Search results for: interface formation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4511

Search results for: interface formation

4301 Determination of Concentrated State Using Multiple EEG Channels

Authors: Tae Jin Choi, Jong Ok Kim, Sang Min Jin, Gilwon Yoon

Abstract:

Analysis of EEG brainwave provides information on mental or emotional states. One of the particular states that can have various applications in human machine interface (HMI) is concentration. 8-channel EEG signals were measured and analyzed. The concentration index was compared during resting and concentrating periods. Among eight channels, locations the frontal lobe (Fp1 and Fp2) showed a clear increase of the concentration index during concentration regardless of subjects. The rest six channels produced conflicting observations depending on subjects. At this time, it is not clear whether individual difference or how to concentrate made these results for the rest six channels. Nevertheless, it is expected that Fp1 and Fp2 are promising locations for extracting control signal for HMI applications.

Keywords: concentration, EEG, human machine interface, biophysical

Procedia PDF Downloads 455
4300 Modeling of Void Formation in 3D Woven Fabric During Resin Transfer Moulding

Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Jan Kočí, Andy Long

Abstract:

Resin transfer molding (RTM) is increasingly used for manufacturing high-quality composite structures due to its additional advantages over prepregs of low-cost out-of-autoclave processing. However, to retain the advantages, it is critical to reduce the void content during the injection. Reinforcements commonly used in RTM, such as woven fabrics, have dual-scale porosity with mesoscale pores between the yarns and the micro-scale pores within the yarns. Due to the fabric geometry and the nature of the dual-scale flow, the flow front during injection creates a complicated fingering formation which leads to void formation. Analytical modeling of void formation for woven fabrics has been widely studied elsewhere. However, there is scope for improvement to the reduction in void formation in 3D fabrics wherein the in-plane yarn layers are confined by additional through-thickness binder yarns. In the present study, the structural morphology of the tortuous pore spaces in the 3D fabric has been studied and implemented using open-source software TexGen. An analytical model for the void and the fingering formation has been implemented based on an idealized unit cell model of the 3D fabric. Since the pore spaces between the yarns are free domains, the region is treated as flow-through connected channels, whereas intra-yarn flow has been modeled using Darcy’s law with an additional term to account for capillary pressure. Later the void fraction has been characterised using the criterion of void formation by comparing the fill time for inter and intra yarn flow. Moreover, the dual-scale two-phase flow of resin with air has been simulated in the commercial CFD solver OpenFOAM/ANSYS to predict the probable location of voids and validate the analytical model. The use of an idealised unit cell model will give the insight to optimise the mesoscale geometry of the reinforcement and injection parameters to minimise the void content during the LCM process.

Keywords: 3D fiber, void formation, RTM, process modelling

Procedia PDF Downloads 73
4299 Standardized Description and Modeling Methods of Semiconductor IP Interfaces

Authors: Seongsoo Lee

Abstract:

IP reuse is an effective design methodology for modern SoC design to reduce effort and time. However, description and modeling methods of IP interfaces are different due to different IP designers. In this paper, standardized description and modeling methods of IP interfaces are proposed. It consists of 11 items such as IP information, model provision, data type, description level, interface information, port information, signal information, protocol information, modeling level, modeling information, and source file. The proposed description and modeling methods enables easy understanding, simulation, verification, and modification in IP reuse.

Keywords: interface, standardization, description, modeling, semiconductor IP

Procedia PDF Downloads 469
4298 Biological Optimization following BM-MSC Seeding of Partially Demineralized and Partially Demineralized Laser-Perforated Structural Bone Allografts Implanted in Critical Femoral Defects

Authors: S. AliReza Mirghasemi, Zameer Hussain, Mohammad Saleh Sadeghi, Narges Rahimi Gabaran, Mohamadreza Baghaban Eslaminejad

Abstract:

Background: Despite promising results have shown by osteogenic cell-based demineralized bone matrix composites, they need to be optimized for grafts that act as structural frameworks in load-bearing defects. The purpose of this experiment is to determine the effect of bone-marrow-mesenchymal-stem-cells seeding on partially demineralized laser-perforated structural allografts that have been implanted in critical femoral defects. Materials and Methods: P3 stem cells were used for graft seeding. Laser perforation in four rows of three holes was achieved. Cell-seeded grafts were incubated for one hour until they were planted into the defect. We used four types of grafts: partially demineralized only (Donly), partially demineralized stem cell seeded (DST), partially demineralized laser-perforated (DLP), and partially demineralized laser-perforated stem cell seeded (DLPST). histologic and histomorphometric analysis were performed at 12 weeks. Results: Partially demineralized laser-perforated had the highest woven bone formation within graft limits, stem cell seeded demineralized laser-perforated remained intact, and the difference between partially demineralized only and partially demineralized stem cell seeded was insignificant. At interface, partially demineralized laser-perforated and partially demineralized only had comparable osteogenesis, but partially demineralized stem cell seeded was inferior. The interface in stem cell seeded demineralized laser-perforated was almost replaced by distinct endochondral osteogenesis with higher angiogenesis in the vicinity. Partially demineralized stem cell seeded and stem cell seeded demineralized laser-perforated graft surfaces had extra vessel-ingrowth-like porosities, a sign of delayed resorption. Conclusion: This demonstrates that simple cell-based composites are not optimal and necessitates the supplementation of synergistic stipulations and surface changes.

