Search results for: heart rate (HR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8821

Search results for: heart rate (HR)

8821 Development of Sleep Quality Index Using Heart Rate

Authors: Dongjoo Kim, Chang-Sik Son, Won-Seok Kang

Abstract:

Adequate sleep affects various parts of one’s overall physical and mental life. As one of the methods in determining the appropriate amount of sleep, this research presents a heart rate based sleep quality index. In order to evaluate sleep quality using the heart rate, sleep data from 280 subjects taken over one month are used. Their sleep data are categorized by a three-part heart rate range. After categorizing, some features are extracted, and the statistical significances are verified for these features. The results show that some features of this sleep quality index model have statistical significance. Thus, this heart rate based sleep quality index may be a useful discriminator of sleep.

Keywords: sleep, sleep quality, heart rate, statistical analysis

Procedia PDF Downloads 342
8820 Poincare Plot for Heart Rate Variability

Authors: Mazhar B. Tayel, Eslam I. AlSaba

Abstract:

The heart is the most important part in any body organisms. It effects and affected by any factor in the body. Therefore, it is a good detector of any matter in the body. When the heart signal is non-stationary signal, therefore, it should be study its variability. So, the Heart Rate Variability (HRV) has attracted considerable attention in psychology, medicine and have become important dependent measure in psychophysiology and behavioral medicine. Quantification and interpretation of heart rate variability. However, remain complex issues are fraught with pitfalls. This paper presents one of the non-linear techniques to analyze HRV. It discusses 'What Poincare plot is?', 'How it is work?', 'its usage benefits especially in HRV', 'the limitation of Poincare cause of standard deviation SD1, SD2', and 'How overcome this limitation by using complex correlation measure (CCM)'. The CCM is most sensitive to changes in temporal structure of the Poincaré plot as compared to SD1 and SD2.

Keywords: heart rate variability, chaotic system, poincare, variance, standard deviation, complex correlation measure

Procedia PDF Downloads 401
8819 The Effect of Heart Rate and Valence of Emotions on Perceived Intensity of Emotion

Authors: Madeleine Nicole G. Bernardo, Katrina T. Feliciano, Marcelo Nonato A. Nacionales III, Diane Frances M. Peralta, Denise Nicole V. Profeta

Abstract:

This study aims to find out if heart rate variability and valence of emotion have an effect on perceived intensity of emotion. Psychology undergraduates (N = 60) from the University of the Philippines Diliman were shown 10 photographs from the Japanese Female Facial Expression (JAFFE) Database, along with a corresponding questionnaire with a Likert scale on perceived intensity of emotion. In this 3 x 2 mixed subjects factorial design, each group was either made to do a simple exercise prior to answering the questionnaire in order to increase the heart rate, listen to a heart rate of 120 bpm, or colour a drawing to keep the heart rate stable. After doing the activity, the participants then answered the questionnaire, providing a rating of the faces according to the participants’ perceived emotional intensity on the photographs. The photographs presented were either of positive or negative emotional valence. The results of the experiment showed that neither an induced fast heart rate or perceived fast heart rate had any significant effect on the participants’ perceived intensity of emotion. There was also no interaction effect of heart rate variability and valence of emotion. The insignificance of results was explained by the Philippines’ high context culture, accompanied by the prevalence of both intensely valenced positive and negative emotions in Philippine society. Insignificance in the effects were also attributed to the Cannon-Bard theory, Schachter-Singer theory and various methodological limitations.

Keywords: heart rate variability, perceived intensity of emotion, Philippines , valence of emotion

Procedia PDF Downloads 254
8818 Development of Soft-Core System for Heart Rate and Oxygen Saturation

Authors: Caje F. Pinto, Jivan S. Parab, Gourish M. Naik

Abstract:

This paper is about the development of non-invasive heart rate and oxygen saturation in human blood using Altera NIOS II soft-core processor system. In today's world, monitoring oxygen saturation and heart rate is very important in hospitals to keep track of low oxygen levels in blood. We have designed an Embedded System On Peripheral Chip (SOPC) reconfigurable system by interfacing two LED’s of different wavelengths (660 nm/940 nm) with a single photo-detector to measure the absorptions of hemoglobin species at different wavelengths. The implementation of the interface with Finger Probe and Liquid Crystal Display (LCD) was carried out using NIOS II soft-core system running on Altera NANO DE0 board having target as Cyclone IVE. This designed system is used to monitor oxygen saturation in blood and heart rate for different test subjects. The designed NIOS II processor based non-invasive heart rate and oxygen saturation was verified with another Operon Pulse oximeter for 50 measurements on 10 different subjects. It was found that the readings taken were very close to the Operon Pulse oximeter.

