Search results for: heat balance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4342

Search results for: heat balance

4072 Water Balance Components under Climate Change in Croatia

Authors: Jelena Bašić, Višnjica Vučetić, Mislav Anić, Tomislav Bašić

Abstract:

Lack of precipitation combined with high temperatures causes great damage to the agriculture and economy in Croatia. Therefore, it is important to understand water circulation and balance. We decided to gain a better insight into the spatial distribution of water balance components (WBC) and their long-term changes in Croatia. WBC are precipitation (P), potential evapotranspiration (PET), actual evapotranspiration (ET), soil moisture content (S), runoff (RO), recharge (R), and soil moisture loss (L). Since measurements of the mentioned components in Croatia are very rare, the Palmer model has been applied to estimate them. We refined method by setting into the account the corrective factor to include influence effects of the wind as well as a maximum soil capacity for specific soil types. We will present one hundred years’ time series of PET and ET showing the trends at few meteorological stations and a comparison of components of two climatological periods. The meteorological data from 109 stations have been used for the spatial distribution map of the WBC of Croatia.

Keywords: croatia, long-term trends, the palmer method, water balance components

Procedia PDF Downloads 113
4071 Comparison of Dynamic Balance Ability and Flexibility in Different Sports

Authors: Inci Kesilmis, Manolya Akin, Mehmet Melih Kesilmis

Abstract:

The aim of this research was to compare dynamic balance ability (bipedal, right, left foot) and plantar-dorsi flexion range of motion in fencers and swimmers. 43 fencers participated as volunteer with mean age 15.74±1.90year and mean training year 4.97±2.37year. 25 swimmers participated as volunteer with mean age 15.36±1.65 yr. and mean training year 5.98±2.35 yr. Dynamic balance measured while participants were standing in the anatomical position with prokin tecno body for bipedal, right, left foot. Plantar and dorsal flexion range of motion measured while participants in seated position on the examination table and goniometer placed on the lateral malleolus. For statistical analyses; independent samples t test was used. There were significant differences between bipedal (p < 0.05), right foot (p < 0.05), left foot (p < 0.05) dynamic balance ability in favor of fencers. Also there was significant difference between right and left foot dorsal flexion range of motion (p < 0.001) in favor of fencers. There was no significant difference in plantar flexion range of motion between fencers and swimmers. The difference observed in fencers may be due to the use of more dorsal flexion in action moves and that swimming does not impact loading sport and it is performed in pool.

Keywords: fencing, swimming, dynamic balance, flexibility

Procedia PDF Downloads 344
4070 Solar Pond: Some Issues in Their Management and Mathematical Description

Authors: A. A. Abdullah, K. A. Lindsay

Abstract:

The management of a salt-gradient is investigated with respect to the interaction between the solar pond and its associated evaporation pond. Issues considered are the impact of precipitation and the operation of the flushing system with particular reference to the case in which the flushing fluid is pure water. Results suggest that a management strategy based on a flushing system that simply replaces evaporation losses of water from the solar pond and evaporation pond will be optimally efficient. Such a management strategy will maintain the operational viability of a salt-gradient solar pond as a reservoir of cheap heat while simultaneously ensuring that the associated evaporation pond can feed the storage zone of the solar pond with sufficient saturated brine to balance the effect of salt diffusion. Other findings are, first, that once near saturation is achieved in the evaporation pond, the efficacy of the proposed management strategy is relatively insensitive to both the size of the evaporation pond or its depth, and second, small changes in the extraction of heat from the storage zone of a salt-gradient solar pond have an amplified effect on the temperature of that zone. The possibility of boiling of the storage zone cannot be ignored in a well-configured salt-gradient solar pond.

Keywords: aqueous sodium chloride, constitutive expression, solar pond, salt-gradient

Procedia PDF Downloads 301
4069 Optimization of Heat Insulation Structure and Heat Flux Calculation Method of Slug Calorimeter

Authors: Zhu Xinxin, Wang Hui, Yang Kai

Abstract:

