Search results for: hardwood timber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 168

Search results for: hardwood timber

108 Household's Willingness to Pay for Safe Non-Timber Forest Products at Morikouali-Ye Community Forest in Cameroon

Authors: Eke Balla Sophie Michelle

Abstract:

Forest provides a wide range of environmental goods and services among which, biodiversity or consumption goods and constitute public goods. Despite the importance of non-timber forest products (NTFPs) in sustaining livelihood and poverty smoothening in rural communities, they are highly depleted and poorly conserved. Yokadouma is a town where NTFPs is a renewable resource in active exploitation. It has been found that such exploitation is done in the same conditions as other localities that have experienced a rapid depletion of their NTFPs in destination to cities across Cameroon, Central Africa, and overseas. Given these realities, it is necessary to access the consequences of this overexploitation through negative effects on both the population and the environment. Therefore, to enhance participatory conservation initiatives, this study determines the household’s willingness to pay in community forest (CF) of Morikouali-ye, eastern region of Cameroon, for sustainable exploitation of NTFPs using contingent valuation method (CVM) through two approaches, one parametric (Logit model) and the other non-parametric (estimator of the Turnbull lower bound). The results indicate that five species are the most collected in the study area: Irvingia gabonensis, the Ricinodendron heudelotii, Gnetum, the Jujube and bark, their sale contributes significantly to 41 % of total household income. The average willingness to pay through the Logit model and the Turnbull estimator is 6845.2861 FCFA and 4940 FCFA respectively per household per year with a social cost of degradation estimated at 3237820.3253 FCFA years. The probability to pay increases with income, gender, number of women in the household, age, the commercial activity of NTFPs and decreases with the concept of sustainable development.

Keywords: non timber forest product, contingent valuation method, willingness to pay, sustainable development

Procedia PDF Downloads 410
107 Mechanical Properties of Aspen Wood of Structural Dimensions

Authors: Barbora Herdová, Rastislav Lagaňa

Abstract:

The paper investigates the mechanical properties of European aspen (Populus tremula L.) as a potential replacement for load-bearing elements in historical structures. One of the main aims of the research has been the quantification of mechanical properties via destructive testing and the subsequent calculation of characteristic values of these properties. The research encompasses experimental testing of wood specimens for the determination of dynamic modulus of elasticity (MOEdyn), modulus of elasticity (MOE), modulus of rupture (MOR), and density. The results were analyzed and compared to established standards for structural timber. The results confirmed statistically significant dependence between MOR and MOEdyn. The correlation between the MOR and the dynamic MOEdyn enabled non-destructive strength grading using the Sylvatest Duo® system. The findings of this research contribute to the potential use of European aspen as a structural timber, which could have implications for the sustainable use of this abundant and renewable resource in the construction industry. They also show the usability of European aspen in the reconstruction of historical buildings.

Keywords: populus tremula, MOE, MOR, sylvatest Duo®.

Procedia PDF Downloads 28
106 Energy-Led Sustainability Assessment Approach for Energy-Efficient Manufacturing

Authors: Aldona Kluczek

Abstract:

In recent years, manufacturing processes have interacted with sustainability issues realized in the cost-effective ways that minimalize energy, decrease negative impacts on the environment and are safe for society. However, the attention has been on separate sustainability assessment methods considering energy and material flow, energy consumption, and emission release or process control. In this paper, the energy-led sustainability assessment approach combining the methods: energy Life Cycle Assessment to assess environmental impact, Life Cycle Cost to analyze costs, and Social Life Cycle Assessment through ‘energy LCA-based value stream map’, is used to assess the energy sustainability of the hardwood lumber manufacturing process in terms of technologies. The approach integrating environmental, economic and social issues can be visualized in the considered energy-efficient technologies on the map of an energy LCA-related (input and output) inventory data. It will enable the identification of efficient technology of a given process to be reached, through the effective analysis of energy flow. It is also indicated that interventions in the considered technology should focus on environmental, economic improvements to achieve energy sustainability. The results have indicated that the most intense energy losses are caused by a cogeneration technology. The environmental impact analysis shows that a substantial reduction by 34% can be achieved with the improvement of it. From the LCC point of view, the result seems to be cost-effective, when done at that plant where the improvement is used. By demonstrating the social dimension, every component of the energy of plant labor use in the life-cycle process of the lumber production has positive energy benefits. The energy required to install the energy-efficient technology amounts to 30.32 kJ compared to others components of the energy of plant labor and it has the highest value in terms of energy-related social indicators. The paper depicts an example of hardwood lumber production in order to prove the applicability of a sustainability assessment method.

Keywords: energy efficiency, energy life cycle assessment, life cycle cost, social life cycle analysis, manufacturing process, sustainability assessment

Procedia PDF Downloads 217
105 Biomass Waste-To-Energy Technical Feasibility Analysis: A Case Study for Processing of Wood Waste in Malta

Authors: G. A. Asciak, C. Camilleri, A. Rizzo

Abstract:

The waste management in Malta is a national challenge. Coupled with Malta’s recent economic boom, which has seen massive growth in several sectors, especially the construction industry, drastic actions need to be taken. Wood waste, currently being dumped in landfills, is one type of waste which has increased astronomically. This research study aims to carry out a thorough examination on the possibility of using this waste as a biomass resource and adopting a waste-to-energy technology in order to generate electrical energy. This study is composed of three distinct yet interdependent phases, namely, data collection from the local SMEs, thermal analysis using the bomb calorimeter, and generation of energy from wood waste using a micro biomass plant. Data collection from SMEs specializing in wood works was carried out to obtain information regarding the available types of wood waste, the annual weight of imported wood, and to analyse the manner in which wood shavings are used after wood is manufactured. From this analysis, it resulted that five most common types of wood available in Malta which would suitable for generating energy are Oak (hardwood), Beech (hardwood), Red Beech (softwood), African Walnut (softwood) and Iroko (hardwood). Subsequently, based on the information collected, a thermal analysis using a 6200 Isoperibol calorimeter on the five most common types of wood was performed. This analysis was done so as to give a clear indication with regards to the burning potential, which will be valuable when testing the wood in the biomass plant. The experiments carried out in this phase provided a clear indication that the African Walnut generated the highest gross calorific value. This means that this type of wood released the highest amount of heat during the combustion in the calorimeter. This is due to the high presence of extractives and lignin, which accounts for a slightly higher gross calorific value. This is followed by Red Beech and Oak. Moreover, based on the findings of the first phase, both the African Walnut and Red Beech are highly imported in the Maltese Islands for use in various purposes. Oak, which has the third highest gross calorific value is the most imported and common wood used. From the five types of wood, three were chosen for use in the power plant on the basis of their popularity and their heating values. The PP20 biomass plant was used to burn the three types of shavings in order to compare results related to the estimated feedstock consumed by the plant, the high temperatures generated, the time taken by the plant to produce gasification temperatures, and the projected electrical power attributed to each wood type. From the experiments, it emerged that whilst all three types reached the required gasification temperature and thus, are feasible for electrical energy generation. African Walnut was deemed to be the most suitable fast-burning fuel. This is followed by Red-beech and Oak, which required a longer period of time to reach the required gasification temperatures. The results obtained provide a clear indication that wood waste can not only be treated instead of being dumped in dumped in landfill but coupled.

Keywords: biomass, isoperibol calorimeter, waste-to-energy technology, wood

Procedia PDF Downloads 211
104 Lateral Torsional Buckling: Tests on Glued Laminated Timber Beams

Authors: Vera Wilden, Benno Hoffmeister, Markus Feldmann

Abstract:

Glued laminated timber (glulam) is a preferred choice for long span girders, e.g., for gyms or storage halls. While the material provides sufficient strength to resist the bending moments, large spans lead to increased slenderness of such members and to a higher susceptibility to stability issues, in particular to lateral torsional buckling (LTB). Rules for the determination of the ultimate LTB resistance are provided by Eurocode 5. The verifications of the resistance may be performed using the so called equivalent member method or by means of theory 2nd order calculations (direct method), considering equivalent imperfections. Both methods have significant limitations concerning their applicability; the equivalent member method is limited to rather simple cases; the direct method is missing detailed provisions regarding imperfections and requirements for numerical modeling. In this paper, the results of a test series on slender glulam beams in three- and four-point bending are presented. The tests were performed in an innovative, newly developed testing rig, allowing for a very precise definition of loading and boundary conditions. The load was introduced by a hydraulic jack, which follows the lateral deformation of the beam by means of a servo-controller, coupled with the tested member and keeping the load direction vertically. The deformation-controlled tests allowed for the identification of the ultimate limit state (governed by elastic stability) and the corresponding deformations. Prior to the tests, the structural and geometrical imperfections were determined and used later in the numerical models. After the stability tests, the nearly undamaged members were tested again in pure bending until reaching the ultimate moment resistance of the cross-section. These results, accompanied by numerical studies, were compared to resistance values obtained using both methods according to Eurocode 5.

Keywords: experimental tests, glued laminated timber, lateral torsional buckling, numerical simulation

Procedia PDF Downloads 197
103 Composition, Velocity, and Mass of Projectiles Generated from a Chain Shot Event

Authors: Eric Shannon, Mark J. McGuire, John P. Parmigiani

Abstract:

A hazard associated with the use of timber harvesters is chain shot. Harvester saw chain is subjected to large dynamic mechanical stresses which can cause it to fracture. The resulting open loop of saw chain can fracture a second time and create a projectile consisting of several saw-chain links referred to as a chain shot. Its high kinetic energy enables it to penetrate operator enclosures and be a significant hazard. Accurate data on projectile composition, mass, and speed are needed for the design of both operator enclosures resistant to projectile penetration and for saw chain resistant to fracture. The work presented here contributes to providing this data through the use of a test machine designed and built at Oregon State University. The machine’s enclosure is a standard shipping container. To safely contain any anticipated chain shot, the container was lined with both 9.5 mm AR500 steel plates and 50 mm high-density polyethylene (HDPE). During normal operation, projectiles are captured virtually undamaged in the HDPE enabling subsequent analysis. Standard harvester components are used for bar mounting and chain tensioning. Standard guide bars and saw chains are used. An electric motor with flywheel drives the system. Testing procedures follow ISO Standard 11837. Chain speed at break was approximately 45.5 m/s. Data was collected using both a 75 cm solid bar (Oregon 752HSFB149) and 90 cm solid bar (Oregon 902HSFB149). Saw chains used were 89 Drive Link .404”-18HX loops made from factory spools. Standard 16-tooth sprockets were used. Projectile speed was measured using both a high-speed camera and a chronograph. Both rotational and translational kinetic energy are calculated. For this study 50 chain shot events were executed. Results showed that projectiles consisted of a variety combinations of drive links, tie straps, and cutter links. Most common (occurring in 60% of the events) was a drive-link / tie-strap / drive-link combination having a mass of approximately 10.33 g. Projectile mass varied from a minimum of 2.99 g corresponding to a drive link only to a maximum of 18.91 g corresponding to a drive-link / tie-strap / drive-link / cutter-link / drive-link combination. Projectile translational speed was measured to be approximately 270 m/s and rotational speed of approximately 14000 r/s. The calculated translational and rotational kinetic energy magnitudes each average over 600 J. This study provides useful information for both timber harvester manufacturers and saw chain manufacturers to design products that reduce the hazards associated with timber harvesting.