Keywords: structural bone allograft, partial demineralization, laser perforation, mesenchymal stem cell

Procedia PDF Downloads 391
4297 Autophagy Suppresses Bladder Tumor Formation in a Mouse Orthotopic Bladder Tumor Formation Model

Authors: Wan-Ting Kuo, Yi-Wen Liu, Hsiao-Sheng Liu

Abstract:

Annual incidence of bladder cancer increases in the world and occurs frequently in the male. Most common type is transitional cell carcinoma (TCC) which is treated by transurethral resection followed by intravesical administration of agents. In clinical treatment of bladder cancer, chemotherapeutic drugs-induced apoptosis is always used in patients. However, cancers usually develop resistance to chemotherapeutic drugs and often lead to aggressive tumors with worse clinical outcomes. Approximate 70% TCC recurs and 30% recurrent tumors progress to high-grade invasive tumors, indicating that new therapeutic agents are urgently needed to improve the successful rate of overall treatment. Nonapoptotic program cell death may assist to overcome worse clinical outcomes. Autophagy which is one of the nonapoptotic pathways provides another option for bladder cancer patients. Autophagy is reported as a potent anticancer therapy in some cancers. First of all, we established a mouse orthotopic bladder tumor formation model in order to create a similar tumor microenvironment. IVIS system and micro-ultrasound were utilized to noninvasively monitor tumor formation. In addition, we carried out intravesical treatment in our animal model to be consistent with human clinical treatment. In our study, we carried out intravesical instillation of the autophagy inducer in mouse orthotopic bladder tumor to observe tumor formation by noninvasive IVIS system and micro-ultrasound. Our results showed that bladder tumor formation is suppressed by the autophagy inducer, and there are no significant side effects in the physiology of mice. Furthermore, the autophagy inducer upregulated autophagy in bladder tissues of the treated mice was confirmed by Western blot, immunohistochemistry, and immunofluorescence. In conclusion, we reveal that a novel autophagy inducer with low side effects suppresses bladder tumor formation in our mouse orthotopic bladder tumor model, and it provides another therapeutic approach in bladder cancer patients.

Keywords: bladder cancer, transitional cell carcinoma, orthotopic bladder tumor formation model, autophagy

Procedia PDF Downloads 150
4296 The “Buffer Layer” An Improved Electrode-Electrolyte Interface For Solid-State Batteries

Authors: Gregory Schmidt

Abstract:

Solid-state lithium batteries are broadly accepted as promising candidates for application in the next generation of EVs as they should offer safer and higher-energy-density batteries. Nonetheless, their development is impeded by many challenges, including the resistive electrode–electrolyte interface originating from the removal of the liquid electrolyte that normally permeates through the porous cathode and ensures efficient ionic conductivity through the cell. One way to tackle this challenge is by formulating composite cathodes containing solid ionic conductors in their structure, but this approach will require the conductors to exhibit chemical stability, electrochemical stability, flexibility, and adhesion and is, therefore, limited to some materials. Recently, Arkema developed a technology called buffering layer which allows the transformation of any conventional porous electrode into a catholyte. This organic layer has a very high ionic conductivity at room temperature, is compatible with all active materials, and can be processed with conventional Gigafactory equipment. Moreover, this layer helps protect the solid ionic conductor from the cathode and anode materials. During this presentation, the manufacture and the electrochemical performance of this layer for different systems of cathode and anode will be discussed.

