]-MK-6420 is a high affinity positron emission tomography (PET) tracer that quantifies tau neurofibrillary tangles, but its ability to predict cognitive changes associated with early AD symptoms, such as memory decline, is unclear. Here, we assess the prognostic accuracy of baseline [18F]-MK-6420 tau PET for predicting longitudinal memory decline in asymptomatic elderly individuals. In a longitudinal observational study, we evaluated a cohort of cognitively normal elderly participants (n = 111) from the Translational Biomarkers in Aging and Dementia (TRIAD) study (data collected between October 2017 and July 2020, with a follow-up period of 12 months). All participants underwent tau PET with [¹⁸F]-MK-6420 and Aβ PET with [¹⁸F]-AZD-4694. The exclusion criteria included the presence of head trauma, stroke, or other neurological disorders. There were 111 eligible participants who were chosen based on the availability of Aβ PET, tau PET, magnetic resonance imaging (MRI), and APOEε4 genotyping. Among these participants, the mean (SD) age was 70.1 (8.6) years; 20 (18%) were tau PET positive, and 71 of 111 (63.9%) were women. A significant association between baseline Braak I-II [¹⁸F]-MK-6240 SUVR positivity and change in composite memory score was observed at the 12-month follow-up, after correcting for age, sex, and years of education (Logical Memory and RAVLT, standardized beta = -0.52 (-0.82-0.21), p < 0.001, for dichotomized tau PET and -1.22 (-1.84-(-0.61)), p < 0.0001, for continuous tau PET). Moderate cognitive decline was observed for A+T+ over the follow-up period, whereas no significant change was observed for A-T+, A+T-, and A-T-, though it should be noted that the A-T+ group was small.Our results indicate that baseline tau neurofibrillary tangle pathology is associated with longitudinal changes in memory function, supporting the use of [¹⁸F]-MK-6420 PET to predict the likelihood of asymptomatic elderly individuals experiencing future memory decline. Overall, [¹⁸F]-MK-6420 PET is a promising tool for predicting memory decline in older adults without cognitive impairment at baseline. This is of critical relevance as the field is shifting towards a biological model of AD defined by the aggregation of pathologic tau. Therefore, early detection of tau pathology using [¹⁸F]-MK-6420 PET provides us with the hope that living patients with AD may be diagnosed during the preclinical phase before it is too late.

Keywords: alzheimer’s disease, braak I-II, in vivo biomarkers, memory, PET, tau

Procedia PDF Downloads 54
284 Enzymatic Hydrolysis of Sugar Cane Bagasse Using Recombinant Hemicellulases

Authors: Lorena C. Cintra, Izadora M. De Oliveira, Amanda G. Fernandes, Francieli Colussi, Rosália S. A. Jesuíno, Fabrícia P. Faria, Cirano J. Ulhoa

Abstract:

Xylan is the main component of hemicellulose and for its complete degradation is required cooperative action of a system consisting of several enzymes including endo-xylanases (XYN), β-xylosidases (XYL) and α-L-arabinofuranosidases (ABF). The recombinant hemicellulolytic enzymes an endoxylanase (HXYN2), β-xylosidase (HXYLA), and an α-L-arabinofuranosidase (ABF3) were used in hydrolysis tests. These three enzymes are produced by filamentous fungi and were expressed heterologously and produced in Pichia pastoris previously. The aim of this work was to evaluate the effect of recombinant hemicellulolytic enzymes on the enzymatic hydrolysis of sugarcane bagasse (SCB). The interaction between the three recombinant enzymes during SCB pre-treated by steam explosion hydrolysis was performed with different concentrations of HXYN2, HXYLA and ABF3 in different ratios in according to a central composite rotational design (CCRD) 23, including six axial points and six central points, totaling 20 assays. The influence of the factors was assessed by analyzing the main effects and interaction between the factors, calculated using Statistica 8.0 software (StatSoft Inc. Tulsa, OK, USA). The Pareto chart was constructed with this software and showed the values of the Student’s t test for each recombinant enzyme. It was considered as response variable the quantification of reducing sugars by DNS (mg/mL). The Pareto chart showed that the recombinant enzyme ABF3 exerted more significant effect during SCB hydrolysis, with higher concentrations and with the lowest concentration of this enzyme. It was performed analysis of variance according to Fisher method (ANOVA). In ANOVA for the release of reducing sugars (mg/ml) as the variable response, the concentration of ABF3 showed significance during hydrolysis SCB. The result obtained by ANOVA, is in accordance with those presented in the analysis method based on the statistical Student's t (Pareto chart). The degradation of the central chain of xylan by HXYN2 and HXYLA was more strongly influenced by ABF3 action. A model was obtained, and it describes the performance of the interaction of all three enzymes for the release of reducing sugars, and can be used to better explain the results of the statistical analysis. The formulation capable of releasing the higher levels of reducing sugars had the following concentrations: HXYN2 with 600 U/g of substrate, HXYLA with 11.5 U.g-1 and ABF3 with 0.32 U.g-1. In conclusion, the recombinant enzyme that has a more significant effect during SCB hydrolysis was ABF3. It is noteworthy that the xylan present in the SCB is arabinoglucoronoxylan, due to this fact debranching enzymes are important to allow access of enzymes that act on the central chain.