Keywords: chain shot, timber harvesters, safety, testing

Procedia PDF Downloads 121
102 Production and Valorization of Nano Lignins by Organosolv and Steam Explosion

Authors: V. Girard, I. Ziegler-Devin, H. Chapuis, N. Canilho, L. Marchal-Heussler, N. Brosse

Abstract:

Lignocellulosic biomass is made up of the three polymeric fractions that are cellulose, hemicellulose, and lignin, which are highly entangled. In this project, we are particularly interested in the under-valued lignin polymer, which is mainly used for thermal valorization. Lignin from Macro to Nanosize (LIMINA) project will first focus on the extraction of macro lignin from forestry waste (hardwood and softwood) by the mean of eco-friendly processes (organosolv and steam explosion) and then the valorization of nano lignins produced by using anti-solvent precipitation (UV-blocker, cosmetic, food products).

Keywords: nanolignin, nanoparticles, organosolv, steam explosion

Procedia PDF Downloads 105
101 Decentralized Forest Policy for Natural Sal (Shorea robusta) Forests Management in the Terai Region of Nepal

Authors: Medani Prasad Rijal

Abstract:

The study outlines the impacts of decentralized forest policy on natural Sal (shorea robusta) forests in the Terai region of Nepal. The government has implemented community forestry program to manage the forest resources and improve the livelihood of local people collectively. The forest management authorities such as conserve, manage, develop and use of forest resources were shifted to the local communities, however, the ownership right of the forestland retained by the government. Local communities took the decision on harvesting, distribution, and sell of forest products by fixing the prices independently. The local communities were putting the low value of forest products and distributed among the user households on the name of collective decision. The decision of low valuation is devaluating the worth of forest products. Therefore, the study hypothesized that decision-making capacities are equally prominent next to the decentralized policy and program formulation. To accomplish the study, individual to group level discussions and questionnaire survey methods were applied with executive committee members and user households. The study revealed that the local intuition called Community Forest User Group (CFUG) committee normally took the decisions on consensus basis. Considering to the access and affording capacity of user households having poor economic backgrounds, low pricing mechanism of forest products has been practiced, even though the Sal timber is far expensive in the local market. The local communities thought that low pricing mechanism is accessible to all user households from poor to better off households. However, the analysis of forest products distribution opposed the assumption as most of the Sal timber, which is the most valuable forest product of community forest only purchased by the limited households of better economic conditions. Since the Terai region is heterogeneous by socio-economic conditions, better off households always have higher affording capacity and possibility of taking higher timber benefits because of low price mechanism. On the other hand, the minimum price rate of forest products has poor contribution in community fund collection. Consequently, it has poor support to carry out poverty alleviation activities to poor people. The local communities have been fixed Sal timber price rate around three times cheaper than normal market price, which is a strong evidence of forest product devaluation itself. Finally, the study concluded that the capacity building of local executives as the decision-makers of natural Sal forests is equally indispensable next to the policy and program formulation for effective decentralized forest management. Unilateral decentralized forest policy may devaluate the forest products rather than devolve of power to the local communities and empower to them.

Keywords: community forestry program, decentralized forest policy, Nepal, Sal forests, Terai

Procedia PDF Downloads 300
100 Physico-Mechanical Properties of Wood-Plastic Composites Produced from Polyethylene Terephthalate Plastic Bottle Wastes and Sawdust of Three Tropical Hardwood Species

Authors: Amos Olajide Oluyege, Akpanobong Akpan Ekong, Emmanuel Uchechukwu Opara, Sunday Adeniyi Adedutan, Joseph Adeola Fuwape, Olawale John Olukunle

Abstract:

This study was carried out to evaluate the influence of wood species and wood plastic ratio on the physical and mechanical properties of wood plastic composites (WPCs) produced from polyethylene terephthalate (PET) plastic bottle wastes and sawdust from three hardwood species, namely, Terminalia superba, Gmelina arborea, and Ceiba pentandra. The experimental WPCs were prepared from sawdust particle size classes of ≤ 0.5, 0.5 – 1.0, and 1.0 – 2.0 mm at wood/plastic ratios of 40:60, 50:50 and 60:40 (percentage by weight). The WPCs for each study variable combination were prepared in 3 replicates and laid out in a randomized complete block design (RCBD). The physical properties investigated water absorption (WA), linear expansion (LE) and thickness swelling (TS) while the mechanical properties evaluated were Modulus of Elasticity (MOE) and Modulus of Rupture (MOR). The mean values for WA, LE and TS ranged from 1.07 to 34.04, 0.11 to 1.76 and 0.11 to 4.05 %, respectively. The mean values of the three physical properties increased with decrease in wood plastic ratio. Wood plastic ratio of 40:60 at each particle size class generally resulted in the lowest values while wood plastic ratio of 60:40 had the highest values for each of the three species. For each of the physical properties, T. superba had the least mean values followed by G. arborea, while the highest values were observed C. pentandra. The mean values for MOE and MOR ranged from 458.17 to 1875.67 and 2.64 to 18.39 N/mm2, respectively. The mean values of the two mechanical properties decreased with increase in wood plastic ratio. Wood plastic ratio of 40:60 at each wood particle size class generally had the highest values while wood plastic ratio of 60:40 had the least values for each of the three species. For each of the mechanical properties, C. pentandra had the highest mean values followed by G. arborea, while the least values were observed T. superba. There were improvements in both the physical and mechanical properties due to decrease in sawdust particle size class with the particle size class of ≤ 0.5 mm giving the best result. The results of the Analysis of variance revealed significant (P < 0.05) effects of the three study variables – wood species, sawdust particle size class and wood/plastic ratio on all the physical and mechanical properties of the WPCs. It can be concluded from the results of this study that wood plastic composites from sawdust particle size ≤ 0.5 and PET plastic bottle wastes with acceptable physical and mechanical properties are better produced using 40:60 wood/plastic ratio, and that at this ratio, all the three species are suitable for the production of wood plastic composites.