Keywords: electrochemistry, all solid state battery, materials, interface

Procedia PDF Downloads 67
4295 Bimetallic Silver-Platinum Core-Shell Nanoparticles Formation and Spectroscopic Analysis

Authors: Mangaka C. Matoetoe, Fredrick O. Okumu

Abstract:

Metal nanoparticles have attracted a great interest in scientific research and industrial applications, owing to their unique large surface area-to-volume ratios and quantum-size effects. Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage and as catalysts for the sustainable production of fuels and chemicals. Monometallics (Ag, Pt) and Silver-platinum (Ag-Pt) bimetallic (BM) nanoparticles (NPs) with a mole fraction (1:1) were prepared by reduction / co-reduction of hexachloroplatinate and silver nitrate with sodium citrate. The kinetics of the nanoparticles formation was monitored using UV-visible spectrophotometry. Transmission electron microscopy (TEM) and Energy-dispersive X-ray (EDX) spectroscopy were used for size, film morphology as well as elemental composition study. Fast reduction processes was noted in Ag NPs (0.079 s-1) and Ag-Pt NPs 1:1 (0.082 s-1) with exception of Pt NPs (0.006 s-1) formation. The UV-visible spectra showed characteristic peaks in Ag NPs while the Pt NPs and Ag-Pt NPs 1:1 had no observable absorption peaks. UV visible spectra confirmed chemical reduction resulting to formation of NPs while TEM images depicted core-shell arrangement in the Ag-Pt NPs 1:1 with particle size of 20 nm. Monometallic Ag and Pt NPs reported particle sizes of 60 nm and 2.5 nm respectively. The particle size distribution in the BM NPs was found to directly depend on the concentration of Pt NPs around the Ag core. EDX elemental composition analysis of the nanoparticle suspensions confirmed presence of the Ag and Pt in the Ag-Pt NPs 1:1. All the spectroscopic analysis confirmed the successful formation of the nanoparticles.

Keywords: kinetics, morphology, nanoparticles, platinum, silver

Procedia PDF Downloads 374
4294 Examining the Role of Iranian International Cinema in the Formation of Cultural Schemas About Iranian Families

Authors: Elahe Zavareian

Abstract:

Cinema is a powerful medium that can depict and critique sociological and cultural issues, contributing to the expansion of important societal issues and raising awareness. Family crises and challenges are significant concerns faced by societies worldwide. The family serves as the central core for societal formation, and the challenges experienced within this small social group have implications not only for individuals within a country but also for the wider culture. The concept of the family represents the entire society in relation to other countries, shaping ideas and prejudices regarding interpersonal culture and relationships. The representation of society's problems through cinema influences the formation of cultural schemas within the country producing the films and among the societies that view them.

Keywords: interpersonal culture, representation, society, family, cultural schemas

Procedia PDF Downloads 44
4293 Mechanical Properties of Hybrid Ti6Al4V Part with Wrought Alloy to Powder-Bed Additive Manufactured Interface

Authors: Amnon Shirizly, Ohad Dolev

Abstract:

In recent years, the implementation and use of Metal Additive Manufacturing (AM) parts increase. As a result, the demand for bigger parts rises along with the desire to reduce it’s the production cost. Generally, in powder bed Additive Manufacturing technology the part size is limited by the machine build volume. In order to overcome this limitation, the parts can be built in one or more machine operations and mechanically joint or weld them together. An alternative option could be a production of wrought part and built on it the AM structure (mainly to reduce costs). In both cases, the mechanical properties of the interface have to be defined and recognized. In the current study, the authors introduce guidelines on how to examine the interface between wrought alloy and powder-bed AM. The mechanical and metallurgical properties of the Ti6Al4V materials (wrought alloy and powder-bed AM) and their hybrid interface were examined. The mechanical properties gain from tensile test bars in the built direction and fracture toughness samples in various orientations. The hybrid specimens were built onto a wrought Ti6Al4V start-plate. The standard fracture toughness (CT25 samples) and hybrid tensile specimens' were heat treated and milled as a post process to final diminutions. In this Study, the mechanical tensile tests and fracture toughness properties supported by metallurgical observation will be introduced and discussed. It will show that the hybrid approach of utilizing powder bed AM onto wrought material expanding the current limitation of the future manufacturing technology.

Keywords: additive manufacturing, hybrid, fracture-toughness, powder bed

Procedia PDF Downloads 83
4292 System and Method for Providing Web-Based Remote Application Service

Authors: Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang

Abstract:

With the development of virtualization technologies, a new type of service named cloud computing service is produced. Cloud users usually encounter the problem of how to use the virtualized platform easily over the web without requiring the plug-in or installation of special software. The object of this paper is to develop a system and a method enabling process interfacing within an automation scenario for accessing remote application by using the web browser. To meet this challenge, we have devised a web-based interface that system has allowed to shift the GUI application from the traditional local environment to the cloud platform, which is stored on the remote virtual machine. We designed the sketch of web interface following the cloud virtualization concept that sought to enable communication and collaboration among users. We describe the design requirements of remote application technology and present implementation details of the web application and its associated components. We conclude that this effort has the potential to provide an elastic and resilience environment for several application services. Users no longer have to burden the system maintenances and reduce the overall cost of software licenses and hardware. Moreover, this remote application service represents the next step to the mobile workplace, and it lets user to use the remote application virtually from anywhere.

