Search results for: irrigation performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13432

Search results for: irrigation performance

13432 Comparing Performance of Irrigation System in Nepal by Collective Action and Decision-Making Capacity of the Farmers

Authors: Manita Ale, Ganesh P. Shivakoti, Ram C. Bastakoti

Abstract:

Irrigation system, a system for enhancing agricultural productivity, requires regular maintenance in order to avoid irregular allocation of water. For maintenance of the system in long run, farmers’ participation plays a key role increasing the performance of system. The performance of any irrigation system mainly relies on various factors which affect collective action plus decision making, as well as their shared impacts. The paper consists of system level information that were collected from 12 Irrigation Systems (IS) from three-sampled districts of Nepal and the household information that were collected from 160 irrigation water users. The results reveal that, out of 12 sampled irrigation systems, only 4 systems shows high performance levels. The high performance level of those systems was characterized on the basis of adequate availability of water, good maintenance of system infrastructure, and conformance to existing rules followed. In addition, the paper compares different irrigation systems based on trust, reciprocity, cropping intensity, command area and yield as tools to indicate the importance of collective action in performance of irrigation system.

Keywords: collective action, decision-making, farmers’ participation, performance

Procedia PDF Downloads 405
13431 Hydraulic Analysis of Irrigation Approach Channel Using HEC-RAS Model

Authors: Muluegziabher Semagne Mekonnen

Abstract:

This study was intended to show the irrigation water requirements and evaluation of canal hydraulics steady state conditions to improve on scheme performance of the Meki-Ziway irrigation project. The methodology used was the CROPWAT 8.0 model to estimate the irrigation water requirements of five major crops irrigated in the study area. The results showed that for the whole existing and potential irrigation development area of 2000 ha and 2599 ha, crop water requirements were 3,339,200 and 4,339,090.4 m³, respectively. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. In this study Hydraulic Analysis of Irrigation Canals Using HEC-RAS Model was conducted in Meki-Ziway Irrigation Scheme. The HEC-RAS model was tested in terms of error estimation and used to determine canal capacity potential.

Keywords: HEC-RAS, irrigation, hydraulic. canal reach, capacity

Procedia PDF Downloads 60
13430 Intelligent Irrigation Control System Using Wireless Sensors and Android Application

Authors: Rajeshwari Madli, Santhosh Hebbar, Vishwanath Heddoori, G. V. Prasad

Abstract:

Agriculture is the major occupation in India and forms the backbone of Indian economy in which irrigation plays a crucial role for increasing the quality and quantity of crop yield. In spite of many revolutionary advancements in agriculture, there has not been a dramatic increase in agricultural performance. Lack of irrigation infrastructure and agricultural knowledge are the critical factors influencing agricultural performance. However, by using advanced agricultural equipment, the effect of these factors can be curtailed.  The presented system aims at increasing the yield of crops by using an intelligent irrigation controller that makes use of wireless sensors. Sensors are used to monitor primary parameters such as soil moisture, soil pH, temperature and humidity. Irrigation decisions are taken based on the sensed data and the type of crop being grown. The system provides a mobile application in which farmers can remotely monitor and control the irrigation system. Also, the water pump is protected against damages due to voltage variations and dry running.

Keywords: android application, Bluetooth, wireless sensors, irrigation, temperature, soil pH

Procedia PDF Downloads 382
13429 Sunflower Irrigation with Two Different Types of Soil Moisture Sensors

Authors: C. D. Papanikolaou, V. A. Giouvanis, E. A. Karatasiou, D. S. Dimakas, M. A. Sakellariou-Makrantonaki

Abstract:

Irrigation is one of the most important cultivation practices for each crop, especially in areas where rainfall is enough to cover the crop water needs. In such areas, the farmers must irrigate in order to achieve high economical results. The precise irrigation scheduling contributes to irrigation water saving and thus a valuable natural resource is protected. Under this point of view, in the experimental field of the Laboratory of Agricultural Hydraulics of the University of Thessaly, a research was conducted during the growing season of 2012 in order to evaluate the growth, seed and oil production of sunflower as well as the water saving, by applying different methods of irrigation scheduling. Three treatments in four replications were organized. These were: a) surface drip irrigation where the irrigation scheduling based on the Penman-Monteith (PM) method (control); b) surface drip irrigation where the irrigation scheduling based on a soil moisture sensor (SMS); and c) surface drip irrigation, where the irrigation scheduling based on a soil potential sensor (WM).