Heat flux is one of the most important test parameters in the ground thermal protection test. Slug calorimeter is selected as the main sensor measuring heat flux in arc wind tunnel test due to the convenience and low cost. However, because of excessive lateral heat transfer and the disadvantage of the calculation method, the heat flux measurement error of the slug calorimeter is large. In order to enhance measurement accuracy, the heat insulation structure and heat flux calculation method of slug calorimeter were improved. The heat transfer model of the slug calorimeter was built according to the energy conservation principle. Based on the heat transfer model, the insulating sleeve of the hollow structure was designed, which helped to greatly decrease lateral heat transfer. And the slug with insulating sleeve of hollow structure was encapsulated using a package shell. The improved insulation structure reduced heat loss and ensured that the heat transfer characteristics were almost the same when calibrated and tested. The heat flux calibration test was carried out in arc lamp system for heat flux sensor calibration, and the results show that test accuracy and precision of slug calorimeter are improved greatly. In the meantime, the simulation model of the slug calorimeter was built. The heat flux values in different temperature rise time periods were calculated by the simulation model. The results show that extracting the data of the temperature rise rate as soon as possible can result in a smaller heat flux calculation error. Then the different thermal contact resistance affecting calculation error was analyzed by the simulation model. The contact resistance between the slug and the insulating sleeve was identified as the main influencing factor. The direct comparison calibration correction method was proposed based on only heat flux calibration. The numerical calculation correction method was proposed based on the heat flux calibration and simulation model of slug calorimeter after the simulation model was solved by solving the contact resistance between the slug and the insulating sleeve. The simulation and test results show that two methods can greatly reduce the heat flux measurement error. Finally, the improved slug calorimeter was tested in the arc wind tunnel. And test results show that the repeatability accuracy of improved slug calorimeter is less than 3%. The deviation of measurement value from different slug calorimeters is less than 3% in the same fluid field. The deviation of measurement value between slug calorimeter and Gordon Gage is less than 4% in the same fluid field.

Keywords: correction method, heat flux calculation, heat insulation structure, heat transfer model, slug calorimeter

Procedia PDF Downloads 94
4068 Heat Transfer Characteristics of Film Condensation

Authors: M. Mosaad, J. H. Almutairi, A. S. Almutairi

Abstract:

In this paper, saturated-vapour film condensation on a vertical wall with the backside cooled by forced convection is analyzed as a conjugate problem. In the analysis, the temperature and heat flux at the wall sides are assumed unknown and determined from the solution. The model is presented in a dimensionless form to take a broad view of the solution. The dimensionless variables controlling this coupled heat transfer process are discovered from the analysis. These variables explain the relative impact of the interactive heat transfer mechanisms of forced convection and film condensation. The study shows that the conjugate treatment of film condensation process yields results different from that predicted by a non-conjugate Nusselt-type solution, wherein the effect of the cooling fluid is neglected.

Keywords: film condensation, forced convection, coupled heat transfer, analytical modelling

Procedia PDF Downloads 286
4067 Simulation and Experimentation Investigation of Infrared Non-Destructive Testing on Thermal Insulation Material

Authors: Bi Yan-Qiang, Shang Yonghong, Lin Boying, Ji Xinyan, Li Xiyuan

Abstract:

The heat-resistant material has important application in the aerospace field. The reliability of the connection between the heat-resisting material and the body determines the success or failure of the project. In this paper, lock-in infrared thermography non-destructive testing technology is used to detect the stability of the thermal-resistant structure. The phase relationship between the temperature and the heat flow is calculated by the numerical method, and the influence of the heating frequency and power is obtained. The correctness of the analysis is verified by the experimental method. Through the research, it can provide the basis for the parameter setting of heat flux including frequency and power, improve the efficiency of detection and the reliability of connection between the heat-resisting material and the body.

Keywords: infrared non-destructive, thermal insulation material, reliability, connection

Procedia PDF Downloads 352
4066 Strategy of Balancing in Russian Energy Diplomacy toward Middle East

Authors: Davood Karimipour

Abstract:

Since long ago, Russia has been one of the most influential actors in regional equations in South West Asia. The geographic affinity of its vital interests with Western Asia has caused Moscow to have a high sensitivity to the balance of power in the Middle East, as its role in the Syrian crisis clearly demonstrated the importance. In recent years, Moscow has tried to use the energy diplomacy tool in maintaining the balance of power between the major powers in the region. The paper, based on the qualitative case study method, investigates how Russia’s energy diplomacy plays a role in the balance of regional forces in the Middle East, studying the country’s conduct towards Iran, Saudi Arabia, Turkey, and Israel. The hypothesis presented that Russia, using energy tools, is trying to push the regional powers toward cooperation in order to increase the influence in the region, increase power in global markets, and controlling the US to restore power balance in the region. Its cooperation in the Iranian gas industry, the country’s relations with Saudis in the framework of OPEC, cooperation with the Turkish Kurds and the presence in the Israeli gas industry are an example of these Russian energy diplomacy initiatives in West Asia, which is the common point of the Moscow approach to South West Asia.