Keywords: virtualization technology, virtualized platform, web interface, remote application

Procedia PDF Downloads 253
4291 Mechanical Behaviours of Ti/GFRP/Ti Laminates with Different Surface Treatments of Titanium Sheets

Authors: Amit Kumar Haldar, Mark Simms, Ian McDevitt, Anthony Comer

Abstract:

Interface properties of fiber metal laminates (FML) affects the integrity and deformation failure modes. In this paper, the mechanical behaviours of Ti/GFRP/Ti laminates were experimentally investigated through low-velocity impact tests. Two different surface treatments of Titanium (Ti-6Al-4V) alloy sheets were prepared to obtain the composite interface properties based on annealing and sandblast surface treatment processes. The deformation failure modes, impact load sustaining ability and energy absorption capacity of FMLs were analysed. The impact load and modulus were shown to be dependent on the surface treatments of Titanium (Ti-6Al-4V) alloy sheets. It was demonstrated that the impact load performance was enhanced when titanium surfaces were annealed and sandblasted. It has also been shown that the values of the strength and energy absorption were slightly higher when the tests conducted at relatively higher loading rate, as a result of the rate-sensitive effects on the damage resistance of the FML.

Keywords: fiber metal laminates, metal composite interface, indentation, low velocity impact

Procedia PDF Downloads 168
4290 Multiscale Cohesive Zone Modeling of Composite Microstructure

Authors: Vincent Iacobellis, Kamran Behdinan

Abstract:

A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation.

Keywords: cohesive zone model, fiber-matrix interface, microscale damage, multiscale modeling

Procedia PDF Downloads 453
4289 IoT Based Approach to Healthcare System for a Quadriplegic Patient Using EEG

Authors: R. Gautam, P. Sastha Kanagasabai, G. N. Rathna

Abstract:

The proposed healthcare system enables quadriplegic patients, people with severe motor disabilities to send commands to electronic devices and monitor their vitals. The growth of Brain-Computer-Interface (BCI) has led to rapid development in 'assistive systems' for the disabled called 'assistive domotics'. Brain-Computer-Interface is capable of reading the brainwaves of an individual and analyse it to obtain some meaningful data. This processed data can be used to assist people having speech disorders and sometimes people with limited locomotion to communicate. In this Project, Emotiv EPOC Headset is used to obtain the electroencephalogram (EEG). The obtained data is processed to communicate pre-defined commands over the internet to the desired mobile phone user. Other Vital Information like the heartbeat, blood pressure, ECG and body temperature are monitored and uploaded to the server. Data analytics enables physicians to scan databases for a specific illness. The Data is processed in Intel Edison, system on chip (SoC). Patient metrics are displayed via Intel IoT Analytics cloud service.

Keywords: brain computer interface, Intel Edison, Emotiv EPOC, IoT analytics, electroencephalogram

Procedia PDF Downloads 162
4288 Analysis of Process Methane Hydrate Formation That Include the Important Role of Deep-Sea Sediments with Analogy in Kerek Formation, Sub-Basin Kendeng, Central Java, Indonesia

Authors: Yan Bachtiar Muslih, Hangga Wijaya, Trio Fani, Putri Agustin

Abstract:

Demand of Energy in Indonesia always increases 5-6% a year, but production of conventional energy always decreases 3-5% a year, it means that conventional energy in 20-40 years ahead will not able to complete all energy demand in Indonesia, one of the solve way is using unconventional energy that is gas hydrate, gas hydrate is gas that form by biogenic process, gas hydrate stable in condition with extremely depth and low temperature, gas hydrate can form in two condition that is in pole condition and in deep-sea condition, wherein this research will focus in gas hydrate that association with methane form methane hydrate in deep-sea condition and usually form in depth between 150-2000 m, this research will focus in process of methane hydrate formation that is biogenic process and the important role of deep-sea sediment so can produce accumulation of methane hydrate, methane hydrate usually will be accumulated in find sediment in deep-sea environment with condition high-pressure and low-temperature this condition too usually make methane hydrate change into white nodule, methodology of this research is geology field work and laboratory analysis, from geology field work will get sample data consist of 10-15 samples from Kerek Formation outcrops as random for imagine the condition of deep-sea environment that influence the methane hydrate formation and also from geology field work will get data of measuring stratigraphy in outcrops Kerek Formation too from this data will help to imagine the process in deep-sea sediment like energy flow, supply sediment, and etc, and laboratory analysis is activity to analyze all data that get from geology field work, the result of this research can used to exploration activity of methane hydrate in another prospect deep-sea environment in Indonesia.