Keywords: irrigation, energy production, soil moisture sensor, sunflower, water saving

Procedia PDF Downloads 180
13428 The Effects of Subsidised Irrigation Service Fees on Irrigation Performance in Vietnam

Authors: Trang Pham

Abstract:

Approximately 70% of the Vietnamese population lives in rural areas where the main livelihood is farming. For many years, the Vietnamese Government has been working towards improving farmers’ quality of life. In 2008, the Government issued the decree 115/2008/ND-CP to subsidize farmers’ water fees. The subsidy covers operation and management costs of major water infrastructure. Water users have only to pay for the operation and management of minor or tertiary canal systems. But the “subsidized water fee” has become contentious; there are two opposing schools of thought. One view is that the subsidy lessens the burden on farmers in terms of reducing their production costs, at the same time generating a sufficient budget for Irrigation Management Companies (IMCs) and Water User Association (WUAs). The alternate point of view is that the subsidy negatively effects irrigation performance, especially in tertiary canals. The aim of this study was to gain clear awareness of the perceptions of farmers, WUA members, and IMC staffs in regard to irrigation performance and management since the introduction of subsidies and local water fees. In order to find out how the government intervention has affected local farming communities, a series of questionnaires and interviews were administered in 2013. Four case studies were chosen which represent four different agricultural areas and four different irrigation systems in Vietnam. Interviews were conducted with IMC staffs and WUA members and questionnaires were used to gather information from farmers. The study compares the difference in operation and management costs across the four case studies both before and after the implementation of the decree. The results disclose factors behind the subsidized water fee that either allow or hinder improved irrigation performance and better irrigation management.

Keywords: water fee, irrigation performance, local farming, tertiary canal systems

Procedia PDF Downloads 325
13427 Smart Irrigation System

Authors: Levent Seyfi, Ertan Akman, Tuğrul C. Topak

Abstract:

In this study, irrigation automation with electronic sensors and its control with smartphones were aimed. In this context, temperature and soil humidity measurements of the area irrigated were obtained by temperature and humidity sensors. A micro controller (Arduino) was utilized for accessing values of these parameters and controlling the proposed irrigation system. The irrigation system could automatically be worked according to obtained measurement values. Besides, a GSM module used together with Arduino provided that the irrigation system was in connection to smartphones. Thus, the irrigation system can be remotely controlled. Not only can we observe whether the irrigation system is working or not via developed special android application but also we can see temperature and humidity measurement values. In addition to this, if desired, the irrigation system can be remotely and manually started or stopped regardless of measured sensor vales thanks to the developed android application. In addition to smartphones, the irrigation system can be alternatively controlled via the designed website (www.sulamadenetim.com).

Keywords: smartphone, Android Operating System, sensors, irrigation System, arduino

Procedia PDF Downloads 616
13426 Assessment of Water Quality Used for Irrigation: Case Study of Josepdam Irrigation Scheme

Authors: M. A. Adejumobi, J. O. Ojediran

Abstract:

The aim of irrigation is to recharge the available water in the soil. Quality of irrigation water is essential for the yield and quality of crops produced, maintenance of soil productivity and protection of the environment. The analysis of irrigation water arises as a need to know the impact of irrigation water on the yield of crops, the effect, and the necessary control measures to rectify the effect of this for optimum production and yield of crops. This study was conducted to assess the quality of irrigation water with its performance on crop planted, in Josepdam irrigation scheme Bacita, Nigeria. Field visits were undertaken to identify and locate water supply sources and collect water samples from these sources; X1 Drain, Oshin, River Niger loop and Ndafa. Laboratory experiments were then undertaken to determine the quality of raw water from these sources. The analysis was carried for various parameters namely; physical and chemical analyses after water samples have been taken from four sources. The samples were tested in laboratory. Results showed that the raw water sources shows no salinity tendencies with SAR values less than 1me/l and Ecvaules at Zero while the pH were within the recommended range by FAO, there are increase in potassium and sulphate content contamination in three of the location. From this, it is recommended that there should be proper monitoring of the scheme by conducting analysis of water and soil in the environment, preferable test should be carried out at least one year to cover the impact of seasonal variations and to determine the physical and chemical analysis of the water used for irrigation at the scheme.

Keywords: irrigation, salinity, raw water quality, scheme

Procedia PDF Downloads 430
13425 Alternate Furrow Irrigation and Potassium Fertilizer on Seed Yield, Water Use Efficiency and Fatty Acids of Rapeseed

Authors: A. Bahrani

Abstract:

In order to study the effect of restricted irrigation systems and different potassium fertilizer on water use efficiency and yield of rapeseed (Brassica napus L.), an experiment was conducted in an arid area in Khuzestan, Iran in 2013. The main plots consisted of three irrigation methods: FI (full irrigation), alternate furrow irrigation (AFI) and fixed furrow irrigation (FFI). Each subplot received three rates of K fertiliser application: 0, 150 or 300 kg ha-1. The results showed that the plots receiving the full irrigation resulted in significantly higher grain yields, 1000-kernel weight and grain number per pod than both alternate treatments. However, the highest WUE were obtained in alternate furrow irrigation and 300 kg K ha-1 and the lowest one was found in the FI treatment and 0 kg K ha-1. Potassium application increased RWC in alternate furrow irrigation and fixed furrow irrigation than FI treatment. Maximum oil content was observed in those treatments where full irrigation was applied while minimum oil content was produced in FFI irrigated treatments. Potassium fertilizer also increased grain oil by 15 % than control. Deficit irrigation reduced oleic acid and erucic acid. However, oleic acid and linoleic acid increased with increasing of potassium.