Keywords: Russia, balance of power, energy diplomacy, Middle East

Procedia PDF Downloads 138
4065 Experimental on Free and Forced Heat Transfer and Pressure Drop of Copper Oxide-Heat Transfer Oil Nanofluid in Horizontal and Inclined Microfin Tube

Authors: F. Hekmatipour, M. A. Akhavan-Behabadi, B. Sajadi

Abstract:

In this paper, the combined free and forced convection heat transfer of the Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid flow in horizontal and inclined microfin tubes is studied experimentally. The flow regime is laminar, and pipe surface temperature is constant. The effect of nanoparticle and microfin tube on the heat transfer rate is investigated with the Richardson number which is between 0.1 and 0.7. The results show an increasing nanoparticle concentration between 0% and 1.5% leads to enhance the combined free and forced convection heat transfer rate. According to the results, five correlations are proposed to provide estimating the free and forced heat transfer rate as the increasing Richardson number from 0.1 to 0.7. The maximum deviation of both correlations is less than 16%. Moreover, four correlations are suggested to assess the Nusselt number based on the Rayleigh number in inclined tubes from 1800000 to 7000000. The maximum deviation of the correlation is almost 16%. The Darcy friction factor of the nanofluid flow has been investigated. Furthermore, CuO-HTO nanofluid flows in inclined microfin tubes.

Keywords: nanofluid, heat transfer oil, mixed convection, inclined tube, laminar flow

Procedia PDF Downloads 231
4064 Polygeneration Solar Thermal System

Authors: S. K. Deb, B. C. Sarma

Abstract:

The concentrating solar thermal devices using low cost thin metallic reflector sheet of moderate reflectance can generate heat both at higher temperature for the receiver at it’s focus and at moderate temperature through direct solar irradiative heat absorption by the reflector sheet itself. Investigation on well insulated rear surface of the concentrator with glass covers at it’s aperture plane for waste heat recovery against the conventional radiative, convective & conductive heat losses for a bench model with a thermal analysis is the prime motivation of this study along with an effort to popularize a compact solar thermal polygeneration system.

Keywords: concentrator, polygeneration, aperture, renewable energy, exergy, solar energy

Procedia PDF Downloads 509
4063 Theoretical and Experimental Investigation of Heat Pipes for Solar Collector Applications

Authors: Alireza Ghadiri, Soheila Memarzadeh, Arash Ghadiri

Abstract:

Heat pipes are efficient heat transfer devices for solar hot water heating systems. However, the effective downward transfer of solar energy in an integrated heat pipe system provides increased design and implementation options. There is a lack of literature about flat plate wicked assisted heat pipe solar collector, especially with the presence of finned water-cooled condenser wicked heat pipes for solar energy applications. In this paper, the consequence of incorporating fins arrays into the condenser region of screen mesh heat pipe solar collector is investigated. An experimental model and a transient theoretical model are conducted to compare the performances of the solar heating system at a different period of the year. A good agreement is shown between the model and the experiment. Two working fluids are investigated (water and methanol) and results reveal that water slightly outperforms methanol with a collector instantaneous efficiency of nearly 60%. That modest improvement is achieved by adding fins to the condenser region of the heat pipes. Results show that the collector efficiency increase as the number of fins increases (upon certain number) and reveal that the mesh number is an important factor which affect the overall collector efficiency. An optimal heat pipe mesh number of 100 meshes/in. With two layers appears to be favorable in such collectors for their design and operating conditions.

Keywords: heat pipe, solar collector, capillary limit, mesh number

Procedia PDF Downloads 406
4062 The Contribution of Hip Strategy in Dynamic Balance in Recurrent Ankle Sprain

Authors: Radwa Talaat Mohammed El-Shorbagy, Alaa El-Din Balbaa, Khaled Ayad, Waleed Red

Abstract:

Introduction: Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated. Objective: To determine the contribution of proximal hip strategy to dynamic balance control in patients with recurrent ankle sprain. Methods: Fifteen subjects with recurrent ankle sprain (group A) and fifteen healthy control subjects (group B) participated in this study. Abductor-adductors as well as flexor-extensor hip musculatures control was abolished by fatigue using the Biodex Isokinetic system. Dynamic balance was measured before and after fatigue by the Biodex Balance system Results: Repeated measures MANOVA was used to compare between and within group differences. In group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) increased overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p=0.00) whereas; in group B fatiguing of hip flexors-extensors increased significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Moreover, patients with ankle sprain had significantly lower dynamic balance after hip muscles fatigue compared to the control group. Specifically, after hip flexor-extensor fatigue, the OASI, APSI and MLSI were increased significantly than those of the control values (p=0.002, 0.011, and 0.003, respectively) whereas fatiguing of hip abductors-adductors increased significantly in OASI and APSI only (p=0.012, 0.026, respectively). Conclusion: To maintain dynamic balance, patients with recurrent ankle sprain seem to relay more on the hip strategy.