Keywords: methane hydrate, deep-sea sediment, kerek formation, sub-basin of kendeng, central java, Indonesia

Procedia PDF Downloads 441
4287 Formation of In-Situ Composite during Reactive Wetting and Imbibition Ta by Cu(B) Melt

Authors: Sergei Zhevnenko

Abstract:

Сontinuous layer of tantalum boride is formed on the surface as a result of reactive wetting of oxidized tantalum by copper melt with boron at a temperatures above 1150 °C. An increase in the wetting temperature above 1400 °C leads to a change in the formation mechanism of tantalum borides, they are formed in the nanosized flakes. In the presented work, we studied the process of copper-based in-situ composite formation, strengthened by the particles of tantalum borides. We investigated the structure of the formed particles, the conditions, and the kinetics of their formation. Dissolving boride particles do not have time to mix uniformly in the melt upon sufficiently rapid cooling and form a macrostructure, partly repeating the shape of the metallic tantalum. This allows to set different gradient structures in the copper alloy. Such macrostructures have been obtained. Boride particles and microstructures were studied by scanning and transmission electron microscopy, and regions with particles were investigated by nanoindentation. In this work, we also measured the kinetics of impregnation of porous tantalum with copper-boron melt and studied the structures of the composite, in which the melt filling the interpore space is saturated with boride particles.

Keywords: copper, tantalum borides, in-situ composites, wetting, imbibition

Procedia PDF Downloads 69
4286 Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Dynamic Membrane Electroporation

Authors: Jiahui Song

Abstract:

The application of an electric field can cause poration at cell membranes. This includes the outer plasma membrane, as well as the membranes of intracellular organelles. In order to analyze and predict such electroporation effects, it becomes necessary to first evaluate the electric fields and the transmembrane voltages. This information can then be used to assess changes in the pore formation energy that finally yields the pore distributions and their radii based on the Smolchowski equation. The dynamic pore model can be achieved by including a dynamic aspect and a dependence on the pore population density into the pore formation energy equation. These changes make the pore formation energy E(r) self-adjusting in response to pore formation without causing uncontrolled growth and expansion. By using dynamic membrane tension, membrane electroporation in response to a 180kV/cm trapezoidal pulse with a 10 ns on time and 1.5 ns rise- and fall-times is discussed. Poration is predicted to occur at times beyond the peak at around 9.2 ns. Modeling also yields time-dependent distributions of the membrane pore population after multiple pulses. It shows that the pore distribution shifts to larger values of the radius with multiple pulsing. Molecular dynamics (MD) simulations are also carried out for a fixed field of 0.5 V/nm to demonstrate nanopore formation from a microscopic point of view. The result shows that the pore is predicted to be about 0.9 nm in diameter and somewhat narrower at the central point.

Keywords: high-intensity, nanosecond, dynamics, electroporation

Procedia PDF Downloads 128
4285 Meditation Based Brain Painting Promotes Foreign Language Memory through Establishing a Brain-Computer Interface

Authors: Zhepeng Rui, Zhenyu Gu, Caitilin de Bérigny

Abstract:

In the current study, we designed an interactive meditation and brain painting application to cultivate users’ creativity, promote meditation, reduce stress, and improve cognition while attempting to learn a foreign language. User tests and data analyses were conducted on 42 male and 42 female participants to better understand sex-associated psychological and aesthetic differences. Our method utilized brain-computer interfaces to import meditation and attention data to create artwork in meditation-based applications. Female participants showed statistically significantly different language learning outcomes following three meditation paradigms. The art style of brain painting helped females with language memory. Our results suggest that the most ideal methods for promoting memory attention were meditation methods and brain painting exercises contributing to language learning, memory concentration promotion, and foreign word memorization. We conclude that a short period of meditation practice can help in learning a foreign language. These findings provide new insights into meditation, creative language education, brain-computer interface, and human-computer interactions.

Keywords: brain-computer interface, creative thinking, meditation, mental health

Procedia PDF Downloads 92
4284 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System

Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma

Abstract:

Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.