Keywords: erucic acid, irrigation methods, linoleic acid, oil percent, oleic acid

Procedia PDF Downloads 283
13424 Water Distribution Uniformity of Solid-Set Sprinkler Irrigation under Low Operating Pressure

Authors: Manal Osman

Abstract:

Sprinkler irrigation system became more popular to reduce water consumption and increase irrigation efficiency. The water distribution uniformity plays an important role in the performance of the sprinkler irrigation system. The use of low operating pressure instead of high operating pressure can be achieved many benefits including energy and water saving. An experimental study was performed to investigate the water distribution uniformity of the solid-set sprinkler irrigation system under low operating pressure. Different low operating pressures (62, 82, 102 and 122 kPa) were selected. The range of operating pressure was lower than the recommended in the previous studies to investigate the effect of low pressure on the water distribution uniformity. Different nozzle diameters (4, 5, 6 and 7 mm) were used. The outdoor single sprinkler test was performed. The water distribution of single sprinkler, the coefficients of uniformity such as coefficient of uniformity (CU), distribution uniformity of low quarter (DUlq), distribution uniformity of low half (DUlh), coefficient of variation (CV) and the distribution characteristics like rotation speed, throw radius and overlapping distance are presented in this paper.

Keywords: low operating pressure, sprinkler irrigation system, water distribution uniformity

Procedia PDF Downloads 590
13423 Irrigation Water Quality Evaluation in Jiaokou Irrigation District, Guanzhong Basin

Authors: Qiying Zhang, Panpan Xu, Hui Qian

Abstract:

Groundwater is an important water resource in the world, especially in arid and semi-arid regions. In the present study, 141 groundwater samples were collected and analyzed for various physicochemical parameters to assess the irrigation water quality using six indicators (sodium percentage (Na%), sodium adsorption ratio (SAR), magnesium hazard (MH), residual sodium carbonate (RSC), permeability index (PI), and potential salinity (PS)). The results show that the patterns for the average cation and anion concentrations were in decreasing orders of Na > Mg2 > Ca2 > Kand SO42 > HCO3 > Cl > NO3 > CO32 > F, respectively. The values of Na%, MH, and PS show that most of the groundwater samples are not suitable for irrigation. The same conclusion is drawn from the USSL and Wilcox diagrams. PS values indicate that Cland SO42have a great influence on irrigation water in Jiaokou Irrigation District. RSC and PI values indicate that more than half of groundwater samples are suitable for irrigation. The finding is beneficial for the policymakers for future water management schemes to achieve a sustainable development goal.

Keywords: groundwater chemistry, Guanzhong Basin, irrigation water quality evaluation, Jiaokou Irrigation District

Procedia PDF Downloads 211
13422 Effect of Mobile Drip and Linear Irrigation System on Sugar Beet Yield

Authors: Ismail Tas, Yusuf Ersoy Yildirim, Yavuz Fatih Fidantemiz, Aysegul Boyacioglu, Demet Uygan, Ozgur Ates, Erdinc Savasli, Oguz Onder, Murat Tugrul

Abstract:

The biggest input of agricultural production is irrigation, water and energy. Although it varies according to the conditions in drip and sprinkler irrigation systems compared to surface irrigation systems, there is a significant amount of energy expenditure. However, this expense not only increases the user's control over the irrigation water but also provides an increase in water savings and water application efficiency. Thus, while irrigation water is used more effectively, it also contributes to reducing production costs. The Mobile Drip Irrigation System (MDIS) is a system in which new technologies are used, and it is one of the systems that are thought to play an important role in increasing the irrigation water utilization rate of plants and reducing water losses, as well as using irrigation water effectively. MDIS is currently considered the most effective method for irrigation, with the development of both linear and central motion systems. MDIS is potentially more advantageous than sprinkler irrigation systems in terms of reducing wind-induced water losses and reducing evaporation losses on the soil and plant surface. Another feature of MDIS is that the sprinkler heads on the systems (such as the liner and center pivot) can remain operational even when the drip irrigation system is installed. This allows the user to use both irrigation methods. In this study, the effect of MDIS and linear sprinkler irrigation method on sugar beet yield at different irrigation water levels will be revealed.

