Search results for: learning trajectories
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7490

Search results for: learning trajectories

7490 Application of Fourier Series Based Learning Control on Mechatronic Systems

Authors: Sandra Baßler, Peter Dünow, Mathias Marquardt

Abstract:

A Fourier series based learning control (FSBLC) algorithm for tracking trajectories of mechanical systems with unknown nonlinearities is presented. Two processes are introduced to which the FSBLC with PD controller is applied. One is a simplified service robot capable of climbing stairs due to special wheels and the other is a propeller driven pendulum with nearly the same requirements on control. Additionally to the investigation of learning the feed forward for the desired trajectories some considerations on the implementation of such an algorithm on low cost microcontroller hardware are made. Simulations of the service robot as well as practical experiments on the pendulum show the capability of the used FSBLC algorithm to perform the task of improving control behavior for repetitive task of such mechanical systems.

Keywords: climbing stairs, FSBLC, ILC, service robot

Procedia PDF Downloads 314
7489 Health Trajectory Clustering Using Deep Belief Networks

Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour

Abstract:

We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.

Keywords: health trajectory, clustering, deep learning, DBN

Procedia PDF Downloads 369
7488 Assessing Land Cover Change Trajectories in Olomouc, Czech Republic

Authors: Mukesh Singh Boori, Vít Voženílek

Abstract:

Olomouc is a unique and complex landmark with widespread forestation and land use. This research work was conducted to assess important and complex land use change trajectories in Olomouc region. Multi-temporal satellite data from 1991, 2001 and 2013 were used to extract land use/cover types by object oriented classification method. To achieve the objectives, three different aspects were used: (1) Calculate the quantity of each transition; (2) Allocate location based landscape pattern (3) Compare land use/cover evaluation procedure. Land cover change trajectories shows that 16.69% agriculture, 54.33% forest and 21.98% other areas (settlement, pasture and water-body) were stable in all three decade. Approximately 30% of the study area maintained as a same land cove type from 1991 to 2013. Here broad scale of political and socio-economic factors was also affect the rate and direction of landscape changes. Distance from the settlements was the most important predictor of land cover change trajectories. This showed that most of landscape trajectories were caused by socio-economic activities and mainly led to virtuous change on the ecological environment.

Keywords: remote sensing, land use/cover, change trajectories, image classification

Procedia PDF Downloads 404
7487 Trapped Versus Stepping Stones: Work Trajectories of Young Workers During the COVID-19 Pandemic

Authors: Goh Mingyuan Asher, Nurul Fadiah Johari, Neo Yu Wei, Kim Aryung, Ho Kong Chong, Irene Y. H. N. G.

Abstract:

The COVID-19 pandemic represents an externally induced force as they face a combination of reduced work, dismissal, and job change for young precarious workers. The paper drew insights from two interview waves of the in-work poverty study in Singapore which were conducted a year apart. By analysing respondents’ job histories before and at the start of the pandemic as well as their job experiences over the two waves of interviews, the study found the presence of what scholars describe as trap and stepping stone trajectories. Trap trajectories refer to how the nature of precarious employment leads respondents to be in dead-end jobs with no room for progression while stepping stone trajectories refer to how poor work provides opportunities for the accumulation of work experiences. We also look at how structure, agency and biographical factors affect job trajectories and discuss the impacts of COVID-19 on work experiences and the implications of the bifurcation of trajectory outcomes on poverty and inequality among the young working poor in Singapore.

Keywords: working poor, precarity, young workers, COVID-19, work trajectories

Procedia PDF Downloads 99
7486 Predicting Shot Making in Basketball Learnt Fromadversarial Multiagent Trajectories

Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan

Abstract:

In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain-specific knowledge. Although intuitive, recent work in deep learning has shown, this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories, we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.