Keywords: experimental design, hydrolysis, recombinant enzymes, sugar cane bagasse

Procedia PDF Downloads 199
283 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength

Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong

Abstract:

This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.

Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification

Procedia PDF Downloads 181
282 The Effect of Mesenchymal Stem Cells on Full Thickness Skin Wound Healing in Albino Rats

Authors: Abir O. El Sadik

Abstract:

Introduction: Wound healing involves the interaction of multiple biological processes among different types of cells, intercellular matrix and specific signaling factors producing enhancement of cell proliferation of the epidermis over dermal granulation tissue. Several studies investigated multiple strategies to promote wound healing and to minimize infection and fluid losses. However, burn crisis, and its related morbidity and mortality are still elevated. The aim of the present study was to examine the effects of mesenchymal stem cells (MSCs) in accelerating wound healing and to compare the most efficient route of administration of MSCs, either intradermal or systemic injection, with focusing on the mechanisms producing epidermal and dermal cell regeneration. Material and methods: Forty-two adult male Sprague Dawley albino rats were divided into three equal groups (fourteen rats in each group): control group (group I); full thickness surgical skin wound model, Group II: Wound treated with systemic injection of MSCs and Group III: Wound treated with intradermal injection of MSCs. The healing ulcer was examined on day 2, 6, 10 and 15 for gross morphological evaluation and on day 10 and 15 for fluorescent, histological and immunohistochemical studies. Results: The wounds of the control group did not reach complete closure up to the end of the experiment. In MSCs treated groups, better and faster healing of wounds were detected more than the control group. Moreover, the intradermal route of administration of stem cells increased the rate of healing of the wounds more than the systemic injection. In addition, the wounds were found completely healed by the end of the fifteenth day of the experiment in all rats of the group injected intradermally. Microscopically, the wound areas of group III were hardly distinguished from the adjacent normal skin with complete regeneration of all skin layers; epidermis, dermis, hypodermis and underlying muscle layer. Fully regenerated hair follicles and sebaceous glands in the dermis of the healed areas surrounded by different arrangement of collagen fibers with a significant increase in their area percent were recorded in this group more than in other groups. Conclusion: MSCs accelerate the healing process of wound closure. The route of administration of MSCs has a great influence on wound healing as intradermal injection of MSCs was more effective in enhancement of wound healing than systemic injection.

Keywords: intradermal, mesenchymal stem cells, morphology, skin wound, systemic injection

Procedia PDF Downloads 175
281 Formulation and Characterization of Antimicrobial Herbal Mouthwash from Some Herbal Extracts for Treatment of Periodontal Diseases

Authors: Reenu Yadav, Abhay Asthana, S. K. Yadav

Abstract:

Purpose: The aim of the present work was to develop an oral gel for brushing with an antimicrobial activity which will cure/protect from various periodontal diseases such as periodontitis, gingivitis, and pyorrhea. Methods: Plant materials procured from local suppliers, extracted and standardized. Screening of antimicrobial activity was carried out with the help of disk diffusion method. The gel was formulated by dried extracts of Beautea monosperma and Cordia obliquus. Gels were evaluated on various parameters and standardization of the formulation was performed. The release of drugs was studied in pH 6.8 using a mastication device.Total phenolic and flavonoid contents were estimated by folin-Ciocalteu and aluminium chloride method, and stability studies were performed (40°C and RH 75% ± 5% for 90 days) to assess the effect of temperature and humidity on the concentration of phenolic and flavonoid contents. The results of accelerated stability conditions were compared with that of samples kept at controlled conditions (RT). The control samples were kept at room temperature (25°C, 35% RH for 180 days). Results: Results are encouraging; extracts possess significant antimicrobial activity at very low concentration (15µg/disc, 20µg/disc and 15 µg/ disc) on oral pathogenic bacteria. The formulation has optimal characteristics, as well as has a pleasant appearance, fragrance, texture, and taste, is highly acceptable by the volunteers. The diffusion coefficient values ranged from 0.6655 to 0.9164. Since the R values of korsmayer papas were close to 1, Drug release from formulation follows matrix diffusion kinetics. Hence, diffusion was the mechanism of the drug release. Formulation follows non-Fickian transport mechanism. Most Formulations released 50 % of their contents within 25-30 minutes. Results obtained from the accelerated stability studies are indicative of a slight reduction in flavonoids and phenolic contents with time on long time storage. When measured degradation under ambient conditions, degradation was significantly lower than in accelerated stability study. Conclusion: Plant extracts possess compounds with antimicrobial properties can be used as. Developed formulation will cure/protect from various periodontal diseases. Further development and evaluations oral gel including the isolated compounds on the commercial scale and their clinical and toxicological studies are the future challenges.

Keywords: herbal gel, dental care, ambient conditions, commercial scale

Procedia PDF Downloads 416
280 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples

Authors: Ahmed S. Fayed, Umima M. Mansour

Abstract:

Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.

Keywords: PVC Sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol

Procedia PDF Downloads 191
279 Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms

Authors: Dhruvit S. Berawala, Jann R. Ursin, Obrad Slijepcevic

Abstract:

Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.

Keywords: adsorption, diffusion, non-linear flow, shale gas production

Procedia PDF Downloads 144
278 Climate Change and Food Security in Nigeria: The World Bank Assisted Third National Fadama Development Programme (Nfdp Iii) Approach in Rivers State, Niger Delta, Nigeria

Authors: Temple Probyne Abali

Abstract:

Port Harcourt, Rivers State in the Niger Delta region of Nigeria is bedeviled by the phenomenon of climatechange, posing threat to food security and livelihood. This study examined a 4 decadel (1980-2020) trend of climate change as well as its socio-economic impact on food security in the region. Furthermore, to achieve sustainable food security and livelihood amidst the phenomenon, the study adopted the World Bank Assisted Third National Fadama Development Programme approach. The data source for climate change involved secondary data from Nigeria Meteorological Agency (NIMET). Consequently, the results for climate change over the 4decade period were displayed in tables, charts and maps for the expected changes. Data sources on socio-economic impact of food security and livelihood were acquired through questionnairedesign. A purposive random sampling technique was used in selecting 5 coastal communities inthe region known for viable economic potentials for agricultural development and the resultswere analyzed using Analysis of Variance (ANOVA). The Participatory Rural Appraisal (PRA) technique of the World Bank for needs assessment wasadopted in selecting 5 agricultural sub-project proposals/activities based on groups’ commoneconomic interest from a total of 1,000 farmers each drawn from the 5 communities of differentage groups including men, women, youths and the vulnerable. Based on the farmers’ sub-projectinterests, the various groups’ Strength, Weakness, Opportunities and Threats (SWOT), Problem Listing Matrix, Skill Gap Analysis as well as EIAson their sub-project proposals/activities were analyzed with substantialMonitoring and Evaluation (M & E), using the Specific, Measurable, Attribute, Reliable and Time bound (SMART)approach. Based on the findings from the PRA technique, the farmers recorded considerableincreaseinincomeofover200%withinthe5yearprojectplan(2008-2013).Thestudyrecommends capacity building and advisory services on this PRA innovation. By so doing, there would be a sustainable increase in agricultural production and assured food security in an environmental friendly manner, in line with the United Nation’s Sustainable Development Goals(SDGs).