Keywords: MDIS, linear sprinkler, sugar beet, irrigation efficiency

Procedia PDF Downloads 99
13421 Drip Irrigation Timing and Its Effect on Tomato Yield for a Two-Day Schedule

Authors: T. Kizza, M. Muyinda

Abstract:

Irrigation schedules are normally given in terms of frequency (irrigation days). Specific timings within a given day are not usually included. This study examined the effect of irrigation timing for a two-day irrigation schedule of a surface drip-irrigated tomato field on yield. It was carried out for three dry seasons; July-Sept 2016, Jan-April 2017 and Jan-March 2018, at MuZARDI research station. Four irrigation treatments; T1 morning (8.00hrs), T2 noon (12:00hrs), T3 evening (17:00hr) and T4, a combination of morning and evening, were evaluated. The irrigation duration was one hour for T1-T3 and split into 30 minutes for T4. First season results indicated noon watering as having the best yield over other treatments at 51.59t/ha followed closely by morning watering at 50.6t/ha. Plants watered at noon had the highest number of fruits at 19/plant with an average weight of 94g/fruit. Plants watered in the morning had fruits with the highest average weight at 111.2g/fruit but they were the lowest number at 16 fruits/plant. The three-season data indicated the highest yield at 45.9t/ha for morning watering, followed by noon watering at 44.3t/ha and the least yield was for evening watering at 40.9t/ha. Watering tomatoes in the morning will give optimum yields for a two-day irrigation schedule.

Keywords: drip irrigation, irrigation schedule, irrigation timing, tomato yield

Procedia PDF Downloads 140
13420 Effects of Irrigation Intervals on Antioxidant Enzyme Activity in Black Carrot Leaves (Daucus carota L.)

Authors: Hakan Arslan, Deniz Ekinci, Alper Gungor, Gurkan Bilir, Omer Tas, Mehmet Altun

Abstract:

Drought is one of the major abiotic stresses affecting the agricultural production worldwide. In this study, Leaf samples were taken from the carrot plants grown under drought stress conditions during the harvesting period. The plants were irrigated in three irrigation interval (4, 6 and 8 days) and Irrigation water regime was set up in pots. The changes in activities of antioxidant enzymes such as glutathione reductase (GR), glutathione s-transferase (GST), superoxide dismutase (SOD)) in leaves of black carrot were investigated. The activities of antioxidant enzymes (GR, GST, SOD) were varied significantly with irrigation intervals. The highest value of GR, GST and SOD were determined in the irrigation interval of 6 days. All antioxidant activity values were decreased in 8 days of irrigation interval. As a result of the study, it has been suggested that optimum irrigation intervals for plants can be used in antioxidant enzymes.

Keywords: antioxidant enzyme, carrot, drought, irrigation interval

Procedia PDF Downloads 223
13419 Significance of Water Saving through Subsurface Drip Irrigation for Date Palm Trees

Authors: Ahmed I. Al-Amoud

Abstract:

A laboratory and field study were conducted on subsurface drip irrigation systems. In the first laboratory study, eight subsurface drip irrigation lines available locally, were selected and a number of experiments were made to evaluate line hydraulic characteristics to insure it's suitability for drip irrigation design requirements and high performance to select the best for field experiments. The second study involves field trials on mature date palm trees to study the effect of subsurface drip irrigation system on the yield and water consumption of date palms, and to compare that with the traditional surface drip irrigation system. Experiments were conducted in Alwatania Agricultural Project, on 50 mature palm trees (17 years old) of Helwa type with 10 meters spacing between rows and between trees. A high efficiency subsurface line (Techline) was used based on the results of the first study. Irrigation scheduling was made through a soil moisture sensing device to ensure enough soil water levels in the soil. Experiment layouts were installed during 2001 season, measurements continued till end of 2008 season. Results have indicated that there is an increase in the yield and a considerable saving in water compared to the conventional drip irrigation method. In addition there were high increases in water use efficiency using the subsurface system. The subsurface system proves to be durable and highly efficient for irrigating date palm trees.

Keywords: drip irrigation, subsurface drip irrigation, date palm trees, date palm water use, date palm yield

Procedia PDF Downloads 434
13418 Effectiveness of Management Transfer Programs for Managing Irrigation Resources in Developing Countries: A Case Study of Farmer- and Agency-Managed Schemes from Nepal

Authors: Tirtha Raj Dhakal, Brian Davidson, Bob Farquharson

Abstract:

Irrigation management transfer has been taken as the important policy instrument for effective irrigation resource management in many developing countries. The change in governance of the irrigation schemes for its day-to-day operation and maintenance has been centered in recent Nepalese irrigation policies also. However, both farmer- and agency-managed irrigation schemes in Nepal are performing well below than expected. This study tries to link the present concerns of poor performance of both forms of schemes with the institutions for its operation and management. Two types of surveys, management and farm surveys; were conducted as a case study in the command area of Narayani Lift Irrigation Project (agency-managed) and Khageri Irrigation System (farmer-managed) of Chitwan District. The farm survey from head, middle and tail regions of both schemes revealed that unequal water distribution exists in these regions in both schemes with greater percentage of farmers experiencing this situation in agency managed scheme. In both schemes, the cost recovery rate was very low, even below five percent in Lift System indicating poor operation and maintenance of the schemes. Also, the institution on practice in both schemes is unable to create any incentives for farmers’ willingness to pay as well as for its economical use in the farm. Thus, outcomes from the study showed that only the management transfer programs may not achieve the goal of efficient irrigation resource management. This may suggest water professionals to rethink about the irrigation policies for refining institutional framework irrespective of the governance of schemes for improved cost recovery and better water distribution throughout the irrigation schemes.