Keywords: heart rate, NIOS II, oxygen saturation, photoplethysmography, soft-core, SOPC

Procedia PDF Downloads 196
8817 Capturing the Stress States in Video Conferences by Photoplethysmographic Pulse Detection

Authors: Jarek Krajewski, David Daxberger

Abstract:

We propose a stress detection method based on an RGB camera using heart rate detection, also known as Photoplethysmography Imaging (PPGI). This technique focuses on the measurement of the small changes in skin colour caused by blood perfusion. A stationary lab setting with simulated video conferences is chosen using constant light conditions and a sampling rate of 30 fps. The ground truth measurement of heart rate is conducted with a common PPG system. The proposed approach for pulse peak detection is based on a machine learning-based approach, applying brute force feature extraction for the prediction of heart rate pulses. The statistical analysis showed good agreement (correlation r = .79, p<0.05) between the reference heart rate system and the proposed method. Based on these findings, the proposed method could provide a reliable, low-cost, and contactless way of measuring HR parameters in daily-life environments.

Keywords: heart rate, PPGI, machine learning, brute force feature extraction

Procedia PDF Downloads 125
8816 Video Heart Rate Measurement for the Detection of Trauma-Related Stress States

Authors: Jarek Krajewski, David Daxberger, Luzi Beyer

Abstract:

Finding objective and non-intrusive measurements of emotional and psychopathological states (e.g., post-traumatic stress disorder, PTSD) is an important challenge. Thus, the proposed approach here uses Photoplethysmographic imaging (PPGI) applying facial RGB Cam videos to estimate heart rate levels. A pipeline for the signal processing of the raw image has been proposed containing different preprocessing approaches, e.g., Independent Component Analysis, Non-negative Matrix factorization, and various other artefact correction approaches. Under resting and constant light conditions, we reached a sensitivity of 84% for pulse peak detection. The results indicate that PPGI can be a suitable solution for providing heart rate data derived from these indirectly post-traumatic stress states.

Keywords: heart rate, PTSD, PPGI, stress, preprocessing

Procedia PDF Downloads 125
8815 Relationship between Different Heart Rate Control Levels and Risk of Heart Failure Rehospitalization in Patients with Persistent Atrial Fibrillation: A Retrospective Cohort Study

Authors: Yongrong Liu, Xin Tang

Abstract:

Background: Persistent atrial fibrillation is a common arrhythmia closely related to heart failure. Heart rate control is an essential strategy for treating persistent atrial fibrillation. Still, the understanding of the relationship between different heart rate control levels and the risk of heart failure rehospitalization is limited. Objective: The objective of the study is to determine the relationship between different levels of heart rate control in patients with persistent atrial fibrillation and the risk of readmission for heart failure. Methods: We conducted a retrospective dual-centre cohort study, collecting data from patients with persistent atrial fibrillation who received outpatient treatment at two tertiary hospitals in central and western China from March 2019 to March 2020. The collected data included age, gender, body mass index (BMI), medical history, and hospitalization frequency due to heart failure. Patients were divided into three groups based on their heart rate control levels: Group I with a resting heart rate of less than 80 beats per minute, Group II with a resting heart rate between 80 and 100 beats per minute, and Group III with a resting heart rate greater than 100 beats per minute. The readmission rates due to heart failure within one year after discharge were statistically analyzed using propensity score matching in a 1:1 ratio. Differences in readmission rates among the different groups were compared using one-way ANOVA. The impact of varying levels of heart rate control on the risk of readmission for heart failure was assessed using the Cox proportional hazards model. Binary logistic regression analysis was employed to control for potential confounding factors. Results: We enrolled a total of 1136 patients with persistent atrial fibrillation. The results of the one-way ANOVA showed that there were differences in readmission rates among groups exposed to different levels of heart rate control. The readmission rates due to heart failure for each group were as follows: Group I (n=432): 31 (7.17%); Group II (n=387): 11.11%; Group III (n=317): 90 (28.50%) (F=54.3, P<0.001). After performing 1:1 propensity score matching for the different groups, 223 pairs were obtained. Analysis using the Cox proportional hazards model showed that compared to Group I, the risk of readmission for Group II was 1.372 (95% CI: 1.125-1.682, P<0.001), and for Group III was 2.053 (95% CI: 1.006-5.437, P<0.001). Furthermore, binary logistic regression analysis, including variables such as digoxin, hypertension, smoking, coronary heart disease, and chronic obstructive pulmonary disease as independent variables, revealed that coronary heart disease and COPD also had a significant impact on readmission due to heart failure (p<0.001). Conclusion: The correlation between the heart rate control level of patients with persistent atrial fibrillation and the risk of heart failure rehospitalization is positive. Reasonable heart rate control may significantly reduce the risk of heart failure rehospitalization.