Keywords: ankle sprain, hip muscles fatigue, dynamic balance

Procedia PDF Downloads 455
4061 Numerical Modeling of Film Cooling of the Surface at Non-Uniform Heat Flux Distributions on the Wall

Authors: M. V. Bartashevich

Abstract:

The problem of heat transfer at thin laminar liquid film is solved numerically. A thin film of liquid flows down an inclined surface under conditions of variable heat flux on the wall. The use of thin films of liquid allows to create the effective technologies for cooling surfaces. However, it is important to investigate the most suitable cooling regimes from a safety point of view, in order, for example, to avoid overheating caused by the ruptures of the liquid film, and also to study the most effective cooling regimes depending on the character of the distribution of the heat flux on the wall, as well as the character of the blowing of the film surface, i.e., the external shear stress on its surface. In the statement of the problem on the film surface, the heat transfer coefficient between the liquid and gas is set, as well as a variable external shear stress - the intensity of blowing. It is shown that the combination of these factors - the degree of uniformity of the distribution of heat flux on the wall and the intensity of blowing, affects the efficiency of heat transfer. In this case, with an increase in the intensity of blowing, the cooling efficiency increases, reaching a maximum, and then decreases. It is also shown that the more uniform the heating of the wall, the more efficient the heat sink. A separate study was made for the flow regime along the horizontal surface when the liquid film moves solely due to external stress influence. For this mode, the analytical solution is used for the temperature at the entrance region for further numerical calculations downstream. Also the influence of the degree of uniformity of the heat flux distribution on the wall and the intensity of blowing of the film surface on the heat transfer efficiency was also studied. This work was carried out at the Kutateladze Institute of Thermophysics SB RAS (Russia) and supported by FASO Russia.

Keywords: Heat Flux, Heat Transfer Enhancement, External Blowing, Thin Liquid Film

Procedia PDF Downloads 117
4060 Relocation of the Air Quality Monitoring Stations Network for Aburrá Valley Based on Local Climatic Zones

Authors: Carmen E. Zapata, José F. Jiménez, Mauricio Ramiréz, Natalia A. Cano

Abstract:

The majority of the urban areas in Latin America face the challenges associated with city planning and development problems, attributed to human, technical, and economical factors; therefore, we cannot ignore the issues related to climate change because the city modifies the natural landscape in a significant way transforming the radiation balance and heat content in the urbanized areas. These modifications provoke changes in the temperature distribution known as “the heat island effect”. According to this phenomenon, we have the need to conceive the urban planning based on climatological patterns that will assure its sustainable functioning, including the particularities of the climate variability. In the present study, it is identified the Local Climate Zones (LCZ) in the Metropolitan Area of the Aburrá Valley (Colombia) with the objective of relocate the air quality monitoring stations as a partial solution to the problem of how to measure representative air quality levels in a city for a local scale, but with instruments that measure in the microscale.

Keywords: air quality, monitoring, local climatic zones, valley, monitoring stations

Procedia PDF Downloads 242
4059 Perceived Effects of Work-Family Balance on Employee’s Job Satisfaction among Extension Agents in Southwest Nigeria

Authors: B. G. Abiona, A. A. Onaseso, T. D. Odetayo, J. Yila, O. E. Fapojuwo, K. G. Adeosun

Abstract:

This study determines the perceived effects of work-family balance on employees’ job satisfaction among Extension Agents in the Agricultural Development Programme (ADP) in southwest Nigeria. A multistage sampling technique was used to select 256 respondents for the study. Data on personal characteristics, work-family balance domain, and job satisfaction were collected. The collected data were analysed using descriptive statistics, Chi-square, Pearson Product Moment Correlation (PPMC), multiple linear regression, and Student T-test. Results revealed that the mean age of the respondents was 40 years; the majority (59.3%) of the respondents were male, and slightly above half (51.6%) of the respondents had MSc as their highest academic qualification. Findings revealed that turnover intention (x ̅ = 3.20) and work-role conflict (x ̅ = 3.06) were the major perceived work-family balance domain in the studied areas. Further, the result showed that the respondents have a high (79%) level of job satisfaction. Multiple linear regression revealed that job involvement (ß=0.167, p<0.01) and work-role conflict (ß= -0.221, p<0.05) contributed significantly to employees’ level of job satisfaction. The results of the Student T-test revealed a significant difference in the perceived work-family balance domain (t = 0.43, p<0.05) between the two studied areas. The study concluded that work-role conflict among employees causes work-family imbalance and, therefore, negatively affects employees’ job satisfaction. The definition of job design among the respondents that will create a balance between work and family is highly recommended.