Keywords: cost recovery, governance, institution, irrigation management transfer, willingness to pay

Procedia PDF Downloads 293
13417 Viability of Irrigation Water Conservation Practices in the Low Desert of California

Authors: Ali Montazar

Abstract:

California and the Colorado River Basin are facing increasing uncertainty concerning water supplies. The Colorado River is the main source of irrigation water in the low desert of California. Currently, due to an increasing water-use competition and long-term drought at the Colorado River Basin, efficient use of irrigation water is one of the highest conservation priorities in the region. This study aims to present some of current irrigation technologies and management approaches in the low desert and assess the viability and potential of these water management practices. The results of several field experiments are used to assess five water conservation practices of sub-surface drip irrigation, automated surface irrigation, sprinkler irrigation, tail-water recovery system, and deficit irrigation strategy. The preliminary results of several ongoing studies at commercial fields are presented, particularly researches in alfalfa, sugar beets, kliengrass, sunflower, and spinach fields. The findings indicate that all these practices have significant potential to conserve water (an average of 1 ac-ft/ac) and enhance the efficiency of water use (15-25%). Further work is needed to better understand the feasibility of each of these applications and to help maintain profitable and sustainable agricultural production system in the low desert as water and labor costs, and environmental issues increase.

Keywords: automated surface irrigation, deficit irrigation, low desert of California, sprinkler irrigation, sub-surface drip irrigation, tail-water recovery system

Procedia PDF Downloads 158
13416 The Use of a Geographical Information System in the Field of Irrigation (Moyen-Chéliff)

Authors: Benhenni Abdellaziz

Abstract:

Irrigation is a limiting factor for agricultural production and socioeconomic development of many countries in the arid and semi-arid world. However, the sustainability of irrigation systems requires rational management of the water resource, which is becoming increasingly rare in these regions. The objective of this work is to apply a geographic information system (GIS) coupled with a model for calculating crop water requirements (CROPWATER) for the management of irrigation water in irrigated areas and offer managers an effective tool to better manage water resources in these areas. The application area of GIS is the irrigated perimeter of Western Middle Cheliff, which is located in a semi-arid region (Middle Cheliff). The scope in question is considerable agrarian dynamics and an increased need for irrigation of most crops.

Keywords: GIS, CROPWAT, irrigation, water management, middle cheliff

Procedia PDF Downloads 71
13415 The Use of a Geographical Information System in the Field of Irrigation (Moyen-Chéliff)

Authors: Benhenni Abdellaziz

Abstract:

Irrigation is a limiting factor for agricultural production and socio-economic development of many countries in arid and semiarid in the world. However, the sustainability of irrigation systems requires a rational management of the water resource that is becoming increasingly rare in these regions. The objective of this work is to apply a geographic information system (GIS) coupled to a model for calculating crop water requirements (CROPWATER) for the management of irrigation water in irrigated area and offer managers with an effective tool to better manage water resources in these areas. The application area of GIS is the irrigated perimeter of Western Middle Cheliff which is located in a semi-arid region (Middle Cheliff). The scope in question is a considerable agrarian dynamics and an increased need for irrigation of most crops.

Keywords: geographical information, irrigation, economical, use rational

Procedia PDF Downloads 243
13414 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access

Authors: T. Wanyama, B. Far

Abstract:

Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.

Keywords: community water usage, fuzzy logic, irrigation, multi-agent system

Procedia PDF Downloads 298
13413 Irrigation and Thermal Buffering Mathematical Modeling

Authors: Yara Elborolosy, Harsho Sanyal, Joseph Cataldo

Abstract:

Two methods of irrigation, drip and sprinkler, were studied to determine the response of the Javits green roof to irrigation. The control study were dry unirrigated plots. Drip irrigation consisted of irrigation tubes running through the green roof that would water the soil throughout, and sprinkler irrigation used a sprinkler system to irrigate the green roof from above. In all cases, the irrigated roofs had increased the soil moisture, reduced temperatures of both the upper and lower surfaces, reduced growing medium temperatures and reduced air temperatures above the green roof relative to the unirrigated roof. The buffered temperature fluctuations were also studied via air conditioner energy consumption. There was a 28% reductionin air conditioner energy consumption and 33% reduction in overall energy consumption between dry and irrigated plots. Values of thermal resistance or S were determined for accuracy, and for this study, there was little change which is ideal. A series of infra-red and thermal probe measurements were used to determine temperatures in the air and sedum. It was determined that the sprinkler irrigation did a better job than the drip irrigation in keeping cooler temperatures within the green roof.