Keywords: basketball, computer vision, image processing, convolutional neural network

Procedia PDF Downloads 153
7485 Calculation of Orbital Elements for Sending Interplanetary Probes

Authors: Jorge Lus Nisperuza Toledo, Juan Pablo Rubio Ospina, Daniel Santiago Umana, Hector Alejandro Alvarez

Abstract:

This work develops and implements computational codes to calculate the optimal launch trajectories for sending a probe from the earth to different planets of the Solar system, making use of trajectories of the Hohmann and No-Hohmann type and gravitational assistance in intermediate steps. Specifically, the orbital elements, the graphs and the dynamic simulations of the trajectories for sending a probe from the Earth towards the planets Mercury, Venus, Mars, Jupiter, and Saturn are obtained. A detailed study was made of the state vectors of the position and orbital velocity of the considered planets in order to determine the optimal trajectories of the probe. For this purpose, computer codes were developed and implemented to obtain the orbital elements of the Mariner 10 (Mercury), Magellan (Venus), Mars Global Surveyor (Mars) and Voyager 1 (Jupiter and Saturn) missions, as an exercise in corroborating the algorithms. This exercise gives validity to computational codes, allowing to find the orbital elements and the simulations of trajectories of three future interplanetary missions with specific launch windows.

Keywords: gravitational assistance, Hohmann’s trajectories, interplanetary mission, orbital elements

Procedia PDF Downloads 183
7484 Data Presentation of Lane-Changing Events Trajectories Using HighD Dataset

Authors: Basma Khelfa, Antoine Tordeux, Ibrahima Ba

Abstract:

We present a descriptive analysis data of lane-changing events in multi-lane roads. The data are provided from The Highway Drone Dataset (HighD), which are microscopic trajectories in highway. This paper describes and analyses the role of the different parameters and their significance. Thanks to HighD data, we aim to find the most frequent reasons that motivate drivers to change lanes. We used the programming language R for the processing of these data. We analyze the involvement and relationship of different variables of each parameter of the ego vehicle and the four vehicles surrounding it, i.e., distance, speed difference, time gap, and acceleration. This was studied according to the class of the vehicle (car or truck), and according to the maneuver it undertook (overtaking or falling back).

Keywords: autonomous driving, physical traffic model, prediction model, statistical learning process

Procedia PDF Downloads 261
7483 Design of a Chaotic Trajectory Generator Algorithm for Mobile Robots

Authors: J. J. Cetina-Denis, R. M. López-Gutiérrez, R. Ramírez-Ramírez, C. Cruz-Hernández

Abstract:

This work addresses the problem of designing an algorithm capable of generating chaotic trajectories for mobile robots. Particularly, the chaotic behavior is induced in the linear and angular velocities of a Khepera III differential mobile robot by infusing them with the states of the H´enon chaotic map. A possible application, using the properties of chaotic systems, is patrolling a work area. In this work, numerical and experimental results are reported and analyzed. In addition, two quantitative numerical tests are applied in order to measure how chaotic the generated trajectories really are.

Keywords: chaos, chaotic trajectories, differential mobile robot, Henon map, Khepera III robot, patrolling applications

Procedia PDF Downloads 309
7482 Trajectories of Physical Activity Intensity and Associated Factors in Men and Women from Elsa-Brasil

Authors: André Luis Messias Dos Santos Duque, Daniela Polessa Paula, Rosane Harter Griep

Abstract:

The intensity of physical activity (PA) over time is essential for health promotion. However, there are few studies that have analyzed the practice of different intensities of PA longitudinally. The objective was to identify PA intensity trajectories in men and women from a Brazilian multicentric cohort and their associated factors. Data from 10,367 participants (5,777 women and 4,590 men) aged 35 to 74 years from the baseline and two follow-up visits (2012-2014 and 2017-2019) of the Longitudinal Study of Adult Health (ELSA-Brasil) were analyzed. PA intensity (low, moderate, or high) was assessed using the leisure-time PA module of the International Physical Activity Questionnaire (IPAQ), and sociodemographic, behavioral, and clinical variables were included. Chi-square and T-student tests were used, considering a significant level of 5%. Four intensity trajectories were identified: low, moderate, high, and no pattern. Most participants (82.5% of women and 75.7% of men) had low PA intensity trajectories, and only 2% of women and 4.8% of men had high PA intensity trajectories. For both sexes, a significant difference (p<0.05) was found for age group, education level, income, smoking, type 2 diabetes, obesity, hypertriglyceridemia, and hypertension. Actions that promote the practice of high-intensity PA over time and consider sociodemographic, clinical, and behavioral factors are necessary.