Keywords: heart rate control levels, heart failure rehospitalization, persistent atrial fibrillation, retrospective cohort study

Procedia PDF Downloads 74
8814 Heart Rate Variability as a Measure of Dairy Calf Welfare

Authors: J. B. Clapp, S. Croarkin, C. Dolphin, S. K. Lyons

Abstract:

Chronic pain or stress in farm animals impacts both on their welfare and productivity. Measuring chronic pain or stress can be problematic using hormonal or behavioural changes because hormones are modulated by homeostatic mechanisms and observed behaviour can be highly subjective. We propose that heart rate variability (HRV) can quantify chronic pain or stress in farmed animal and represents a more robust and objective measure of their welfare.

Keywords: dairy calf, welfare, heart rate variability, non-invasive, biomonitor

Procedia PDF Downloads 601
8813 Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks

Authors: Tsu-Wang Shen, Shan-Chun Chang, Chih-Hsien Wang, Te-Chao Fang

Abstract:

For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods.

Keywords: high-intensity heart rate, heart rate resistant, ECG human identification, decision based artificial neural network

Procedia PDF Downloads 436
8812 Real-Time Nonintrusive Heart Rate Measurement: Comparative Case Study of LED Sensorics' Accuracy and Benefits in Heart Monitoring

Authors: Goran Begović

Abstract:

In recent years, many researchers are focusing on non-intrusive measuring methods when it comes to human biosignals. These methods provide solutions for everyday use, whether it’s health monitoring or finessing the workout routine. One of the biggest issues with these solutions is that the sensors’ accuracy is highly variable due to many factors, such as ambiental light, skin color diversity, etc. That is why we wanted to explore different outcomes under those kinds of circumstances in order to find the most optimal algorithm(s) for extracting heart rate (HR) information. The optimization of such algorithms can benefit the wider, cheaper, and safer application of home health monitoring, without having to visit medical professionals as often when it comes to observing heart irregularities. In this study, we explored the accuracy of infrared (IR), red, and green LED sensorics in a controlled environment and compared the results with a medically accurate ECG monitoring device.

Keywords: data science, ECG, heart rate, holter monitor, LED sensors

Procedia PDF Downloads 128
8811 Intelligent System for Diagnosis Heart Attack Using Neural Network

Authors: Oluwaponmile David Alao

Abstract:

Misdiagnosis has been the major problem in health sector. Heart attack has been one of diseases that have high level of misdiagnosis recorded on the part of physicians. In this paper, an intelligent system has been developed for diagnosis of heart attack in the health sector. Dataset of heart attack obtained from UCI repository has been used. This dataset is made up of thirteen attributes which are very vital in diagnosis of heart disease. The system is developed on the multilayer perceptron trained with back propagation neural network then simulated with feed forward neural network and a recognition rate of 87% was obtained which is a good result for diagnosis of heart attack in medical field.