Keywords: polyethylene terephthalate plastic bottle wastes, wood plastic composite, physical properties, mechanical properties

Procedia PDF Downloads 167
99 Company-Independent Standardization of Timber Construction to Promote Urban Redensification of Housing Stock

Authors: Andreas Schweiger, Matthias Gnigler, Elisabeth Wieder, Michael Grobbauer

Abstract:

Especially in the alpine region, available areas for new residential development are limited. One possible solution is to exploit the potential of existing settlements. Urban redensification, especially the addition of floors to existing buildings, requires efficient, lightweight constructions with short construction times. This topic is being addressed in the five-year Alpine Building Centre. The focus of this cooperation between Salzburg University of Applied Sciences and RSA GH Studio iSPACE is on transdisciplinary research in the fields of building and energy technology, building envelopes and geoinformation, as well as the transfer of research results to industry. One development objective is a system of wood panel system construction with a high degree of prefabrication to optimize the construction quality, the construction time and the applicability for small and medium-sized enterprises. The system serves as a reliable working basis for mastering the complex building task of redensification. The technical solution is the development of an open system in timber frame and solid wood construction, which is suitable for a maximum two-story addition of residential buildings. The applicability of the system is mainly influenced by the existing building stock. Therefore, timber frame and solid timber construction are combined where necessary to bridge large spans of the existing structure while keeping the dead weight as low as possible. Escape routes are usually constructed in reinforced concrete and are located outside the system boundary. Thus, within the framework of the legal and normative requirements of timber construction, a hybrid construction method for redensification created. Component structure, load-bearing structure and detail constructions are developed in accordance with the relevant requirements. The results are directly applicable in individual cases, with the exception of the required verifications. In order to verify the practical suitability of the developed system, stakeholder workshops are held on the one hand, and the system is applied in the planning of a two-storey extension on the other hand. A company-independent construction standard offers the possibility of cooperation and bundling of capacities in order to be able to handle larger construction volumes in collaboration with several companies. Numerous further developments can take place on the basis of the system, which is under open license. The construction system will support planners and contractors from design to execution. In this context, open means publicly published and freely usable and modifiable for own use as long as the authorship and deviations are mentioned. The companies are provided with a system manual, which contains the system description and an application manual. This manual will facilitate the selection of the correct component cross-sections for the specific construction projects by means of all component and detail specifications. This presentation highlights the initial situation, the motivation, the approach, but especially the technical solution as well as the possibilities for the application. After an explanation of the objectives and working methods, the component and detail specifications are presented as work results and their application.

Keywords: redensification, SME, urban development, wood building system

Procedia PDF Downloads 75
98 The Hansen Solubility Parameters of Some Lignosulfonates

Authors: Bernt O. Myrvold

Abstract:

Lignosulfonates (LS) find widespread use as dispersants, binders, anti-oxidants, and fillers. In most of these applications LS is used in formulation together with a number of other components. To better understand the interactions between LS and water and possibly other components in a formulation, the Hansen solubility parameters have been determined for some LS. The Hansen solubility parameter splits the total solubility parameter into three components, the dispersive, polar and hydrogen bonding part. The Hansen solubility parameter was determined by comparing the solubility in a number of solvents and solvent mixtures. We have found clear differences in the solubility parameters, with softwood LS being closer to water than hardwood LS.

Keywords: Hansen solubility parameter, lignosulfonate (LS), solubility, solvent

Procedia PDF Downloads 550
97 Structural Behaviour of Small-Scale Fibre-Filled Steel Tubular Planar Frames

Authors: Sadaf Karkoodi, Hassan Karampour

Abstract:

There is a growing interest in the construction industry towards hybrid systems. The hybrid systems use construction materials such as timber, steel, and concrete smartly, can be prefabricated, and are cost-effective and sustainable solutions to an industry targeting reduced carbon footprint. Moreover, in case of periodical shortage in timber resources, reusable and waste wood such as fibres can be used in the hybrid modules, which facilitates the circular economy. In this research, a hybrid frame is proposed and experimentally validated by introducing dried wood fibre products inside cold-formed steel square hollow sections without using any adhesives. As such, fibre-filled steel tubular (FFST) columns, beams, and 2D frames are manufactured and tested. The results show that the FFST columns have stiffness and strength 44% and 55% higher than cold-formed steel columns, respectively. The bearing strength of the FFST beams shows an increase of 39.5% compared to steel only. The flexural stiffness and strength of the FFST beams are 8.5% and 28% higher than the bare steel beams, respectively. The FFST frame depicted an 18.4% higher ultimate load capacity than the steel-only frame under a mid-point concentrated load. Moreover, the FFST beam-to-column bolted connection showed high ductile performance. The initial results and the proposed simple manufacturing process suggest that the proposed FFST concept can be upscaled and used in real structures.

Keywords: wood fibre, reusing wood, fibre-filled steel, hybrid construction

Procedia PDF Downloads 39
96 System Identification of Timber Masonry Walls Using Shaking Table Test

Authors: Timir Baran Roy, Luis Guerreiro, Ashutosh Bagchi

Abstract:

Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as bridges, dams, high-rise buildings etc. There had been a substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as natural frequency, modal damping, and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototypes of such walls have been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated, and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques.

Keywords: frequency domain decomposition (fdd), modal parameters, signal processing, stochastic subspace identification (ssi), time domain decomposition

Procedia PDF Downloads 238
95 Statistical Feature Extraction Method for Wood Species Recognition System

Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof

Abstract:

Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.