Keywords: machine learning, wearable devices, user interface, user experience, internet of things

Procedia PDF Downloads 261
4283 Component Interface Formalization in Robotic Systems

Authors: Anton Hristozov, Eric Matson, Eric Dietz, Marcus Rogers

Abstract:

Components are heavily used in many software systems, including robotics systems. The growth of sophistication and diversity of new capabilities for robotic systems presents new challenges to their architectures. Their complexity is growing exponentially with the advent of AI, smart sensors, and the complex tasks they have to accomplish. Such complexity requires a more rigorous approach to the creation, use, and interoperability of software components. The issue is exacerbated because robotic systems are becoming more and more reliant on third-party components for certain functions. In order to achieve this kind of interoperability, including dynamic component replacement, we need a way to standardize their interfaces. A formal approach is desperately needed to specify what an interface of a robotic software component should contain. This study performs an analysis of the issue and presents a universal and generic approach to standardizing component interfaces for robotic systems. Our approach is inspired by well-established robotic architectures such as ROS, PX4, and Ardupilot. The study is also applicable to other software systems that share similar characteristics with robotic systems. We consider the use of JSON or Domain Specific Languages (DSL) development with tools such as Antlr and automatic code and configuration file generation for frameworks such as ROS and PX4. A case study with ROS2 is presented as a proof of concept for the proposed methodology.

Keywords: CPS, robots, software architecture, interface, ROS, autopilot

Procedia PDF Downloads 59
4282 High Temperature Oxidation Behavior of Aluminized Steel by Arc Spray and Cementation Techniques

Authors: Minoo Tavakoli, Alireza Kiani Rashid, Abbas Afrasiabi

Abstract:

An aluminum coating deposited on mild steel substrate by electric arc spray and diffused to the base steel material by diffusion treatment at 800 and 900°C for 1 and 3 hours in a static air. Alloy layers formed by diffusion at both temperatures were investigated, and their features were compared with those of pack cementation aluminized steel. High-temperature oxidation tests were carried out in air at 600 °C for 145 hours. Results indicated that the aluminide coatings obtained from this process have significantly improved the high-temperature oxidation resistance in both methods due to the Al2O3 scale formation. Furthermore, it showed that the isothermal oxidation resistance of arc spray technique is better than pack cementation method. This can be attributed to voids that formed at the intermetallic layer /Al layer interface which is increased in the pack cementation method.

Keywords: electric arc spray, pack cementation, oxidation resistance, aluminized steel

Procedia PDF Downloads 439
4281 Device Control Using Brain Computer Interface

Authors: P. Neeraj, Anurag Sharma, Harsukhpreet Singh

Abstract:

In current years, Brain-Computer Interface (BCI) scheme based on steady-state Visual Evoked Potential (SSVEP) have earned much consideration. This study tries to evolve an SSVEP based BCI scheme that can regulate any gadget mock-up in two unique positions ON and OFF. In this paper, two distinctive gleam frequencies in low-frequency part were utilized to evoke the SSVEPs and were shown on a Liquid Crystal Display (LCD) screen utilizing Lab View. Two stimuli shading, Yellow, and Blue were utilized to prepare the system in SSVEPs. The Electroencephalogram (EEG) signals recorded from the occipital part. Elements of the brain were separated by utilizing discrete wavelet Transform. A prominent system for multilayer system diverse Neural Network Algorithm (NNA), is utilized to characterize SSVEP signals. During training of the network with diverse calculation Regression plot results demonstrated that when Levenberg-Marquardt preparing calculation was utilized the exactness turns out to be 93.9%, which is superior to another training algorithm.

Keywords: brain computer interface, electroencephalography, steady-state visual evoked potential, wavelet transform, neural network

Procedia PDF Downloads 313
4280 Evaluating the Role of Cinema in the Formation of Cultural Schemas of Iranian Families by Studying the Opinions of Critics at the Venice Film Festival

Authors: Elahe Zavareian

Abstract:

Cinema is a powerful medium that can depict and critique sociological and cultural issues, contributing to the expansion of important societal issues and raising awareness. Family crises and challenges are significant concerns faced by societies worldwide. The family serves as the central core for societal formation, and the challenges experienced within this small social group have implications not only for individuals within a country but also for the wider culture. The concept of the family represents the entire society in relation to other countries, shaping ideas and prejudices regarding interpersonal culture and relationships. The representation of society's problems through cinema influences the formation of cultural schemas within the country producing the films and among the societies that view them.

Keywords: interpersonal culture, representation, society, family, cultural schemas

Procedia PDF Downloads 49
4279 Cartel Formation with Differentiated Products, Asymmetric Cost, and Quantity Competition: The Case of Three Firms

Authors: Burkhard Hehenkamp, Tahmina Faizi

Abstract:

In this paper, we analyze the formation of cartels along with the stability of the cartel for the case of three firms that produce differentiated products and differ in their cost of production. Both cost and demand are linear, and firms compete in quantities once a cartel has been formed (or not). It turns out that the degree of product differentiation has a direct effect on the incentive to form a cartel. Firstly, when goods are complements or close substitutes, firms form a grand coalition. Secondly, for weak and medium substitutes, the firm with the lowest cost prefers to remain independent, while both other firms form a coalition. We also find that the producer profit of the stable coalition structure is nonmonotonic in the degree of product differentiation.