Keywords: lifestyle, longterm effects, physical activity, socioeconomic factors

Procedia PDF Downloads 18
7481 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures

Authors: C. Mayr, J. Periya, A. Kariminezhad

Abstract:

In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.

Keywords: machine learning, radar, signal processing, autonomous driving

Procedia PDF Downloads 246
7480 Geometric Calibration of Computed Tomography Equipment

Authors: Chia-Hung Liao, Shih-Chieh Lin

Abstract:

X-ray computed tomography (CT) technology has been used in the electronics industry as one of the non-destructive inspection tools for years. The key advantage of X-ray computed tomography technology superior to traditional optical inspection is the penetrating characteristics of X-rays can be used to detect defects in the interior of objects. The objective of this study is to find a way to estimate the system geometric deviation of X-ray CT equipment. Projection trajectories of the characteristic points of standard parts were tracked, and ways to calculate the deviation of various geometric parameters of the system will be proposed and evaluated. A simulation study will be conducted to first find out the effects of system geometric deviation on projected trajectories. Then ways to estimate geometric deviation with collected trajectories will be proposed and tested through simulations.

Keywords: geometric calibration, X-ray computed tomography, trajectory tracing, reconstruction optimization

Procedia PDF Downloads 109
7479 Optimal Trajectories for Highly Automated Driving

Authors: Christian Rathgeber, Franz Winkler, Xiaoyu Kang, Steffen Müller

Abstract:

In this contribution two approaches for calculating optimal trajectories for highly automated vehicles are presented and compared. The first one is based on a non-linear vehicle model, used for evaluation. The second one is based on a simplified model and can be implemented on a current ECU. In usual driving situations both approaches show very similar results.

Keywords: trajectory planning, direct method, indirect method, highly automated driving

Procedia PDF Downloads 533
7478 Calculating Non-Unique Sliding Modes for Switched Dynamical Systems

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis.

Keywords: hybrid dynamical systems, singular perturbation analysis, sliding modes, switched dynamics

Procedia PDF Downloads 163
7477 Learning the Dynamics of Articulated Tracked Vehicles

Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri

Abstract:

In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.

Keywords: Dirichlet processes, gaussian mixture models, learning motion patterns, tracked robots for urban search and rescue

Procedia PDF Downloads 449
7476 Particle and Photon Trajectories near the Black Hole Immersed in the Nonstatic Cosmological Background

Authors: Elena M. Kopteva, Pavlina Jaluvkova, Zdenek Stuchlik

Abstract:

The question of constructing a consistent model of the cosmological black hole remains to be unsolved and still attracts the interest of cosmologists as far as it is important in a wide set of research problems including the problem of the black hole horizon dynamics, the problem of interplay between cosmological expansion and local gravity, the problem of structure formation in the early universe etc. In this work, the model of the cosmological black hole is built on the basis of the exact solution of the Einstein equations for the spherically symmetric inhomogeneous dust distribution in the approach of the mass function use. Possible trajectories for massive particles and photons near the black hole immersed in the nonstatic dust cosmological background are investigated in frame of the obtained model. The reference system of distant galaxy comoving to cosmological expansion combined with curvature coordinates is used, so that the resulting metric becomes nondiagonal and involves both proper ‘cosmological’ time and curvature spatial coordinates. For this metric the geodesic equations are analyzed for the test particles and photons, and the respective trajectories are built.

Keywords: exact solutions for Einstein equations, Lemaitre-Tolman-Bondi solution, cosmological black holes, particle and photon trajectories

Procedia PDF Downloads 340
7475 The Use of the Limit Cycles of Dynamic Systems for Formation of Program Trajectories of Points Feet of the Anthropomorphous Robot

Authors: A. S. Gorobtsov, A. S. Polyanina, A. E. Andreev

Abstract:

The movement of points feet of the anthropomorphous robot in space occurs along some stable trajectory of a known form. A large number of modifications to the methods of control of biped robots indicate the fundamental complexity of the problem of stability of the program trajectory and, consequently, the stability of the control for the deviation for this trajectory. Existing gait generators use piecewise interpolation of program trajectories. This leads to jumps in the acceleration at the boundaries of sites. Another interpolation can be realized using differential equations with fractional derivatives. In work, the approach to synthesis of generators of program trajectories is considered. The resulting system of nonlinear differential equations describes a smooth trajectory of movement having rectilinear sites. The method is based on the theory of an asymptotic stability of invariant sets. The stability of such systems in the area of localization of oscillatory processes is investigated. The boundary of the area is a bounded closed surface. In the corresponding subspaces of the oscillatory circuits, the resulting stable limit cycles are curves having rectilinear sites. The solution of the problem is carried out by means of synthesis of a set of the continuous smooth controls with feedback. The necessary geometry of closed trajectories of movement is obtained due to the introduction of high-order nonlinearities in the control of stabilization systems. The offered method was used for the generation of trajectories of movement of point’s feet of the anthropomorphous robot. The synthesis of the robot's program movement was carried out by means of the inverse method.

Keywords: control, limits cycle, robot, stability

Procedia PDF Downloads 331
7474 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based On a Motion Polymorph-Primitives Algorithm

Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba

Abstract:

Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real-time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.

Keywords: robotics, aerial robots, motion primitives, helicopter

Procedia PDF Downloads 616
7473 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm

Authors: Haozhe Xiang

Abstract:

With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.

Keywords: deep learning, graph convolutional network, attention mechanism, LSTM

Procedia PDF Downloads 71
7472 Learning Trajectories of Mexican Language Teachers: A Cross-Cultural Comparative Study

Authors: Alberto Mora-Vazquez, Nelly Paulina Trejo Guzmán

Abstract:

This study examines the learning trajectories of twelve language teachers who were former students of a BA in applied linguistics at a Mexican state university. In particular, the study compares the social, academic and professional trajectories of two groups of teachers, six locally raised and educated ones and six repatriated ones from the U.S. Our interest in undertaking this research lies in the wide variety of students’ backgrounds we as professors in the BA program have witnessed throughout the years it has been around. Ever since the academic program started back in 2006, the student population has been made up of students whose backgrounds are highly diverse in terms of English language proficiency level, professional orientations and degree of cross-cultural awareness. Such diversity is further evidenced by the ongoing incorporation of some transnational students who have lived and studied in the United States for a significant period of time before their enrolment in the BA program. This, however, is not an isolated event as other researchers have reported this phenomenon in other TESOL-related programs of Mexican universities in the literature. Therefore, this suggests that their social and educational experiences are quite different from those of their Mexican born and educated counterparts. In addition, an informal comparison of the participation in formal teaching activities of the two groups at the beginning of their careers also suggested that significant differences in teacher training and development needs could also be identified. This issue raised questions about the need to examine the life and learning trajectories of these two groups of student teachers so as to develop an intervention plan aimed at supporting and encouraging their academic and professional advancement based on their particular needs. To achieve this goal, the study makes use of a combination of retrospective life-history research and the analysis of academic documents. The first approach uses interviews for data-collection. Through the use of a narrative life-history interview protocol, teachers were asked about their childhood home context, their language learning and teaching experiences, their stories of studying applied linguistics, and self-description. For the analysis of participants’ educational outcomes, a wide range of academic records, including reports of language proficiency exams results and language teacher training certificates, were used. The analysis revealed marked differences between the two groups of teachers in terms of academic and professional orientations. The locally educated teachers tended to graduate first, to look for further educational opportunities after graduation, to enter the language teaching profession earlier, and to expand their professional development options more than their peers. It is argued that these differences can be explained by their identities, which are made up of the interplay of influences such as their home context, their previous educational experiences and their cultural background. Implications for language teacher trainers and applied linguistics academic program administrators are provided.

Keywords: beginning language teachers, life-history research, Mexican context, transnational students

Procedia PDF Downloads 419
7471 Analysis of the Inverse Kinematics for 5 DOF Robot Arm Using D-H Parameters

Authors: Apurva Patil, Maithilee Kulkarni, Ashay Aswale

Abstract:

This paper proposes an algorithm to develop the kinematic model of a 5 DOF robot arm. The formulation of the problem is based on finding the D-H parameters of the arm. Brute Force iterative method is employed to solve the system of non linear equations. The focus of the paper is to obtain the accurate solutions by reducing the root mean square error. The result obtained will be implemented to grip the objects. The trajectories followed by the end effector for the required workspace coordinates are plotted. The methodology used here can be used in solving the problem for any other kinematic chain of up to six DOF.