Keywords: classification, feature extraction, fuzzy, inspection system, image analysis, macroscopic images

Procedia PDF Downloads 398
94 Wood Energy, Trees outside Forests and Agroforestry Wood Harvesting and Conversion Residues Preparing and Storing

Authors: Adeiza Matthew, Oluwadamilola Abubakar

Abstract:

Wood energy, also known as wood fuel, is a renewable energy source that is derived from woody biomass, which is organic matter that is harvested from forests, woodlands, and other lands. Woody biomass includes trees, branches, twigs, and other woody debris that can be used as fuel. Wood energy can be classified based on its sources, such as trees outside forests, residues from wood harvesting and conversion, and energy plantations. There are several policy frameworks that support the use of wood energy, including participatory forest management and agroforestry. These policies aim to promote the sustainable use of woody biomass as a source of energy while also protecting forests and wildlife habitats. There are several options for using wood as a fuel, including central heating systems, pellet-based systems, wood chip-based systems, log boilers, fireplaces, and stoves. Each of these options has its own benefits and drawbacks, and the most appropriate option will depend on factors such as the availability of woody biomass, the heating needs of the household or facility, and the local climate. In order to use wood as a fuel, it must be harvested and stored properly. Hardwood or softwood can be used as fuel, and the heating value of firewood depends on the species of tree and the degree of moisture content. Proper harvesting and storage of wood can help to minimize environmental impacts and improve wildlife habitats. The use of wood energy has several environmental impacts, including the release of greenhouse gases during combustion and the potential for air pollution from combustion by-products. However, wood energy can also have positive environmental impacts, such as the sequestration of carbon in trees and the reduction of reliance on fossil fuels. The regulation and legislation of wood energy vary by country and region, and there is an ongoing debate about the potential use of wood energy in renewable energy technologies. Wood energy is a renewable energy source that can be used to generate electricity, heat, and transportation fuels. Woody biomass is abundant and widely available, making it a potentially significant source of energy for many countries. The use of wood energy can create local economic and employment opportunities, particularly in rural areas. Wood energy can be used to reduce reliance on fossil fuels and reduce greenhouse gas emissions. Properly managed forests can provide a sustained supply of woody biomass for energy, helping to reduce the risk of deforestation and habitat loss. Wood energy can be produced using a variety of technologies, including direct combustion, co-firing with fossil fuels, and the production of biofuels. The environmental impacts of wood energy can be minimized through the use of best practices in harvesting, transportation, and processing. Wood energy is regulated and legislated at the national and international levels, and there are various standards and certification systems in place to promote sustainable practices. Wood energy has the potential to play a significant role in the transition to a low-carbon economy and the achievement of climate change mitigation goals.

Keywords: biomass, timber, charcoal, firewood

Procedia PDF Downloads 65
93 Community Level Vulnerabilities to Climate Change in Cox’s Bazar-Teknaf Coastal Area of Bangladesh

Authors: Pronob Kumar Mozumder, M. Abdur Rob Mollah

Abstract:

This research was conducted in two coastal locations of Bangladesh from February, 2013 to January, 2014.The objective of this research was to assess the potential vulnerabilities of climate change on local ecosystem and people and to identify and recommend local level adaptation strategies to climate change. Focus group discussions, participatory rural appraisal, interviewing local elderly people were conducted. Perceptions about climate change indicate that local people are experiencing impacts of climate change. According to local people, temperature, cyclone, rain, water-logging, siltation, salinity, erosion, and flash flood are increasing. Vulnerability assessment revealed that local people are variously affected by abnormal climate related disasters. This is jeopardizing their livelihoods, risking their lives, health, and their assets. This prevailing climatic situation in the area is also impacting their environmental conditions, biodiversity and natural resources, and their economic activities. The existing adaptation includes using traditional boat and mobile phone while fishing and making house on high land and lower height. Proposed adaptation for fishing boat are using more than 60 feet length with good timber, putting at least 3 longitudinal bar along upper side, using enough vertical side bars. The homestead measures include use of cross bracing of wall frame, roof tying with extra-post by ropes and plantation of timber tree against wind.

Keywords: community level vulnerabilities, climate change, Cox’s Bazar-Teknaf Coastal Area, Bangladesh

Procedia PDF Downloads 499
92 Contribution to the Study of the Rill Density Effects on Soil Erosion: Laboratory Experiments

Authors: L. Mouzai, M. Bouhadef

Abstract:

Rills begin to be generated once overland flow shear capacity overcomes the soil surface resistance. This resistance depends on soil texture, the arrangement of soil particles and on chemical and physical properties. The rill density could affect soil erosion, especially when the distance between the rills (interrill) contributes to the variation of the rill characteristics, and consequently on sediment concentration. To investigate this point, agricultural sandy soil, a soil tray of 0.2x1x3m³ and a piece of hardwood rectangular in shape to build up rills were the base of this work. The results have shown that small lines have been developed between the rills and the flow acceleration increased in comparison to the flow on the flat surface (interrill). Sediment concentration increased with increasing rill number (density).

Keywords: artificial rainfall, experiments, rills, soil erosion, transport capacity

Procedia PDF Downloads 131
91 Finite Element Simulation of Four Point Bending of Laminated Veneer Lumber (LVL) Arch

Authors: Eliska Smidova, Petr Kabele

Abstract:

This paper describes non-linear finite element simulation of laminated veneer lumber (LVL) under tensile and shear loads that induce cracking along fibers. For this purpose, we use 2D homogeneous orthotropic constitutive model of tensile and shear fracture in timber that has been recently developed and implemented into ATENA® finite element software by the authors. The model captures (i) material orthotropy for small deformations in both linear and non-linear range, (ii) elastic behavior until anisotropic failure criterion is fulfilled, (iii) inelastic behavior after failure criterion is satisfied, (iv) different post-failure response for cracks along and across the grain, (v) unloading/reloading behavior. The post-cracking response is treated by fixed smeared crack model where Reinhardt-Hordijk function is used. The model requires in total 14 input parameters that can be obtained from standard tests, off-axis test results and iterative numerical simulation of compact tension (CT) or compact tension-shear (CTS) test. New engineered timber composites, such as laminated veneer lumber (LVL), offer improved structural parameters compared to sawn timber. LVL is manufactured by laminating 3 mm thick wood veneers aligned in one direction using water-resistant adhesives (e.g. polyurethane). Thus, 3 main grain directions, namely longitudinal (L), tangential (T), and radial (R), are observed within the layered LVL product. The core of this work consists in 3 numerical simulations of experiments where Radiata Pine LVL and Yellow Poplar LVL were involved. The first analysis deals with calibration and validation of the proposed model through off-axis tensile test (at a load-grain angle of 0°, 10°, 45°, and 90°) and CTS test (at a load-grain angle of 30°, 60°, and 90°), both of which were conducted for Radiata Pine LVL. The second finite element simulation reproduces load-CMOD curve of compact tension (CT) test of Yellow Poplar with the aim of obtaining cohesive law parameters to be used as an input in the third finite element analysis. That is four point bending test of small-size arch of 780 mm span that is made of Yellow Poplar LVL. The arch is designed with a through crack between two middle layers in the crown. Curved laminated beams are exposed to high radial tensile stress compared to timber strength in radial tension in the crown area. Let us note that in this case the latter parameter stands for tensile strength in perpendicular direction with respect to the grain. Standard tests deliver most of the relevant input data whereas traction-separation law for crack along the grain can be obtained partly by inverse analysis of compact tension (CT) test or compact tension-shear test (CTS). The initial crack was modeled as a narrow gap separating two layers in the middle the arch crown. Calculated load-deflection curve is in good agreement with the experimental ones. Furthermore, crack pattern given by numerical simulation coincides with the most important observed crack paths.