Keywords: collusion, cartel formation, cartel stability, differentiated market, quantity competition, oligopolies

Procedia PDF Downloads 75
4278 A Non-Iterative Shape Reconstruction of an Interface from Boundary Measurement

Authors: Mourad Hrizi

Abstract:

In this paper, we study the inverse problem of reconstructing an interior interface D appearing in the elliptic partial differential equation: Δu+χ(D)u=0 from the knowledge of the boundary measurements. This problem arises from a semiconductor transistor model. We propose a new shape reconstruction procedure that is based on the Kohn-Vogelius formulation and the topological sensitivity method. The inverse problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a function. The unknown subdomain D is reconstructed using a level-set curve of the topological gradient. Finally, we give several examples to show the viability of our proposed method.

Keywords: inverse problem, topological optimization, topological gradient, Kohn-Vogelius formulation

Procedia PDF Downloads 217
4277 Identification of EEG Attention Level Using Empirical Mode Decompositions for BCI Applications

Authors: Chia-Ju Peng, Shih-Jui Chen

Abstract:

This paper proposes a method to discriminate electroencephalogram (EEG) signals between different concentration states using empirical mode decomposition (EMD). Brain-computer interface (BCI), also called brain-machine interface, is a direct communication pathway between the brain and an external device without the inherent pathway such as the peripheral nervous system or skeletal muscles. Attention level is a common index as a control signal of BCI systems. The EEG signals acquired from people paying attention or in relaxation, respectively, are decomposed into a set of intrinsic mode functions (IMF) by EMD. Fast Fourier transform (FFT) analysis is then applied to each IMF to obtain the frequency spectrums. By observing power spectrums of IMFs, the proposed method has the better identification of EEG attention level than the original EEG signals between different concentration states. The band power of IMF3 is the most obvious especially in β wave, which corresponds to fully awake and generally alert. The signal processing method and results of this experiment paves a new way for BCI robotic system using the attention-level control strategy. The integrated signal processing method reveals appropriate information for discrimination of the attention and relaxation, contributing to a more enhanced BCI performance.

Keywords: biomedical engineering, brain computer interface, electroencephalography, rehabilitation

Procedia PDF Downloads 369
4276 Evaluation of Corrosion by Impedance Spectroscopy of Embedded Steel in an Alternative Concrete Exposed a Chloride Ion

Authors: E. Ruíz, W. Aperador

Abstract:

In this article evaluates the protective effect of the concrete alternative obtained from the fly ash and iron and steel slag mixed in binary form and were placed on structural steel ASTM A 706. The study was conducted comparatively with specimens exposed to natural conditions free of chloride ion. The effect of chloride ion on the specimens was generated of form accelerated under controlled conditions (3.5% NaCl and 25 ° C temperature). The Impedance data were acquired over a range of 1 mHz to 100 kHz. At frequencies high is found the response of the interface means of the exposure-concrete and to frequency low the response of the interface corresponding to concrete-steel.

Keywords: alternative concrete, corrosion, alkaline activation, impedance spectroscopy

Procedia PDF Downloads 333
4275 Identification of Clay Mineral for Determining Reservoir Maturity Levels Based on Petrographic Analysis, X-Ray Diffraction and Porosity Test on Penosogan Formation Karangsambung Sub-District Kebumen Regency Central Java

Authors: Ayu Dwi Hardiyanti, Bernardus Anggit Winahyu, I. Gusti Agung Ayu Sugita Sari, Lestari Sutra Simamora, I. Wayan Warmada

Abstract:

The Penosogan Formation sandstone, that has Middle Miosen age, has been deemed as a reservoir potential based on sample data from sandstone outcrop in Kebakalan and Kedawung villages, Karangsambung sub-district, Kebumen Regency, Central Java. This research employs the following analytical methods; petrography, X-ray diffraction (XRD), and porosity test. Based on the presence of micritic sandstone, muddy micrite, and muddy sandstone, the Penosogan Formation sandstone has a fine-coarse granular size and middle-to-fine sorting. The composition of the sandstone is mostly made up of plagioclase, skeletal grain, and traces of micrite. The percentage of clay minerals based on petrographic analysis is 10% and appears to envelop grain, resulting enveloping grain which reduces the porosity of rocks. The porosity types as follows: interparticle, vuggy, channel, and shelter, with an equant form of cement. Moreover, the diagenesis process involves compaction, cementation, authigenic mineral growth, and dissolving due to feldspar alteration. The maturity of the reservoir can be seen through the X-ray diffraction analysis results, using ethylene glycol solution for clay minerals fraction transformed from smectite–illite. Porosity test analysis showed that the Penosogan Formation sandstones has a porosity value of 22% based on the Koeseomadinata classification, 1980. That shows high maturity is very influential for the quality of reservoirs sandstone of the Penosogan Formation.