Keywords: 5 DOF robot arm, D-H parameters, inverse kinematics, iterative method, trajectories

Procedia PDF Downloads 203
7470 Energy Benefits of Urban Platooning with Self-Driving Vehicles

Authors: Eduardo F. Mello, Peter H. Bauer

Abstract:

The primary focus of this paper is the generation of energy-optimal speed trajectories for heterogeneous electric vehicle platoons in urban driving conditions. Optimal speed trajectories are generated for individual vehicles and for an entire platoon under the assumption that they can be executed without errors, as would be the case for self-driving vehicles. It is then shown that the optimization for the “average vehicle in the platoon” generates similar transportation energy savings to optimizing speed trajectories for each vehicle individually. The introduced approach only requires the lead vehicle to run the optimization software while the remaining vehicles are only required to have adaptive cruise control capability. The achieved energy savings are typically between 30% and 50% for stop-to-stop segments in cities. The prime motivation of urban platooning comes from the fact that urban platoons efficiently utilize the available space and the minimization of transportation energy in cities is important for many reasons, i.e., for environmental, power, and range considerations.

Keywords: electric vehicles, energy efficiency, optimization, platooning, self-driving vehicles, urban traffic

Procedia PDF Downloads 182
7469 A Review of Machine Learning for Big Data

Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.

Abstract:

Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.

Keywords: active learning, big data, deep learning, machine learning

Procedia PDF Downloads 446
7468 Parental Drinking and Risky Alcohol Related Behaviors: Predicting Binge Drinking Trajectories and Their Influence on Impaired Driving among College Students

Authors: Shiran Bord, Assaf Oshri, Matthew W. Carlson, Sihong Liu

Abstract:

Background: Alcohol-impaired driving (AID) and binge drinking are major health concerns among college students. Although the link between binge drinking and AID is well established, knowledge regarding binge drinking patterns, the factors influencing binge drinking, and the associations between consumption patterns and alcohol-related risk behaviors is lacking. Aims: To examine heterogeneous trajectories of binge drinking during college and tests factors that might predict class membership as well as class membership outcomes. Methods: Data were obtained from a sample of 1,265 college students (Mage = 18.5, SD = .66) as part of the Longitudinal Study of Violence Against Women (N = 1,265; 59.3% female; 69.2% white). Analyses were completed in three stages. First, a growth curve analysis was conducted to identify trajectories of binge drinking over time. Second, growth curve mixture modeling analyses were pursued to assess unobserved growth trajectories of binge drinking without predictors. Lastly, parental drinking variables were added to the model as predictors of class membership, and AID and being a passenger of a drunk driver were added to the model as outcomes. Results: Three binge drinking trajectories were identified: high-convex, medium concave and low-increasing. Parental drinking was associated with being in high-convex and medium-concave classes. Compared to the low-increasing class, the high convex and medium concave classes reported more AID and being a passenger of a drunk driver more frequently. Conclusions: Parental drinking may affect children’s later engagement in AID. Efforts should focus on parents' education regarding the consequences of parental modeling of alcohol consumption.

Keywords: alcohol impaired driving, alcohol consumption, binge drinking, college students, parental modeling

Procedia PDF Downloads 281
7467 Leveraging Learning Analytics to Inform Learning Design in Higher Education

Authors: Mingming Jiang

Abstract:

This literature review aims to offer an overview of existing research on learning analytics and learning design, the alignment between the two, and how learning analytics has been leveraged to inform learning design in higher education. Current research suggests a need to create more alignment and integration between learning analytics and learning design in order to not only ground learning analytics on learning sciences but also enable data-driven decisions in learning design to improve learning outcomes. In addition, multiple conceptual frameworks have been proposed to enhance the synergy and alignment between learning analytics and learning design. Future research should explore this synergy further in the unique context of higher education, identifying learning analytics metrics in higher education that can offer insight into learning processes, evaluating the effect of learning analytics outcomes on learning design decision-making in higher education, and designing learning environments in higher education that make the capturing and deployment of learning analytics outcomes more efficient.