Keywords: compact tension (CT) test, compact tension shear (CTS) test, fixed smeared crack model, four point bending test, laminated arch, laminated veneer lumber LVL, off-axis test, orthotropic elasticity, orthotropic fracture criterion, Radiata Pine LVL, traction-separation law, yellow poplar LVL, 2D constitutive model

Procedia PDF Downloads 255
90 Enforcement against Illegal Logging: Issues and Challenges

Authors: Muhammad Nur Haniff Mohd Noor, Rokiah Kadir, Suriyani Muhamad

Abstract:

Sustainable forest management and forest protection can be hampered by illegal logging. Illegal logging is not uncommon in many wood-producing countries. Hence, law enforcement, especially in timber-producing countries, is crucial in ensuring compliance with forestry related regulations, as well as confirming that all parties obey the rules and regulations prescribed by the authorities. However, enforcement officers are encountering various challenges and difficulties which have undermined the enforcement capacity and efficiency. The appropriate policy responses for these issues are important to resolve the problems in the long term and empowering enforcement capacity to meet future challenges of forest law enforcement. This paper is written according to extensive review of the articles and publications by The International Criminal Police Organization (INTERPOL), The International Tropical Timber Organization (ITTO), Chatham House and The Food and Agriculture Organization of the United Nations (FAO). Subsequently, various books and journal articles are reviewed to gain further insight towards enforcement issues and challenges. This paper identifies several issues which consist of (1) insufficient enforcement capacity and resources (2) lack of coordination between various enforcement agencies, (3) corruption in the government and private sectors and (4) unclear legal frameworks related to the forestry sector. Next, this paper discusses appropriate policy responses to address each enforcement challenges according to various publications. This includes specific reports concerning forest law enforcement published by international forestry-related organizations. Therefore, lack of resources, inadequate synchronization between agencies, corruption, and legal issues present challenges to enforcement officers in their daily routines. Recommendations regarding proper policy responses to overcome the issues are of great importance in assisting forest authorities in prioritizing their resources appropriately.

Keywords: corruption, enforcement challenges, enforcement capacity, forest law enforcement, insufficient agency coordination, legislative ambiguity

Procedia PDF Downloads 149
89 Carbon Pool Assessment in Two Community Forest in Nepal

Authors: Khemnath Kharel

Abstract:

Forest itself is a factory as well as product. It supplies tangible and intangible goods and services. It supplies timber, fuel wood, fodder, grass leaf litter as well as non timber edible goods and medicinal and aromatic products additionally provides environmental services. These environmental services are of local, national, or even global importance. In Nepal more than 19 thousands community forests are providing environmental service in less economic benefit than actual efficiency. There is a risk of cost of management of those forest exceeds benefits and forests get converted to open access resources in future. Most of the environmental goods and services don’t have markets which mean no prices at which they are available to the consumers therefore the valuation of these services goods and services establishment of paying mechanism for such services and insure the benefit to community is more relevant in local as well as global scale. There are few examples of carbon trading in domestic level to meet the country wide emission goal. In this contest the study aims to explore the public attitude towards carbon offsetting and their responsibility over service providers. This study helps in promotion of environment service awareness among general people and service provider; community forest. The research helps to unveil the carbon pool scenario in community forest and willingness to pay for carbon offsetting of people who are consuming more energy than general people and emitting relatively more carbon in atmosphere. The study has assessed the carbon pool status in two community forest. In the study in two community forests carbon pools were assessed following the guideline “Forest Carbon Inventory Guideline 2010” prescribed by Ministry of Forest and soil Conservation, Nepal. Final out comes of analysis in intensively managed area of Hokse CF recorded as 103.58 tons C /ha with 6173.30 tons carbon stock. Similarly in Hariyali CF carbon density was recorded 251.72 mg C /ha. The total carbon stock of intensively managed blocks in Hariyali CF is 35839.62 tons carbon.

Keywords: carbon, offsetting, sequestration, valuation

Procedia PDF Downloads 293
88 Choosing the Right Lignin for Phenolic Adhesive Application

Authors: Somayyeh Kalami, Mojgan Nejad

Abstract:

Based on the source (softwood, hardwood or annual crop) and isolation method (kraft, organosolv, sulfite or pre-enzymatic treatment), there are significant variations in lignin structure and properties. The first step in using lignin as biobased feedstock is to make sure that specific lignin is suitable for intended application. Complete characterization of lignin and measuring its chemical, physical and thermal properties can help to predict its suitability. To replace 100% phenol portion of phenolic adhesive, lignin should have high reactivity toward formaldehyde. Theoretically, lignins with closer backbone structure to phenol should be better candidate for this application. In this study, a number of different lignins were characterized and used to formulate phenolic adhesive. One of the main findings was that lignin sample with higher percentage of hydroxyl-phenyl units was better candidate than lignin with more syringyl units. This could be explained by the fact that hydroxyl-phenyl lignin units have two available ortho positions for reaction with formaldehyde while in syringyl units all ortho and para positions are occupied, and there is no available site in lignin structure to react with formaldehyde.