Keywords: work-life, conflict, job satisfaction, extension agent

Procedia PDF Downloads 57
4058 Work-Life Balance and Job Satisfaction among Female Professionals: A Study at a Government Hospital

Authors: Mohd Sarfaraz

Abstract:

The objective of this study is to investigate the work-life balance and job satisfaction among women employees in a hospital in India. It is believed that balancing a successful career with a family life or personal life can be challenging. WLB impacts on persons' satisfaction in their work and personal life roles. For this purpose, a questionnaire is developed with 22 items. The data collected from women employees who are working in a hospital in Aligarh, India. The constructs considered in this study include WLB and job satisfaction. The demographic and organisational variables considered in the study are genders, age and tenure of the job. Factors of WLB are flexible working conditions, work-life balance programs, and employee intention to change/leave a job, work pressure/stress and long working hours. This paper examines the relationship between work-family conflict, policies, and job and life satisfaction. Appropriate statistical tool using SPSS will be applied to achieve the objective. The anxiety over work-life balance is progressively becoming a common talk, especially for female employees.Increasing demands from the work and family domains represent a high strain for employees which even lead to the health problems among employees. Although it is believed that work-family role strain is more common among women employees. Therefore, the study will focus on these issues of WLB and job satisfaction among female professionals.

Keywords: work-life balance, job satisfaction, work- family conflict, health

Procedia PDF Downloads 265
4057 Influence of Gravity on the Performance of Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, H. B. Mehta

Abstract:

Closed Loop Pulsating Heat Pipe (CLPHP) is a passive two-phase heat transfer device having potential to achieve high heat transfer rates over conventional cooling techniques. It is found in electronics cooling due to its outstanding characteristics such as excellent heat transfer performance, simple, reliable, cost effective, compact structure and no external mechanical power requirement etc. Comprehensive understanding of the thermo-hydrodynamic mechanism of CLPHP is still lacking due to its contradictory results available in the literature. The present paper discusses the experimental study on 9 turn CLPHP. Inner and outer diameters of the copper tube are 2 mm and 4 mm respectively. The lengths of the evaporator, adiabatic and condenser sections are 40 mm, 100 mm and 50 mm respectively. Water is used as working fluid. The Filling Ratio (FR) is kept as 50% throughout the investigations. The gravitational effect is studied by placing the evaporator heater at different orientations such as horizontal (90 degree), vertical top (180 degree) and bottom (0 degree) as well as inclined top (135 degree) and bottom (45 degree). Heat input is supplied in the range of 10-50 Watt. Heat transfer mechanism is natural convection in the condenser section. Vacuum pump is used to evacuate the system up to 10-5 bar. The results demonstrate the influence of input heat flux and gravity on the thermal performance of the CLPHP.

Keywords: CLPHP, gravity effect, start up, two-phase flow

Procedia PDF Downloads 244
4056 The Impact of Trade Liberalization on Current Account Deficit: The Turkish Case

Authors: E. Selçuk, Z. Karaçor, P. Yardımcı

Abstract:

Trade liberalization and its effects on the economies of developing countries have been investigated by many different studies, and some of them have focused on its impact on the current account balance. Turkey, as being one of the countries, which has liberalized its foreign trade in the 1980s, also needs to be studied in terms of the impact of liberalization on current account deficits. Therefore, the aim of this study is to find out whether trade liberalization has affected Turkey’s trade and current account balances. In order to determine this, yearly data of Turkey from 1980 to 2013 is used. As liberalization dummy, the year 1989, which was set for Turkey, is selected. Structural break test and model estimation results show that trade liberalization has a negative impact on trade balance but do not have a significant impact on the current account balance.

Keywords: budget deficit, liberalization, Turkish economy, current account

Procedia PDF Downloads 352
4055 Fruit and Vegetable Consumption in High School Students in Bandar Abbas, Iran: An Application of the Trans-Theoretical Model

Authors: Aghamolaei Teamur, Hosseini Zahra, Ghanbarnejad Amin

Abstract:

Introduction: A diet rich in fruits and vegetables, especially for adolescents is of a great importance due to the need for nutrients and the rapid growth of this age group. The aim of this study was to investigate the relationship between decisional balance and self-efficacy with stages of change for fruit and vegetable consumption in high school students in Bandar Abbas, Iran. Methods: In this descriptive-analytical study, the data were collected from 345 students studying in 8 high schools of Bandar Abbas were selected through multistage sampling. To collect data, separate questionnaires were designed for evaluating each of the variables including the stages of change, perceived benefits, perceived barriers, and self-efficacy of fruit and vegetable consumption. Decisional balance was estimated by subtracting the perceived benefits and barriers. The data were analyzed using SPSS19 and one-way ANOVA. Results: The results of this study indicated that individuals’ progress along the stages of change from pre-contemplation to maintenance level was associated with a significant increase in their decisional balance and self-efficacy for fruit and vegetable consumption. (P < 0.001). The lowest level of decisional balance and self-efficacy regarding for fruit showed up in the pre-contemplation stage, and the highest level of decisional balance and self-efficacy was in the maintenance stage. The same trends were observed in the case of vegetable consumption. Conclusion: Decisional balance and self-efficacy should be considered in designing interventions to increase consumption of fruits and vegetables. There needs to be more emphasis in educational programs based on the Trans-theoretical Model (TTM) on the enhancement of perceived benefits and elimination of perceived barriers regarding consumption of fruits and vegetables.

Keywords: fruit, vegetable, decision balance, self-efficacy, trans-theoretical model

Procedia PDF Downloads 259
4054 Numerical Simulation of Structured Roughness Effect on Fluid Flow Characteristics and Heat Transfer in Minichannels

Authors: R. Chouatah, E. G. Filali, B. Zouzou

Abstract:

It has been well established that there are no differences between microscale and macroscale flows of incompressible liquids. However, surface roughness has been known to impact the transport phenomena. The effect of structured roughness on the dynamics and heat transfer of water flowing through minichannel was numerically investigated in this study. Our study consists in characterizing the dynamic field and heat transfer aspect of a flow in circular minichannel equipped with structured roughness using CFD software, CFX. The study is performed to understand the effect of various roughness elements (rectangular, triangular), roughness height and roughness pitch on the friction factor and heat transfer coefficient. Our work focuses on a water flow inside a circular mini-channel of 1 mm in diameter and 10 cm in length. The speed entry into the mini-channel varies from 0.1 m/s to 25 m/s. The wall of the mini-channel is submitted to a constant heat flux; q=100,000 W/m². The simulations results are compared to those obtained with smooth minichannel and the existing experimental and numerical results in the literature.

Keywords: heat transfer, laminar and turbulent flow, minichannel, structured roughness

Procedia PDF Downloads 316
4053 Nanofluid Flow Heat Transfer Through Ducts with Different Cross-Sections

Authors: Amir Dehshiri, Mohammad Reza Salimpour

Abstract:

In the present article, we investigate experimental laminar forced convective heat transfer specifications of TiO2/water nanofluids through conduits with different cross sections. We check the effects of different parameters such as cross-sectional shape, Reynolds number and concentration of nanoparticles in stable suspension on increasing convective heat transfer by designing and assembling of an experimental apparatus. The results demonstrate adding a little amount of nanoparticles to the base fluid, improves heat transfer behavior in conduits. Moreover, conduit with circular cross-section has better performance compared to the square and triangular cross sections. However, conduits with square and triangular cross sections have more relative heat transfer enhancement than conduit with circular cross section.

Keywords: nanofluid, cross-sectional shape, TiO2, convection

Procedia PDF Downloads 413
4052 Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins

Authors: F. A. Gdhaidh, K. Hussain, H. S. Qi

Abstract:

A numerical study of natural convection heat transfer in water filled cavity has been examined in 3D for single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5×37.5 mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15- 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68℃ when the heat input was at 40 W which is much lower than the recommended computer chips limit temperature of no more than 85℃ and hence the performance of the CPU is enhanced.

Keywords: chips limit temperature, closed enclosure, natural convection, parallel plate, single phase liquid

Procedia PDF Downloads 242
4051 Transient Hygrothermoelastic Behavior in an Infinite Annular Cylinder with Internal Heat Generation by Linear Dependence Theory of Coupled Heat and Moisture

Authors: Tasneem Firdous Islam, G. D. Kedar

Abstract:

The aim of this paper is to study the effect of internal heat generation in a transient infinitely long annular cylinder subjected to hygrothermal loadings. The linear dependence theory of moisture and temperature is derived based on Dufour and Soret effect. The meticulous solutions of temperature, moisture, and thermal stresses are procured by using the Hankel transform technique. The influence of the internal heat source on the radial aspect is examined for coupled and uncoupled cases. In the present study, the composite material T300/5208 is considered, and the coupled and uncoupled cases are analyzed. The results obtained are computed numerically and illustrated graphically.