Keywords: learning analytics, learning design, big data in higher education, online learning environments

Procedia PDF Downloads 173
7466 HBTOnto: An Ontology Model for Analyzing Human Behavior Trajectories

Authors: Heba M. Wagih, Hoda M. O. Mokhtar

Abstract:

Social Network has recently played a significant role in both scientific and social communities. The growing adoption of social network applications has been a relevant source of information nowadays. Due to its popularity, several research trends are emerged to service the huge volume of users including, Location-Based Social Networks (LBSN), Recommendation Systems, Sentiment Analysis Applications, and many others. LBSNs applications are among the highly demanded applications that do not focus only on analyzing the spatiotemporal positions in a given raw trajectory but also on understanding the semantics behind the dynamics of the moving object. LBSNs are possible means of predicting human mobility based on users social ties as well as their spatial preferences. LBSNs rely on the efficient representation of users’ trajectories. Hence, traditional raw trajectory information is no longer convenient. In our research, we focus on studying human behavior trajectory which is the major pillar in location recommendation systems. In this paper, we propose an ontology design patterns with their underlying description logics to efficiently annotate human behavior trajectories.

Keywords: human behavior trajectory, location-based social network, ontology, social network

Procedia PDF Downloads 452
7465 Cross-sectional Developmental Trajectories of Executive Function and Relations to Theory of Mind in Autism Spectrum Disorder

Authors: Evangelia-Chrysanthi Kouklari, Evdokia Tagkouli, Vassiliki Ntre, Artemios Pehlivanidis, Stella Tsermentseli, Gerasimos Kolaitis, Katerina Papanikolaou

Abstract:

Executive Function (EF) is a set of goal-directed cognitive skills essentially needed in problem-solving and social behavior. Developmental EF research has indicated that EF emerges early in life and marks dramatic changes before the age of 5. Research evidence has suggested that it may continue to develop up to adolescence as well, following the development of the prefrontal cortex. Over the last decade, research evidence has suggested distinguished domains of cool and hot EF, but traditionally the development of EF in Autism Spectrum Disorder (ASD) has been examined mainly with tasks that address the “cool” cognitive aspects of EF. Thus, very little is known about the development of “hot” affective EF processes and whether the cross-sectional developmental pathways of cool and hot EF present similarities in ASD. Cool EF has also been proven to have a strong correlation with Theory of Mind (ToM) in young and middle childhood in typical development and in ASD, but information about the relationship of hot EF to ToM skills is minimal. The present study’s objective was to explore the age-related changes of cool and hot EF in ASD participants from middle childhood to adolescence, as well as their relationship to ToM. This study employed an approach of cross-sectional developmental trajectories to investigate patterns of cool and hot EF relative to chronological age within ASD. Eighty-two participants between 7 and 16 years of age were recruited to undertake measures that assessed cool EF (working memory, cognitive flexibility, planning & inhibition), hot EF (affective decision making & delay discounting) and ToM (false belief and mental state/emotion recognition). Results demonstrated that trajectories of all cool EF presented age-related changes in ASD (improvements with age). With regards to hot EF, affective decision-making presented age-related changes, but for delay discounting, there were no statistically significant changes found across younger and older ASD participants. ToM was correlated only to cool EF. Theoretical implications are discussed as the investigation of the cross-sectional developmental trajectories of the broader EF (cool and hot domains) may contribute to better defining cognitive phenotypes in ASD. These findings highlight the need to examine developmental trajectories of both hot and cool EF in research and clinical practice as they may aid in enhancing diagnosis or better-informed intervention programs.