Keywords: heart attack, artificial neural network, diagnosis, intelligent system

Procedia PDF Downloads 656
8810 Intelligent Prediction System for Diagnosis of Heart Attack

Authors: Oluwaponmile David Alao

Abstract:

Due to an increase in the death rate as a result of heart attack. There is need to develop a system that can be useful in the diagnosis of the disease at the medical centre. This system will help in preventing misdiagnosis that may occur from the medical practitioner or the physicians. In this research work, heart disease dataset obtained from UCI repository has been used to develop an intelligent prediction diagnosis system. The system is modeled on a feedforwad neural network and trained with back propagation neural network. A recognition rate of 86% is obtained from the testing of the network.

Keywords: heart disease, artificial neural network, diagnosis, prediction system

Procedia PDF Downloads 450
8809 Heart Attack Prediction Using Several Machine Learning Methods

Authors: Suzan Anwar, Utkarsh Goyal

Abstract:

Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.

Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest

Procedia PDF Downloads 138
8808 Design of Demand Pacemaker Using an Embedded Controller

Authors: C. Bala Prashanth Reddy, B. Abhinay, C. Sreekar, D. V. Shobhana Priscilla

Abstract:

The project aims in designing an emergency pacemaker which is capable of giving shocks to a human heart which has stopped working suddenly. A pacemaker is a machine commonly used by cardiologists. This machine is used in order to shock a human’s heart back into usage. The way the heart works is that there are small cells called pacemakers sending electrical pulses to cardiac muscles that tell the heart when to pump blood. When these electrical pulses stop, the heart stops beating. When this happens, a pacemaker is used to shock the heart muscles and the pacemakers back into action. The way this is achieved is by rubbing the two panels of the pacemaker together to create an adequate electrical current, and then the heart gets back to the normal state. The project aims in designing a system which is capable of continuously displaying the heart beat and blood pressure of a person on LCD. The concerned doctor gets the heart beat and also the blood pressure details continuously through the GSM Modem in the form of SMS alerts. In case of abnormal condition, the doctor sends message format regarding the amount of electric shock needed. Automatically the microcontroller gives the input to the pacemaker which in turn gives the shock to the patient. Heart beat monitor and display system is a portable and a best replacement for the old model stethoscope which is less efficient. The heart beat rate is calculated manually using stethoscope where the probability of error is high because the heart beat rate lies in the range of 70 to 90 per minute whose occurrence is less than 1 sec, so this device can be considered as a very good alternative instead of a stethoscope.

Keywords: missing R wave, PWM, demand pacemaker, heart

Procedia PDF Downloads 482
8807 Automated Recognition of Still’s Murmur in Children

Authors: Sukryool Kang, James McConnaughey, Robin Doroshow, Raj Shekhar

Abstract:

Still’s murmur, a vibratory heart murmur, is the most common normal innocent murmur of childhood. Many children with this murmur are unnecessarily referred for cardiology consultation and testing, which exacts a high cost financially and emotionally on the patients and their parents. Pediatricians to date are not successful at distinguishing Still’s murmur from murmurs of true heart disease. In this paper, we present a new algorithmic approach to distinguish Still’s murmur from pathological murmurs in children. We propose two distinct features, spectral width and signal power, which describe the sharpness of the spectrum and the signal intensity of the murmur, respectively. Seventy pediatric heart sound recordings of 41 Still’s and 29 pathological murmurs were used to develop and evaluate our algorithm that achieved a true positive rate of 97% and false positive rate of 0%. This approach would meet clinical standards in recognizing Still’s murmur.

Keywords: AR modeling, auscultation, heart murmurs, Still's murmur

Procedia PDF Downloads 370
8806 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management

Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide

Abstract:

This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.

Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis

Procedia PDF Downloads 14
8805 Serum Potassium Before, During and After Exercise at 70% Maximal Heart Rate: The Safe Exercise Dosage Across Different Parameters of Health and Fitness Level

Authors: Omar bin Mihat

Abstract:

The number of sudden deaths is increasing over the past years. These deaths occur not during physical activities but upon cessation. Post-mortem confirms these deaths as cardiac arrest non-specifically. Congenital heart disease is a condition undiagnosed whereby only surface upon physical exertion leading to sudden death is unavoidable. Channelopathy, a condition that refers to any disease from the defect in iron-channel function, particularly the sodium-potassium pump, during the cessation of the exercise can be controlled. The derivation of heart rate return (HRrtn) is a procedure of a control cooling down process according to the heart rate (HR). Empirically, potassium rises linearly with intensity and falls sharply upon abrupt cessation of exertion, resulting in fatal arrhythmia due to hypokalaemia. It is vital that the flux of potassium should be maintained within the normal range during physical activities. To achieve this, the dosage of physical exertion (exercise) should be identified. Various percentages of the intensity of maximum heart rate (MHR) will precipitate different adaptations and remodeling of various organs. 70% of MHR will surface physiological adaptations, including enhancement of endurance, fitness level, and general health, and there was no significant rise of serum potassium (K+) during the entire phase of the treadmill brisk walk at a different rate of perceived exertion (RPE) from the subject of various fitness background. There was also no significant rise in blood pressure (BP) during the entire phase of the treadmill brisk walk, substantiating 70% MHR is the safe dosage across different parameters of health and fitness level.

Keywords: potassium, maximal heart rate, exercise dosage, fitness level

Procedia PDF Downloads 68
8804 The Intensity of Load Experienced by Female Basketball Players during Competitive Games

Authors: Tomas Vencurik, Jiri Nykodym

Abstract:

This study compares the intensity of game load among player positions and between the 1st and the 2nd half of the games. Two guards, three forwards, and three centers (female basketball players) participated in this study. The heart rate (HR) and its development were monitored during two competitive games. Statistically insignificant differences in the intensity of game load were recorded between guards, forwards, and centers below and above 85% of the maximal heart rate (HRmax) and in the mean HR as % of HRmax (87.81±3.79%, 87.02±4.37%, and 88.76±3.54%, respectively). Moreover, when the 1st and the 2nd half of the games were compared in the mean HR (87.89±4.18% vs. 88.14±3.63% of HRmax), no statistical significance was recorded. This information can be useful for coaching staff, to manage and to precisely plan the training process.

Keywords: game load, heart rate, player positions, the 1st, the 2nd half of the games

Procedia PDF Downloads 571
8803 Mathematical Based Forecasting of Heart Attack

Authors: Razieh Khalafi

Abstract:

Myocardial infarction (MI) or acute myocardial infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analyzing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behavior of these signals were checked. Results shows this methodology can forecast the ECG and accordingly heart attack with high accuracy.

Keywords: heart attack, ECG, random walk, correlation dimension, forecasting

Procedia PDF Downloads 543
8802 Optimal ECG Sampling Frequency for Multiscale Entropy-Based HRV

Authors: Manjit Singh

Abstract:

Multiscale entropy (MSE) is an extensively used index to provide a general understanding of multiple complexity of physiologic mechanism of heart rate variability (HRV) that operates on a wide range of time scales. Accurate selection of electrocardiogram (ECG) sampling frequency is an essential concern for clinically significant HRV quantification; high ECG sampling rate increase memory requirements and processing time, whereas low sampling rate degrade signal quality and results in clinically misinterpreted HRV. In this work, the impact of ECG sampling frequency on MSE based HRV have been quantified. MSE measures are found to be sensitive to ECG sampling frequency and effect of sampling frequency will be a function of time scale.

Keywords: ECG (electrocardiogram), heart rate variability (HRV), multiscale entropy, sampling frequency

Procedia PDF Downloads 271
8801 A New Mathematical Method for Heart Attack Forecasting

Authors: Razi Khalafi

Abstract:

Myocardial Infarction (MI) or acute Myocardial Infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analysing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behaviour of these signals were checked. Results show this methodology can forecast the ECG and accordingly heart attack with high accuracy.

Keywords: heart attack, ECG, random walk, correlation dimension, forecasting

Procedia PDF Downloads 507
8800 Robust Heart Rate Estimation from Multiple Cardiovascular and Non-Cardiovascular Physiological Signals Using Signal Quality Indices and Kalman Filter

Authors: Shalini Rankawat, Mansi Rankawat, Rahul Dubey, Mazad Zaveri

Abstract:

Physiological signals such as electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often seriously corrupted by noise, artifacts, and missing data, which lead to errors in the estimation of heart rate (HR) and incidences of false alarm from ICU monitors. Clinical support in ICU requires most reliable heart rate estimation. Cardiac activity, because of its relatively high electrical energy, may introduce artifacts in Electroencephalogram (EEG), Electrooculogram (EOG), and Electromyogram (EMG) recordings. This paper presents a robust heart rate estimation method by detection of R-peaks of ECG artifacts in EEG, EMG & EOG signals, using energy-based function and a novel Signal Quality Index (SQI) assessment technique. SQIs of physiological signals (EEG, EMG, & EOG) were obtained by correlation of nonlinear energy operator (teager energy) of these signals with either ECG or ABP signal. HR is estimated from ECG, ABP, EEG, EMG, and EOG signals from separate Kalman filter based upon individual SQIs. Data fusion of each HR estimate was then performed by weighing each estimate by the Kalman filters’ SQI modified innovations. The fused signal HR estimate is more accurate and robust than any of the individual HR estimate. This method was evaluated on MIMIC II data base of PhysioNet from bedside monitors of ICU patients. The method provides an accurate HR estimate even in the presence of noise and artifacts.

Keywords: ECG, ABP, EEG, EMG, EOG, ECG artifacts, Teager-Kaiser energy, heart rate, signal quality index, Kalman filter, data fusion

Procedia PDF Downloads 696
8799 Heart Murmurs and Heart Sounds Extraction Using an Algorithm Process Separation

Authors: Fatima Mokeddem

Abstract:

The phonocardiogram signal (PCG) is a physiological signal that reflects heart mechanical activity, is a promising tool for curious researchers in this field because it is full of indications and useful information for medical diagnosis. PCG segmentation is a basic step to benefit from this signal. Therefore, this paper presents an algorithm that serves the separation of heart sounds and heart murmurs in case they exist in order to use them in several applications and heart sounds analysis. The separation process presents here is founded on three essential steps filtering, envelope detection, and heart sounds segmentation. The algorithm separates the PCG signal into S1 and S2 and extract cardiac murmurs.

Keywords: phonocardiogram signal, filtering, Envelope, Detection, murmurs, heart sounds

Procedia PDF Downloads 142
8798 HRV Analysis Based Arrhythmic Beat Detection Using kNN Classifier

Authors: Onder Yakut, Oguzhan Timus, Emine Dogru Bolat

Abstract:

Health diseases have a vital significance affecting human being's life and life quality. Sudden death events can be prevented owing to early diagnosis and treatment methods. Electrical signals, taken from the human being's body using non-invasive methods and showing the heart activity is called Electrocardiogram (ECG). The ECG signal is used for following daily activity of the heart by clinicians. Heart Rate Variability (HRV) is a physiological parameter giving the variation between the heart beats. ECG data taken from MITBIH Arrhythmia Database is used in the model employed in this study. The detection of arrhythmic heart beats is aimed utilizing the features extracted from the HRV time domain parameters. The developed model provides a satisfactory performance with ~89% accuracy, 91.7 % sensitivity and 85% specificity rates for the detection of arrhythmic beats.

Keywords: arrhythmic beat detection, ECG, HRV, kNN classifier

Procedia PDF Downloads 352
8797 The Effect of a Test Pump Supplement on the Physiological and Functional Performance of Futsal Women

Authors: Samaneh Rahsepar, Mehrzad Moghadasi

Abstract:

To evaluate the effect of Test Pump supplement on the physiological and functional performance of futsal women, twenty female futsal subjects were divided into two groups: placebo (n = 10) and supplement (n = 10) and were given buccal tablets for 7 days and 12 g daily supplement each day. The placebo group used starch powder during this period. Speed, agility with ball, agility without ball and dribbling time were measured before and after supplementation. In addition, the rate of heart rate and blood pressure changes were measured before and after the YOYO test. The results showed that the test pump had no significant effect on improving speed, agility with ball, agility without ball, dribbling time and heart rate changes and diastolic blood pressure, and only affect the maximum oxygen consumption and systolic blood pressure (P <0.05). In general, the use of the test-pump supplement does not have a significant effect on the physiological and functional performance of futsal women. The results of this study showed that the use of supplementary pump tests on women's futsal heart rate changes after loading period had a significant difference between the two groups in resting heart rate with heart rate after exercise and 5 minutes after exercise. However, it did not have a significant effect on the increase in heart rate. Supplementation significantly increased systolic blood pressure after exercise compared to resting blood pressure, as well as a significant increase in systolic blood pressure after exercise compared to resting systolic blood pressure and 5 minutes after exercise in both groups from the loading period. On the other hand, there was a significant difference in systolic blood pressure in both placebo and supplemented groups.