Keywords: temperature, moisture, hygrothermoelasticity, internal heat generation, annular cylinder

Procedia PDF Downloads 87
4050 Application of Balance Score Card (BSc) in Education: Case of the International University

Authors: Hieu Nguyen

Abstract:

Performance management is the concern of any organizations in the context of increasing demand and fierce competition between education institution. This paper draws together the performance management concepts and focuses specifically to Balance Scorecard in the context of education. The study employs semi-structured in-depth interview to explore the measurement items for each of the sub-objectives in the four perspectives. Each of the perspectives’ explored measurement items will then be discussed the role and influence of them towards the perspective and how to improve the measurements to have improved performance management. Finally, the measurements will be put together as a suggested balanced scorecard framework in the case of International University.

Keywords: performance management, education institution, balance scorecard, measurement items, four perspectives, international univeristy

Procedia PDF Downloads 387
4049 Heat Waves and Hospital Admissions for Mental Disorders in Hanoi Vietnam

Authors: Phan Minh Trang, Joacim Rocklöv, Kim Bao Giang, Gunnar Kullgren, Maria Nilsson

Abstract:

There are recent studies from high income countries reporting an association between heat waves and hospital admissions for mental health disorders. It is not previously studied if such relations exist in sub-tropical and tropical low- and middle-income countries. In this study from Vietnam, the assumption was that hospital admissions for mental disorders may be triggered, or exacerbated, by heat exposure and heat waves. A database from Hanoi Mental Hospital with mental disorders diagnosed by the International Classification of Diseases 10, spanning over five years, was used to estimate the heatwave-related impacts on admissions for mental disorders. The relationship was analysed by a Negative Binomial regression model accounting for year, month, and days of week. The focus of the study was heat-wave events with periods of three or seven consecutive days above the threshold of 35oC daily maximum temperature. The preliminary study results indicated that heat-waves increased the risks for hospital admission for mental disorders (F00-79) from heat-waves of three and seven days with relative risks (RRs) of 1.16 (1.01–1.33) and 1.42 (1.02–1.99) respectively, when compared with non-heat-wave periods. Heatwave-related admissions for mental disorders increased statistically significantly among men, among residents in rural communities and in elderly. Moreover, cases for organic mental disorders including symptomatic illnesses (F0-9) and mental retardation (F70-79) raised in high risks during heat waves. The findings are novel studying a sub-tropical middle-income city, facing rapid urbanisation and epidemiological and demographic transitions.

Keywords: mental disorders, admissions for F0-9 or F70-79, maximum temperature, heat waves

Procedia PDF Downloads 215
4048 Effect of Heat Treatment on the Microstructural Evolution in Weld Region of X70 Pipeline Steel

Authors: K. Digheche, K. Saadi, Z. Boumerzoug

Abstract:

Welding is one of the most important technological processes used in many branches of industry such as industrial engineering, shipbuilding, pipeline fabrication among others. Generally, welding is the preferred joining method and most common steels are weldable. This investigation is a contribution to scientific work of welding of low carbon steel. This work presents the results of the isothermal heat treatment effect at 200, 400 and 600 °C on microstructural evolution in weld region of X70 pipeline steel. The welding process has been realized in three passes by industrial arc welding. We have found that the heat treatments cause grain growth reaction.

Keywords: heat treatments, low carbon steel, microstructures, welding

Procedia PDF Downloads 421
4047 Analysis of Heat Exchanger Area of Two Stage Cascade Refrigeration System Using Taguchi

Authors: A. D. Parekh

Abstract:

The present work describes relative contributions of operating parameters on required heat transfer area of three heat exchangers viz. evaporator, condenser and cascade condenser of two stage R404A-R508B cascade refrigeration system using Taguchi method. The operating parameters considered in present study includes (1) condensing temperature of high temperature cycle and low temperature cycle (2) evaporating temperature of low temperature cycle (3) degree of superheating in low temperature cycle (4) refrigerating effect. Heat transfer areas of three heat exchangers are studied with variation of above operating parameters and also optimum working levels of each operating parameter has been obtained for minimum heat transfer area of each heat exchanger using Taguchi method. The analysis using Taguchi method reveals that evaporating temperature of low temperature cycle and refrigerating effect contribute relatively largely on the area of evaporator. Condenser area is mainly influenced by both condensing temperature of high temperature cycle and refrigerating effect. Area of cascade condenser is mainly affected by refrigerating effect and the effects of other operating parameters are minimal.