Keywords: climate change, food security, fadama, world bank, agriculture, sdgs

Procedia PDF Downloads 63
277 Preliminary Study of the Hydrothermal Polymetallic Ore Deposit at the Karancs Mountain, North-East Hungary

Authors: Eszter Kulcsar, Agnes Takacs, Gabriella B. Kiss, Peter Prakfalvi

Abstract:

The Karancs Mountain is part of the Miocene Inner Carpathian Volcanic Belt and is located in N-NE Hungary, along the Hungarian-Slovakian border. The 14 Ma old andesitic-dacitic units are surrounded by Oligocene sedimentary units (sandstone, siltstone). The host rocks of the mineralisation are siliceous and/or argillaceous volcanic units, quartz veins, hydrothermal breccia, and strongly silicified vuggy rocks, found in the various altered volcanic units. The hydrothermal breccia consists of highly silicified vuggy quartz clasts in quartz matrix. The hydrothermal alteration of the host units shows structural control at the deeper levels. The main ore minerals are galena, pyrite, marcasite, sphalerite, hematite, magnetite, arsenopyrite, anglesite and argentite The mineralisation was first mentioned in 1944 and the first exploration took place between 1961 and 1962 in the area. The first ore geological studies were performed between 1984-1985. The exploration programme was limited only to surface sampling; no drilling programme was performed. Petrographical and preliminary fluid inclusion studies were performed on calcite samples from a galena-bearing vein. Despite the early discovery of the mineralisation, no detailed description is available, thus its size, characteristics, and origin have remained unknown. The aim of this study is to examine the mineralisation, describe the characteristics in detail and to test the possible gold content of the various quartz veins and breccias. Finally, we also investigate the potential relation of the hydrothermal mineralisation to the surrounding similar mineralisations with similar ages (e.g. W-Mátra Mountains in Hungary, Banska Bystrica, Banska Stiavnica in Slovakia) in order to place the mineralisation within the volcanic-hydrothermal evolution of the Miocene Inner Carpathian Belt. As first steps, the study includes field mapping, traditional petrological and ore microscopy; X-ray diffraction analysis; SEM-EDS and EMPA studies on ore minerals, to obtain mineral chemical information. Fluid inclusion petrography and microthermometry and micro-Raman-spectroscopy studies are also planned on quartz-hosted inclusions to investigate the physical and chemical properties of the ore-forming fluid.

Keywords: epithermal, Karancs Mountain, Hungary, Miocene Inner Carpathian volcanic belt, polimetallic ore deposit

Procedia PDF Downloads 108
276 Fracture Behaviour of Functionally Graded Materials Using Graded Finite Elements

Authors: Mohamad Molavi Nojumi, Xiaodong Wang

Abstract:

In this research fracture behaviour of linear elastic isotropic functionally graded materials (FGMs) are investigated using modified finite element method (FEM). FGMs are advantageous because they enhance the bonding strength of two incompatible materials, and reduce the residual stress and thermal stress. Ceramic/metals are a main type of FGMs. Ceramic materials are brittle. So, there is high possibility of crack existence during fabrication or in-service loading. In addition, damage analysis is necessary for a safe and efficient design. FEM is a strong numerical tool for analyzing complicated problems. Thus, FEM is used to investigate the fracture behaviour of FGMs. Here an accurate 9-node biquadratic quadrilateral graded element is proposed in which the influence of the variation of material properties is considered at the element level. The stiffness matrix of graded elements is obtained using the principle of minimum potential energy. The implementation of graded elements prevents the forced sudden jump of material properties in traditional finite elements for modelling FGMs. Numerical results are verified with existing solutions. Different numerical simulations are carried out to model stationary crack problems in nonhomogeneous plates. In these simulations, material variation is supposed to happen in directions perpendicular and parallel to the crack line. Two special linear and exponential functions have been utilized to model the material gradient as they are mostly discussed in literature. Also, various sizes of the crack length are considered. A major difference in the fracture behaviour of FGMs and homogeneous materials is related to the break of material symmetry. For example, when the material gradation direction is normal to the crack line, even under applying the mode I loading there exists coupled modes I and II of fracture which originates from the induced shear in the model. Therefore, the necessity of the proper modelling of the material variation should be considered in capturing the fracture behaviour of FGMs specially, when the material gradient index is high. Fracture properties such as mode I and mode II stress intensity factors (SIFs), energy release rates, and field variables near the crack tip are investigated and compared with results obtained using conventional homogeneous elements. It is revealed that graded elements provide higher accuracy with less effort in comparison with conventional homogeneous elements.

Keywords: finite element, fracture mechanics, functionally graded materials, graded element

Procedia PDF Downloads 151