Keywords: lignin, phenolic adhesive, biobased, sustainable

Procedia PDF Downloads 189
87 Analyses of Copper Nanoparticles Impregnated Wood and Its Fungal Degradation Performance

Authors: María Graciela Aguayo, Laura Reyes, Claudia Oviedo, José Navarrete, Liset Gómez, Hugo Torres

Abstract:

Most wood species used in construction deteriorate when exposed to environmental conditions that favor wood-degrading organisms’ growth. Therefore, chemical protection by impregnation allows more efficient use of forest resources extending the wood useful life. A wood protection treatment which has attracted considerable interest in the scientific community during the last decade is wood impregnation with nano compounds. Radiata pine is the main wood species used in the Chilean construction industry, with total availability of 8 million m³ sawn timber. According to the requirements of the American Wood Protection Association (AWPA) and the Chilean Standards (NCh) radiata pine timber used in construction must be protected due to its low natural durability. In this work, the impregnation with copper nanoparticles (CuNP) was studied in terms of penetration and its protective effect against wood rot fungi. Two concentrations: 1 and 3 g/L of NPCu were applied by impregnation on radiata pine sapwood. Test penetration under AWPA A3-91 standard was carried out, and wood decay tests were performed according to EN 113, with slight modifications. The results of penetration for 1 g/L CuNP showed an irregular total penetration, and the samples impregnated with 3 g/L showed a total penetration with uniform concentration (blue color in all cross sections). The impregnation wood mass losses due to fungal exposure were significantly reduced, regardless of the concentration of the solution or the fungus. In impregnated wood samples, exposure to G. trabeum resulted ML values of 2.70% and 1.19% for 1 g/L and 3 g/L CuNP, respectively, and exposure to P. placenta resulted in 4.02% and 0.70%-ML values for 1 g/L and 3 g/L CuNP, respectively. In this study, the penetration analysis confirmed a uniform distribution inside the wood, and both concentrations were effective against the tested fungi, giving mass loss values lower than 5%. Therefore, future research in wood preservatives should focus on new nanomaterials that are more efficient and environmentally friendly. Acknowledgments: CONICYT FONDEF IDeA I+D 2019, grant number ID19I10122.

Keywords: copper nanoparticles, fungal degradation, radiata pine wood, wood preservation

Procedia PDF Downloads 167
86 Carbon Pool Assessment in Community Forests, Nepal

Authors: Medani Prasad Rijal

Abstract:

Forest itself is a factory as well as product. It supplies tangible and intangible goods and services. It supplies timber, fuel wood, fodder, grass leaf litter as well as non timber edible goods and medicinal and aromatic products additionally provides environmental services. These environmental services are of local, national or even global importance. In Nepal, more than 19 thousands community forests are providing environmental service in less economic benefit than actual efficiency. There is a risk of cost of management of those forest exceeds benefits and forests get converted to open access resources in future. Most of the environmental goods and services do not have markets which mean no prices at which they are available to the consumers, therefore the valuation of these services goods and services establishment of paying mechanism for such services and insure the benefit to community is more relevant in local as well as global scale. There are few examples of carbon trading in domestic level to meet the country wide emission goal. In this contest, the study aims to explore the public attitude towards carbon offsetting and their responsibility over service providers. This study helps in promotion of environment service awareness among general people, service provider and community forest. The research helps to unveil the carbon pool scenario in community forest and willingness to pay for carbon offsetting of people who are consuming more energy than general people and emitting relatively more carbon in atmosphere. The study has assessed the carbon pool status in two community forest and valuated carbon service from community forest through willingness to pay in Dharan municipality situated in eastern. In the study, in two community forests carbon pools were assessed following the guideline “Forest Carbon Inventory Guideline 2010” prescribed by Ministry of Forest and soil Conservation, Nepal. Final outcomes of analysis in intensively managed area of Hokse CF recorded as 103.58 tons C /ha with 6173.30 tons carbon stock. Similarly in Hariyali CF carbon density was recorded 251.72 mg C /ha. The total carbon stock of intensively managed blocks in Hariyali CF is 35839.62 tons carbon.

Keywords: carbon, offsetting, sequestration, valuation, willingness to pay

Procedia PDF Downloads 330
85 Understanding New Zealand’s 19th Century Timber Churches: Techniques in Extracting and Applying Underlying Procedural Rules

Authors: Samuel McLennan, Tane Moleta, Andre Brown, Marc Aurel Schnabel

Abstract:

The development of Ecclesiastical buildings within New Zealand has produced some unique design characteristics that take influence from both international styles and local building methods. What this research looks at is how procedural modelling can be used to define such common characteristics and understand how they are shared and developed within different examples of a similar architectural style. This will be achieved through the creation of procedural digital reconstructions of the various timber Gothic Churches built during the 19th century in the city of Wellington, New Zealand. ‘Procedural modelling’ is a digital modelling technique that has been growing in popularity, particularly within the game and film industry, as well as other fields such as industrial design and architecture. Such a design method entails the creation of a parametric ‘ruleset’ that can be easily adjusted to produce many variations of geometry, rather than a single geometry as is typically found in traditional CAD software. Key precedents within this area of digital heritage includes work by Haegler, Müller, and Gool, Nicholas Webb and Andre Brown, and most notably Mark Burry. What these precedents all share is how the forms of the reconstructed architecture have been generated using computational rules and an understanding of the architects’ geometric reasoning. This is also true within this research as Gothic architecture makes use of only a select range of forms (such as the pointed arch) that can be accurately replicated using the same standard geometric techniques originally used by the architect. The methodology of this research involves firstly establishing a sample group of similar buildings, documenting the existing samples, researching any lost samples to find evidence such as architectural plans, photos, and written descriptions, and then culminating all the findings into a single 3D procedural asset within the software ‘Houdini’. The end result will be an adjustable digital model that contains all the architectural components of the sample group, such as the various naves, buttresses, and windows. These components can then be selected and arranged to create visualisations of the sample group. Because timber gothic churches in New Zealand share many details between designs, the created collection of architectural components can also be used to approximate similar designs not included in the sample group, such as designs found beyond the Wellington Region. This creates an initial library of architectural components that can be further expanded on to encapsulate as wide of a sample size as desired. Such a methodology greatly improves upon the efficiency and adjustability of digital modelling compared to current practices found in digital heritage reconstruction. It also gives greater accuracy to speculative design, as a lack of evidence for lost structures can be approximated using components from still existing or better-documented examples. This research will also bring attention to the cultural significance these types of buildings have within the local area, addressing the public’s general unawareness of architectural history that is identified in the Wellington based research ‘Moving Images in Digital Heritage’ by Serdar Aydin et al.