Keywords: green infrastructure, black roof, thermal buffering, irrigation

Procedia PDF Downloads 71
13412 An Alternative Institutional Design for Efficient Management of Nepalese Irrigation Systems

Authors: Tirtha Raj Dhakal, Brian Davidson, Bob Farquharson

Abstract:

Institutional design is important if water resources are to be managed efficiently. In Nepal, the supply of water in both farmer- and agency-managed irrigation systems is inefficient because of the weak institutional frameworks. This type of inefficiency is linked with collective problems such as non-excludability of irrigation water, inadequate recognition of property rights and externalities. Irrigation scheme surveys from Nepal as well as existing literature revealed that the Nepalese irrigation sector is facing many issues such as low cost recovery, inadequate maintenance of the schemes and inefficient allocation and utilization of irrigation water. The institutional practices currently in place also fail to create/force any incentives for farmers to use water efficiently and to pay for its use. This, thus, compels the need of refined institutional framework that can address the collective problems and improve irrigation efficiency.

Keywords: agency-managed, cost recovery, farmer-managed, institutional design

Procedia PDF Downloads 426
13411 Institutional Design for Managing Irrigation Problems: A Case Study of Farmers'- and Agency-Managed Irrigation Systems of Nepal

Authors: Tirtha Raj Dhakal, Brian Davidson, Bob Farquharson

Abstract:

Institutional design is an important aspect in efficient water resource management. In Nepal, the water supply in both farmers’- and agency-managed irrigation systems has become sub-standard because of the weak institutional framework. This study characterizes both forms of the schemes and links existing institution and governance of the schemes with its performance with reference to cost recovery, maintenance of the schemes and water distribution throughout the schemes. For this, two types of surveys were conducted. A management survey of ten farmers’-managed and five agency-managed schemes of Chitwan valley and its periphery was done. Also, a farm survey comprising 25 farmers from each of head, middle and tail regions of both schemes; Narayani Lift Irrigation Project (agency-managed) and Khageri Irrigation System (farmers’-managed) of Chitwan Valley as a case study was conducted. The results showed that cost recovery of agency-managed schemes in 2015 was less than two percent whereas service fee collection rate in farmers’-managed schemes was nearly 2/3rd that triggered poor maintenance of the schemes and unequal distribution of water throughout the schemes. Also, the institution on practice is unable to create any incentives for farmers for economical use of water as well as willingness to pay for its use. This, thus, compels the need of refined institutional framework which has been suggested in this paper aiming to improve the cost recovery and better water distribution throughout the irrigation schemes.

Keywords: cost recovery, governance, institution, schemes' performance

Procedia PDF Downloads 261
13410 Pros and Cons of Different Types of Irrigation Systems for Date Palm Production in Sebha, Libya

Authors: Ahmad Aridah, Maria Fay Rola-Rubzen, Zora Singh

Abstract:

This study investigated the effectiveness of various types of irrigation systems in regards to the impact that these have on the productivity of date palms in the semi-arid and arid region of Sebha, Southwest Libya. The date palm is an economically important crop in Libya and contributes to the agriculture industry, foreign exchange earnings, farmers’ income, and employment in the country. The date palm industry relies on large amounts of water for growing the crop. Farmers in Southwest Libya use a variety of irrigation systems, but the quality and quantity of water varies between systems and this affects the productivity and income of farmers. Using survey data from 210 farmers, this study estimated and assessed the pros and cons of different types of irrigation systems for date palm production under various irrigation systems currently used in Sebha, Libya. The number of years farmers have used irrigation, the area, irrigation water consumption, time of irrigation, number of farm workers (including family labour) and inputs used were measured for surface, sprinkler and drip irrigation methods. Findings from this research provide new insights into the advantages and disadvantages of the various irrigation systems, problems encountered by farmers and the factors that affect the quality and quantity of the irrigation system. The paper discussed proposed solutions to deal with the problems including timing of irrigation, canal maintenance, repair of wells and water control.

Keywords: Libya, factors, irrigation method, date palm

Procedia PDF Downloads 352
13409 Response of Summer Sesame to Irrigation Regimes and Nitrogen Levels

Authors: Kalpana Jamdhade, Anita Chorey, Bharti Tijare, V. M. Bhale

Abstract:

A field experiment was conducted during summer season of 2011 at Agronomy research farm, Dr. PDKV, Akola, to study the effect of irrigation regime and nitrogen levels on growth and productivity of summer sesame. The experiment was laid out in split plot Design in which three irrigation scheduling on the basis of IW/CPE ratio viz., irrigation at 0.6, 0.8 and 1.0 IW/CPE ratios (I1, I2 and I3, respectively) and one irrigation scheduling based on critical growth stages of sesame (I4), in main plot and three nitrogen levels 0, 30 and 60 kg N ha-1 (N0, N1 and N2, respectively) in subplot. The result showed that plant height, number of leaves plant-1, leaf area and dry matter accumulation were maximum in irrigation scheduling at 1.0 IW/CPE ratio, which significantly superior over 0.6 IW/CPE ratio and irrigation at critical growth stages but were statistically at par with irrigation at 0.8 IW/CPE ratio. Nitrogen levels, application of 60 kg N ha-1 was recorded significantly superior all growth parameters over treatment 30 kg N ha-1 and 0 kg N ha-1. In case of yield attributes viz., No. of capsules plant-1, Test wt., grain yield and Stalk yield (qha-1) were maximum in irrigation scheduling at 1.0 IW/CPE ratio and were significantly superior over 0.8 IW/CPE ratio, 0.6 IW/CPE ratio and irrigation at critical growth stages. Application of 60 kg N ha-1 increased all yield attributing characters over application of 30 and 0 kg N ha-1. In case of economics of crop same trend was found and the highest B:C ration was obtained in irrigation scheduling at 1.0 IW/CPE ratio. Whereas, application of 30 kg N ha-1 was recorded highest B:C ration over application of 60 and 0 kg N ha-1. Interaction effect of irrigation and nitrogen levels were found to be non significant in summer season.

Keywords: irrigation regimes, nitrogen levels, summer sesame, agricultural technology

Procedia PDF Downloads 366
13408 Overcoming the Problems Affecting Drip Irrigation System through the Design of an Efficient Filtration and Flushing System

Authors: Stephen A. Akinlabi, Esther T. Akinlabi

Abstract:

The drip irrigation system is one of the important areas that affect the livelihood of farmers directly. The use of drip irrigation system has been the most efficient system compared to the other types of irrigations systems because the drip irrigation helps to save water and increase the productivity of crops. But like any other system, it can be considered inefficient when the filters and the emitters get clogged while in operation. The efficiency of the entire system is reduced when the emitters are clogged and blocked. This consequently impact and affect the farm operations which may result in scarcity of farm products and increase the demand. This design work focuses on how to overcome some of the challenges affecting drip irrigation system through the design of an efficient filtration and flushing system.

Keywords: drip irrigation system, filters, soil texture, mechanical engineering design, analysis

Procedia PDF Downloads 386
13407 Normalized Difference Vegetation Index and Normalize Difference Chlorophyll Changes with Different Irrigation Levels on Sillage Corn

Authors: Cenk Aksit, Suleyman Kodal, Yusuf Ersoy Yildirim

Abstract:

Normalized Difference Vegetation Index (NDVI) is a widely used index in the world that provides reference information, such as the health status of the plant, and the density of the vegetation in a certain area, by making use of the electromagnetic radiation reflected from the plant surface. On the other hand, the chlorophyll index provides reference information about the chlorophyll density in the plant by making use of electromagnetic reflections at certain wavelengths. Chlorophyll concentration is higher in healthy plants and decreases as plant health decreases. This study, it was aimed to determine the changes in Normalize Difference Vegetation Index (NDVI) and Normalize Difference Chlorophyll (NDCI) of silage corn irrigated with subsurface drip irrigation systems under different irrigation levels. In 5 days irrigation interval, the daily potential plant water consumption values were collected, and the calculated amount was applied to the full irrigation and 3 irrigation water levels as irrigation water. The changes in NDVI and NDCI of silage corn irrigated with subsurface drip irrigation systems under different irrigation levels were determined. NDVI values have changed according to the amount of irrigation water applied, and the highest NDVI value has been reached in the subject where the most water is applied. Likewise, it was observed that the chlorophyll value decreased in direct proportion to the amount of irrigation water as the plant approached the harvest.

Keywords: NDVI, NDCI, sub-surface drip irrigation, silage corn, deficit irrigation

Procedia PDF Downloads 99
13406 Improved Water Productivity by Deficit Irrigation: Implications for Water Saving in Orange, Olive and Vineyard Orchards in Arid Conditions of Tunisia

Authors: K. Nagaz, F. El Mokh, M. Masmoudi, N. Ben Mechlia, M. O. Baba Sy, G. Ghiglieri

Abstract:

Field experiments on deficit irrigation (DI) were performed in Médenine, Tunisia on drip-irrigated olive, orange and grapevine orchards during 2013 and 2014. Four irrigation treatments were compared: full irrigation (FI), which was irrigated at 100% of ETc for the whole season; two deficit irrigation (DI) strategies -DI75 and DI50- which received, respectively, 25 and 50% less water than FI; and traditional farming management (FM) - with water input much less than actually needed. The traditional farming (FM) applied 11, 18, 30 and 33% less water than the FI treatment, respectively, in orange, grapevine and table and oil olive orchards, indicating that the farmers practices represent a form of unintended deficit irrigation. Yield was reduced when deficit irrigation was applied and there were significant differences between DI75, DI50 and FM treatments. Significant differences were not observed between DI50 and FM treatments even though numerically smaller yield was observed in the former (DI50) as compared to the latter (FM). The irrigation water productivity (IWP) was significantly affected by irrigation treatments. The smallest IWP was recorded under the FI treatment, while the largest IWP was obtained under the deficit irrigation treatment (DI50). The DI50 and FM treatments reduced the economic return compared to the full treatment (FI), while the DI75 treatment resulted in a better economic return in respect to DI50 and FM. Full irrigation (FI) could be recommended for olive, orange and grapevine irrigation under the arid climate of Tunisia. Nevertheless, the treatment DI75 can be applied as a strategy under water scarcity conditions in commercial olive, orange and grapevine orchards allowing water savings up to 25% but with some reduction in yield and net return. The results would be helpful in adopting deficit irrigation in ways that enhance net financial returns.