Keywords: test pump supplement, women, speed, dribble, agility, maximum oxygen consumption, cardiovascular

Procedia PDF Downloads 176
8796 Digital Platform for Psychological Assessment Supported by Sensors and Efficiency Algorithms

Authors: Francisco M. Silva

Abstract:

Technology is evolving, creating an impact on our everyday lives and the telehealth industry. Telehealth encapsulates the provision of healthcare services and information via a technological approach. There are several benefits of using web-based methods to provide healthcare help. Nonetheless, few health and psychological help approaches combine this method with wearable sensors. This paper aims to create an online platform for users to receive self-care help and information using wearable sensors. In addition, researchers developing a similar project obtain a solid foundation as a reference. This study provides descriptions and analyses of the software and hardware architecture. Exhibits and explains a heart rate dynamic and efficient algorithm that continuously calculates the desired sensors' values. Presents diagrams that illustrate the website deployment process and the webserver means of handling the sensors' data. The goal is to create a working project using Arduino compatible hardware. Heart rate sensors send their data values to an online platform. A microcontroller board uses an algorithm to calculate the sensor heart rate values and outputs it to a web server. The platform visualizes the sensor's data, summarizes it in a report, and creates alerts for the user. Results showed a solid project structure and communication from the hardware and software. The web server displays the conveyed heart rate sensor's data on the online platform, presenting observations and evaluations.

Keywords: Arduino, heart rate BPM, microcontroller board, telehealth, wearable sensors, web-based healthcare

Procedia PDF Downloads 127
8795 Introduction of Integrated Image Deep Learning Solution and How It Brought Laboratorial Level Heart Rate and Blood Oxygen Results to Everyone

Authors: Zhuang Hou, Xiaolei Cao

Abstract:

The general public and medical professionals recognized the importance of accurately measuring and storing blood oxygen levels and heart rate during the COVID-19 pandemic. The demand for accurate contactless devices was motivated by the need for cross-infection reduction and the shortage of conventional oximeters, partially due to the global supply chain issue. This paper evaluated a contactless mini program HealthyPai’s heart rate (HR) and oxygen saturation (SpO2) measurements compared with other wearable devices. In the HR study of 185 samples (81 in the laboratory environment, 104 in the real-life environment), the mean absolute error (MAE) ± standard deviation was 1.4827 ± 1.7452 in the lab, 6.9231 ± 5.6426 in the real-life setting. In the SpO2 study of 24 samples, the MAE ± standard deviation of the measurement was 1.0375 ± 0.7745. Our results validated that HealthyPai utilizing the Integrated Image Deep Learning Solution (IIDLS) framework, can accurately measure HR and SpO2, providing the test quality at least comparable to other FDA-approved wearable devices in the market and surpassing the consumer-grade and research-grade wearable standards.

Keywords: remote photoplethysmography, heart rate, oxygen saturation, contactless measurement, mini program

Procedia PDF Downloads 135
8794 Erectile Function and Heart Rate Variability in Men under 40 Years Old

Authors: Rui Miguel Costa, Jose Pestana, David Costa, Paula Mangia, Catarina Correia, Mafalda Pinto Coelho

Abstract:

There is lack of studies examining the relation of different heart rate variability (HRV) parameters with the risk of erectile dysfunction (ED) in younger men. Thus, the present study aimed at examining, in a nonclinical sample of men aged 19-39 years old (mean age = 23.98 years, SD = 4.90), the relations of risk of ED with the standard deviation of the heart rate (SD of HR), high and low frequency power of HRV, and low-to-high frequency HRV ratio. Eighty-three heterosexual Portuguese men completed the 5-item version of the International Index of Erectile Function (IIEF-5) and HRV parameters were calculated from a 5-minute resting period. Risk of ED was determined by IIEF-5 scores of 21 or less. Fifteen men (18.1%) reported symptoms of ED (14 with mild and one with mild to moderate symptoms). Univariate analyses of variance revealed that risk of ED was related to lesser SD of HR and lesser low-frequency power, the two HRV parameters that express a coupling of higher vagal and sympathetic tone. Risk of ED was unrelated to high-frequency power and low-to-high frequency HRV ratio. Further, in a logistic regression, the risk of ED was independently predicted by older age and lower SD of HR, but not by low-frequency power, having a regular sexual partner, and cohabiting. The results provide preliminary evidence that, in younger men, a coupling of higher vagal and sympathetic tone, as indexed by the SD of HR, is important for erections. Greater resting SD of HR might reflect better vascular and interpersonal function via vagal tone coupled with greater motor mobilization to pursue sexual intercourse via sympathetic tone. Many interventions can elevate HRV; future research is warranted on how they can be tailored to treat ED in younger men.