Keywords: autism spectrum disorder, developmental trajectories, executive function, theory of mind

Procedia PDF Downloads 148
7464 Application of Compressed Sensing and Different Sampling Trajectories for Data Reduction of Small Animal Magnetic Resonance Image

Authors: Matheus Madureira Matos, Alexandre Rodrigues Farias

Abstract:

Magnetic Resonance Imaging (MRI) is a vital imaging technique used in both clinical and pre-clinical areas to obtain detailed anatomical and functional information. However, MRI scans can be expensive, time-consuming, and often require the use of anesthetics to keep animals still during the imaging process. Anesthetics are commonly administered to animals undergoing MRI scans to ensure they remain still during the imaging process. However, prolonged or repeated exposure to anesthetics can have adverse effects on animals, including physiological alterations and potential toxicity. Minimizing the duration and frequency of anesthesia is, therefore, crucial for the well-being of research animals. In recent years, various sampling trajectories have been investigated to reduce the number of MRI measurements leading to shorter scanning time and minimizing the duration of animal exposure to the effects of anesthetics. Compressed sensing (CS) and sampling trajectories, such as cartesian, spiral, and radial, have emerged as powerful tools to reduce MRI data while preserving diagnostic quality. This work aims to apply CS and cartesian, spiral, and radial sampling trajectories for the reconstruction of MRI of the abdomen of mice sub-sampled at levels below that defined by the Nyquist theorem. The methodology of this work consists of using a fully sampled reference MRI of a female model C57B1/6 mouse acquired experimentally in a 4.7 Tesla MRI scanner for small animals using Spin Echo pulse sequences. The image is down-sampled by cartesian, radial, and spiral sampling paths and then reconstructed by CS. The quality of the reconstructed images is objectively assessed by three quality assessment techniques RMSE (Root mean square error), PSNR (Peak to Signal Noise Ratio), and SSIM (Structural similarity index measure). The utilization of optimized sampling trajectories and CS technique has demonstrated the potential for a significant reduction of up to 70% of image data acquisition. This result translates into shorter scan times, minimizing the duration and frequency of anesthesia administration and reducing the potential risks associated with it.

Keywords: compressed sensing, magnetic resonance, sampling trajectories, small animals

Procedia PDF Downloads 73
7463 Using Wavelet Uncertainty Relations in Quantum Mechanics: From Trajectories Foam to Newtonian Determinism

Authors: Paulo Castro, J. R. Croca, M. Gatta, R. Moreira

Abstract:

Owing to the development of quantum mechanics, we will contextualize the foundations of the theory on the Fourier analysis framework, thus stating the unavoidable philosophical conclusions drawn by Niels Bohr. We will then introduce an alternative way of describing the undulatory aspects of quantum entities by using gaussian Morlet wavelets. The description has its roots in de Broglie's realistic program for quantum physics. It so happens that using wavelets it is possible to formulate a more general set of uncertainty relations. A set from which it is possible to theoretically describe both ends of the behavioral spectrum in reality: the indeterministic quantum trajectorial foam and the perfectly drawn Newtonian trajectories.

Keywords: philosophy of quantum mechanics, quantum realism, morlet wavelets, uncertainty relations, determinism

Procedia PDF Downloads 171
7462 OSEME: A Smart Learning Environment for Music Education

Authors: Konstantinos Sofianos, Michael Stefanidakis

Abstract:

Nowadays, advances in information and communication technologies offer a range of opportunities for new approaches, methods, and tools in the field of education and training. Teacher-centered learning has changed to student-centered learning. E-learning has now matured and enables the design and construction of intelligent learning systems. A smart learning system fully adapts to a student's needs and provides them with an education based on their preferences, learning styles, and learning backgrounds. It is a wise friend and available at any time, in any place, and with any digital device. In this paper, we propose an intelligent learning system, which includes an ontology with all elements of the learning process (learning objects, learning activities) and a massive open online course (MOOC) system. This intelligent learning system can be used in music education.

Keywords: intelligent learning systems, e-learning, music education, ontology, semantic web

Procedia PDF Downloads 312
7461 How to Guide Students from Surface to Deep Learning: Applied Philosophy in Management Education

Authors: Lihong Wu, Raymond Young

Abstract:

The ability to learn is one of the most critical skills in the information age. However, many students do not have a clear understanding of what learning is, what they are learning, and why they are learning. Many students study simply to pass rather than to learn something useful for their career and their life. They have a misconception about learning and a wrong attitude towards learning. This research explores student attitudes to study in management education and explores how to intercede to lead students from shallow to deeper modes of learning.

Keywords: knowledge, surface learning, deep learning, education

Procedia PDF Downloads 501