Keywords: water productivity, deficit irrigation, drip irrigation, orchards

Procedia PDF Downloads 225
13405 Studies on Irrigation and Nutrient Interactions in Sweet Orange (Citrus sinensis Osbeck)

Authors: S. M. Jogdand, D. D. Jagtap, N. R. Dalal

Abstract:

Sweet orange (Citrus sinensis Osbeck) is one of the most important commercially cultivated fruit crop in India. It stands on second position amongst citrus group after mandarin. Irrigation and fertigation are vital importance of sweet orange orchard and considered to be the most critical cultural operations. The soil acts as the reservoir of water and applied nutrients, the interaction between irrigation and fertigation leads to the ultimate quality and production of fruits. The increasing cost of fertilizers and scarcity of irrigation water forced the farmers for optimum use of irrigation and nutrients. The experiment was conducted with object to find out irrigation and nutrient interaction in sweet orange to optimize the use of both the factors. The experiment was conducted in medium to deep soil. The irrigation level I3,drip irrigation at 90% ER (effective rainfall) and fertigation level F3 80% RDF (recommended dose of fertilizer) recorded significantly maximum plant height, plant spread, canopy volume, number of fruits, weight of fruit, fruit yield kg/plant and t/ha followed by F2 , fertigation with 70% RDF. The interaction effect of irrigation and fertigation on growth was also significant and the maximum plant height, E-W spread, N-S spread, canopy volume, highest number of fruits, weight of fruit and yield kg/plant and t/ha was recorded in T9 i.e. I3F3 drip irrigation at 90% ER and fertigation with 80% of RDF followed by I3F2 drip irrigation at 90% ER and fertigation with 70% of RDF.

Keywords: sweet orange, fertigation, irrigation, interactions

Procedia PDF Downloads 180
13404 Effect of Irrigation Interval on Jojoba Plants under Circumstance of Sinai

Authors: E. Khattab, S. Halla

Abstract:

Jojoba plants are characterized by a tolerance of water stress, but due to the conditions of the Sinai in which the water is less, an irrigation interval study was carried out the jojoba plant from water stress without affecting the yield of oil. The field experiment was carried out at Maghara Research Station at North Sinai, Desert Research Center, Ministry of Agriculture, Egypt, to study the effect of irrigation interval on five clones of jojoba plants S-L, S-610, S- 700, S-B and S-G on growth and yield characters. Results showed that the clone S-700 has increase of all growth and yield characters under all interval irrigation compare with other clones. All variable of studied confirmed that clones of jojoba had significant effect with irrigation interval at one week but decrease value with three weeks. Jojoba plants tolerance to water stress but irrigation interval every week increased seed yield.

Keywords: interval irrigation, growth and yield characters, oil, jojoba, Sinai

Procedia PDF Downloads 194
13403 Assessment of Yield and Water Use Efficiency of Soybean under Deficit Irrigation

Authors: Meysam Abedinpour

Abstract:

Water limitation is the main challenge for crop production in a semi-arid environment. Deficit irrigation is a strategy that allows a crop to sustain some degree of water deficit in order to reduce costs and potentially increase income. For this goal, a field experimental carried out at Asrieh fields of Gorgan city in the north of Iran, during summer season 2011. The treatments imposed were different irrigation water regimes (i.e. W1:70, W2:80, W3:90, and W4:100) percent of field capacity (FC). The results showed that there was Significant difference between the yield and (WUE) under different levels of irrigation, excepting of soil moisture content at field capacity (W4) and 90% of field capacity (W3) on yield and water use efficiency (WUE). The seasonal irrigation water applied were (i.e. 375, 338, 300, and 263 mm ha-1) under different irrigation water treatments (100, 90, 80, 80 and 70%) of FC, respectively. Grain yield productions under treatments were 4180, 3955, 3640, and 3355 (kg ha-1) respectively. Furthermore, the results showed that water use efficiency (WUE) at different treatments were 7.67, 7.79, 7.74, and 7.75 Kg mm ha-1 for (100, 90, 80, and 70) per cent of field capacity, therefore the 90 % of FC treatment (W3) is recommended for Soybean irrigation for water saving. Furthermore, the result showed that the treatment of 90 % of filed capacity (W3) seemed to be better adapted to product a high crop yield with acceptable yield coupling with water use efficiency in Golestan province.

Keywords: deficit irrigation, water use efficiency, yield, soybean

Procedia PDF Downloads 471