Keywords: sandstone reservoir, Penosogan Formation, smectite, XRD

Procedia PDF Downloads 142
4274 Reduction of Biofilm Formation in Closed Circuit Cooling Towers

Authors: Irfan Turetgen

Abstract:

Closed-circuit cooling towers are cooling units that operate according to the indirect cooling principle. Unlike the open-loop cooling tower, the filler material includes a closed-loop water-operated heat exchanger. The main purpose of this heat exchanger is to prevent the cooled process water from contacting with the external environment. In order to ensure that the hot water is cooled, the water is cooled by the air flow and the circulation water of the tower as it passes through the pipe. They are now more commonly used than open loop cooling towers that provide cooling with plastic filling material. As with all surfaces in contact with water, there is a biofilm formation on the outer surface of the pipe. Although biofilm has been studied very well on plastic surfaces in open loop cooling towers, studies on biofilm layer formed on the heat exchangers of the closed circuit tower have not been found. In the recent study, natural biofilm formation was observed on the heat exchangers of the closed loop tower for 6 months. At the same time, nano-silica coating, which is known to reduce the formation of the biofilm layer, a comparison was made between the two different surfaces in terms of biofilm formation potential. Test surfaces were placed into biofilm reactor along with the untreated control coupons up to 6-months period for biofilm maturation. Natural bacterial communities were monitored to analyze the impact to mimic the real-life conditions. Surfaces were monthly analyzed in situ for their microbial load using epifluorescence microscopy. Wettability is known to play a key role in biofilm formation on surfaces, because characteristics of surface properties affect the bacterial adhesion. Results showed that surface-conditioning with nano-silica significantly reduce (up to 90%) biofilm formation. Easy coating process is a facile and low-cost method to prepare hydrophobic surface without any kinds of expensive compounds or methods.

Keywords: biofilms, cooling towers, fill material, nano silica

Procedia PDF Downloads 104
4273 Non-Uniform Filter Banks-based Minimum Distance to Riemannian Mean Classifition in Motor Imagery Brain-Computer Interface

Authors: Ping Tan, Xiaomeng Su, Yi Shen

Abstract:

The motion intention in the motor imagery braincomputer interface is identified by classifying the event-related desynchronization (ERD) and event-related synchronization ERS characteristics of sensorimotor rhythm (SMR) in EEG signals. When the subject imagines different limbs or different parts moving, the rhythm components and bandwidth will change, which varies from person to person. How to find the effective sensorimotor frequency band of subjects is directly related to the classification accuracy of brain-computer interface. To solve this problem, this paper proposes a Minimum Distance to Riemannian Mean Classification method based on Non-Uniform Filter Banks. During the training phase, the EEG signals are decomposed into multiple different bandwidt signals by using multiple band-pass filters firstly; Then the spatial covariance characteristics of each frequency band signal are computered to be as the feature vectors. these feature vectors will be classified by the MDRM (Minimum Distance to Riemannian Mean) method, and cross validation is employed to obtain the effective sensorimotor frequency bands. During the test phase, the test signals are filtered by the bandpass filter of the effective sensorimotor frequency bands, and the extracted spatial covariance feature vectors will be classified by using the MDRM. Experiments on the BCI competition IV 2a dataset show that the proposed method is superior to other classification methods.

Keywords: non-uniform filter banks, motor imagery, brain-computer interface, minimum distance to Riemannian mean

Procedia PDF Downloads 82
4272 Political Perspectives Regarding International Laws

Authors: Hamid Vahidkia

Abstract:

This exposition investigates the connection between two viewpoints on the nature of human rights. Agreeing with the “political” or “practical” point of view, human rights are claims that people have against certain regulation structures in specific present-day states, in the ethicalness of interface they have in settings that incorporate them. Agreeing with the more conventional “humanist” or “naturalistic” viewpoint, human rights are pre-institutional claims that people have against all other people in the ethicalness of interface characteristic of their common humankind. This paper contends that once we recognize the two viewpoints in their best light, we are able to see that they are complementary, and, in reality, we require both to form a great standardizing sense of the modern home of human rights. It clarifies how humanist and political contemplations can and ought to work in couple to account for the concept, substance, and legitimization of human rights.

Keywords: politics, human rights, humanities, mankind, law

Procedia PDF Downloads 18