Keywords: cascade refrigeration system, Taguchi method, heat transfer area, ANOVA, optimal solution

Procedia PDF Downloads 304
4046 Integration of Two Thermodynamic Cycles by Absorption for Simultaneous Production of Fresh Water and Cooling

Authors: Javier Delgado-Gonzaga, Wilfrido Rivera, David Juárez-Romero

Abstract:

Cooling and water purification are processes that have contributed to the economic and social development of the modern world. However, these processes require a significant amount of energy globally. Nowadays, absorption heat pumps have been studied with great interest since they are capable of producing cooling and/or purifying water from low-temperature energy sources such as industrial waste heat or renewable energy. In addition, absorption heat pumps require negligible amounts of electricity for their operation and generally use working fluids that do not represent a risk to the environment. The objective of this work is to evaluate a system that integrates an absorption heat transformer and an absorption cooling system to produce fresh water and cooling from a low-temperature heat source. Both cycles operate with the working pair LiBr-H2O. The integration is possible through the interaction of the LiBr-H2O solution streams between both cycles and also by recycling heat from the absorption heat transformer to the absorption cooling system. Mathematical models were developed to compare the performance of four different configurations. The results showed that the configuration in which the hottest streams of LiBr-H2O solution preheated the coldest streams in the economizers of both cycles was one that achieved the best performance. The interaction of the solution currents and the heat recycling analyzed in this work serves as a record of the possibilities of integration between absorption cycles for cogeneration.

Keywords: absorption heat transformer, absorption cooling system, water desalination, integrated system

Procedia PDF Downloads 54
4045 Experimental Analysis of Electrical Energy Producing Using the Waste Heat of Exhaust Gas by the Help of Thermoelectric Generator

Authors: Dilek Ozlem Esen, Mesut Kaya

Abstract:

The focus of this study is to analyse the results of heat recovery from exhaust gas which is produced by an internal combustion engine (ICE). To obtain a small amount of energy, an exhaust system which is suitable for recovery waste heat has been constructed. Totally 27 TEGs have been used to convert from the heat to electric energy. By producing a small amount of this energy by the help of thermoelectric generators can reduce engine loads thus decreasing pollutant emissions, fuel consumption, and CO2. This case study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. As a result of this study, 0,45 A averaged current rate, 13,02 V averaged voltage rate and 5,8 W averaged electrical energy have been produced in a five hours operation time.

Keywords: thermoelectric, peltier, thermoelectric generator (TEG), exhaust, cogeneration

Procedia PDF Downloads 620
4044 Impact of the Transport on the Urban Heat Island

Authors: L. Haddad, Z. Aouachria

Abstract:

The development of transport systems has negative impacts on the environment although it has beneficial effects on society.. The car policy caused many problems such as: - the spectacular growth of fuel consumption hence the very vast increase in urban pollution, traffic congestion in certain places and at certain times, the increase in the number of accidents. The exhaust emissions from cars and weather conditions are the main factors that determine the level of pollution in urban atmosphere. These conditions lead to the phenomenon of heat transfer and radiation occurring between the air and the soil surface of any town. These exchanges give rise, in urban areas, to the effects of heat islands that correspond to the appearance of excess air temperature between the city and its surrounding space. In this object, we perform a numerical simulation of the plume generated by the cars exhaust gases and show that these gases form a screening effect above the urban city which cause the heat island in the presence of wind flow. This study allows us: i. To understand the different mechanisms of interactions between these phenomena. ii. To consider appropriate technical solutions to mitigate the effects of the heat island.

Keywords: atmospheric pollution, impact on the health, urban transport, heat island

Procedia PDF Downloads 363
4043 Analysis of Heat Exchanger Area of Two Stage Cascade Refrigeration System Using Taguchi Methodology

Authors: A. D. Parekh

Abstract:

The present work describes relative contributions of operating parameters on required heat transfer area of three heat exchangers viz. evaporator, condenser and cascade condenser of two stage R404A-R508B cascade refrigeration system using Taguchi method. The operating parameters considered in present study includes (1) condensing temperature of high temperature cycle and low temperature cycle (2) evaporating temperature of low temperature cycle (3) degree of superheating in low temperature cycle (4) refrigerating effect. Heat transfer areas of three heat exchangers are studied with variation of above operating parameters and also optimum working levels of each operating parameter has been obtained for minimum heat transfer area of each heat exchanger using Taguchi method. The analysis using Taguchi method reveals that evaporating temperature of low temperature cycle and refrigerating effect contribute relatively largely on the area of evaporator. Condenser area is mainly influenced by both condensing temperature of high temperature cycle and refrigerating effect. Area of cascade condenser is mainly affected by refrigerating effect and the effects of other operating parameters are minimal.

Keywords: cascade refrigeration system, Taguchi method, heat transfer area, ANOVA, optimal solution

Procedia PDF Downloads 355