Keywords: erectile dysfunction, heart rate variability, standard deviation of the heart rate, younger men

Procedia PDF Downloads 277
8793 Effects of Acute Exposure to WIFI Signals (2,45 GHz) on Heart Variability and Blood Pressure in Albinos Rabbit

Authors: Linda Saili, Amel Hanini, Chiraz Smirani, Iness Azzouz, Amina Azzouz, Hafedh Abdemelek, Zihad Bouslama

Abstract:

Electrocardiogram and arterial pressure measurements were studied under acute exposures to WIFI (2.45 GHz) during one hour in adult male rabbits. Antennas of WIFI were placed at 25 cm at the right side near the heart. Acute exposure of rabbits to WIFI increased heart frequency (+ 22%) and arterial blood pressure (+14%). Moreover, analysis of ECG revealed that WIFI induced a combined increase of PR and QT intervals. By contrast, the same exposure failed to alter the maximum amplitude and P waves. After intravenously injection of dopamine (0.50 ml/kg) and epinephrine (0.50ml/kg) under acute exposure to RF we found that WIFI alter catecholamines(dopamine, epinephrine) action on heart variability and blood pressure compared to control. These results suggest for the first time, as far as we know, that exposure to WIFI affect heart rhythm, blood pressure, and catecholamines efficacy on cardiovascular system; indicating that radio frequency can act directly and/or indirectly on the cardiovascular system.

Keywords: heart rate (HR), arterial pressure (PA), electrocardiogram (ECG), the efficacy of catecholamines, dopamine, epinephrine

Procedia PDF Downloads 452
8792 Influence of Glenohumeral Joint Approximation Technique on the Cardiovascular System in the Acute Phase after Stroke

Authors: Iva Hereitova, Miroslav Svatek, Vit Novacek

Abstract:

Background and Aim: Autonomic imbalance is one of the complications for immobilized patients in the acute stage after a stroke. The predominance of sympathetic activity significantly increases cardiac activity. The technique of glenohumeral joint approximation may contribute in a non-pharmacological way to the regulation of blood pressure and heart rate in patients in this risk group. The aim of the study was to evaluate the effect of glenohumeral joint approximation on the change in heart rate and blood pressure in immobilized patients in the acute phase after a stroke. Methods: The experimental study bilaterally evaluated heart rate, systolic and diastolic pressure values before and after glenohumeral joint approximation in 40 immobilized participants (72.6 ± 10.2 years) in the acute phase after stroke. The experimental group was compared with 40 healthy participants in the control group (68.6 ± 14.2 years). An SpO2 vital signs monitor and a validated Microlife WatchBP Office blood pressure monitor were used for evaluation. Statistical processing and evaluation were performed in MATLAB R2019 (The Math Works®, Inc., Natick, MA, USA). Results: Approximation of the glenohumeral joint resulted in a statistically significant decrease in systolic and diastolic pressure. An average decrease in systolic pressure for individual groups ranged from 8.2 to 11.3 mmHg (p <0.001). For diastolic pressure, the average decrease ranged from 5.0 - 14.2 mmHg (p <0.001). There was a statistically significant reduction in heart rate (p <0.01) only in patients after ischemic stroke in the inferior cerebral artery. There was the average decrease in heart rate of 3.9 beats per minute (median 4 beats per minute). Conclusion: Approximation of the glenohumeral joint leads to a statistically significant decrease in systolic and diastolic pressure in immobilized patients in the acute phase after stroke.

Keywords: Aproximation technique, Cardiovaskular system, Glenohumeral joint, Stroke

Procedia PDF Downloads 218