Keywords: digital forensics, digital heritage, gothic architecture, Houdini, procedural modelling

Procedia PDF Downloads 100
84 Sensory and Microbial Properties of Fresh and Canned Calocybe indica

Authors: Apotiola Z. O., Anyakorah C. I., Kuforiji O. O.

Abstract:

Sensory and microbial properties of fresh and canned Calocybe indica (milky mushroom) were evaluated. The mushroom was grown under a controlled environment with hardwood (Cola nitida) and rice bran substrate (4:1) canned in a brine solution of salt and citric acid. Analysis was carried out using standard methods. The overall acceptability ranged between 5.62 and 6.50, with sample S30 adjudged the best. In all, significant differences p<0.01 exist in the panelist judgment. Thus, the incorporation of salt and citric acid at 3.5g and 1.5g, respectively, improved sensory attributes such as texture, aroma, color, and overall acceptability. There was no coliform and fungi growth on the samples throughout the storage period. The bacterial count, on the other hand, was observed only in the fifth and sixth week of the storage period which varied between 0.2 to 0.9 x 103 cfu/g. The highest value was observed in sample S20 of the sixth week of storage, while the lowest value was recorded in sample S30 of the sixth week of storage. Based on 16S rRNA gene sequencing, bacterial species were taxonomically confirmed as Bacillus thuringiensis. The percentile compositions and Sequence ID of the bacterial species in the mushroom was 90%.

Keywords: bacterial count, microbial property, sensory, sawdust, texture

Procedia PDF Downloads 29
83 Overtopping Protection Systems for Overflow Earth Dams

Authors: Omid Pourabdollah, Mohsen Misaghian

Abstract:

Overtopping is known as one the most important reasons for the failure of earth dams. In some cases, it has resulted in heavy damages and losses. Therefore, enhancing the safety of earth dams against overtopping has received much attention in the past four decades. In this paper, at first, the overtopping phenomena and its destructive consequences will be introduced. Then, overtopping failure mechanism of embankments will be described. Finally, different types of protection systems for stabilization of earth dams against overtopping will be presented. These include timber cribs, riprap and gabions, reinforced earth, roller compacted concrete, and the precast concrete blocks.

Keywords: embankment dam, overtopping, roller compacted concrete, wedge concrete block

Procedia PDF Downloads 124
82 Genetic Improvement Potential for Wood Production in Melaleuca cajuputi

Authors: Hong Nguyen Thi Hai, Ryota Konda, Dat Kieu Tuan, Cao Tran Thanh, Khang Phung Van, Hau Tran Tin, Harry Wu

Abstract:

Melaleuca cajuputi is a moderately fast-growing species and considered as a multi-purpose tree as it provides fuelwood, piles and frame poles in construction, leaf essential oil and honey. It occurs in Australia, Papua New Guinea, and South-East Asia. M. cajuputi plantation can be harvested on 6-7 year rotations for wood products. Its timber can also be used for pulp and paper, fiber and particle board, producing quality charcoal and potentially sawn timber. However, most reported M. cajuputi breeding programs have been focused on oil production rather than wood production. In this study, breeding program of M. cajuputi aimed to improve wood production was examined by estimating genetic parameters for growth (tree height, diameter at breast height (DBH), and volume), stem form, stiffness (modulus of elasticity (MOE)), bark thickness and bark ratio in a half-sib family progeny trial including 80 families in the Mekong Delta of Vietnam. MOE is one of the key wood properties of interest to the wood industry. Non-destructive wood stiffness was measured indirectly by acoustic velocity using FAKOPP Microsecond Timer and especially unaffected by bark mass. Narrow-sense heritability for the seven traits ranged from 0.13 to 0.27 at age 7 years. MOE and stem form had positive genetic correlations with growth while the negative correlation between bark ratio and growth was also favorable. Breeding for simultaneous improvement of multiple traits, faster growth with higher MOE and reduction of bark ratio should be possible in M. cajuputi. Index selection based on volume and MOE showed genetic gains of 31 % in volume, 6 % in MOE and 13 % in stem form. In addition, heritability and age-age genetic correlations for growth traits increased with time and optimal early selection age for growth of M. cajuputi based on DBH alone was 4 years. Selected thinning resulted in an increase of heritability due to considerable reduction of phenotypic variation but little effect on genetic variation.

Keywords: acoustic velocity, age-age correlation, bark thickness, heritability, Melaleuca cajuputi, stiffness, thinning effect

Procedia PDF Downloads 144
81 An Emergence of Pinus taeda Needle Defoliation and Tree Mortality in Alabama, USA

Authors: Debit Datta, Jeffrey J. Coleman, Scott A. Enebak, Lori G. Eckhardt

Abstract:

Pinus taeda, commonly known as loblolly pine, is a crucial timber species native to the southeastern USA. An emerging problem has been encountered for the past few years, which is better to be known as loblolly pine needle defoliation (LPND), which is threatening the ecological health of southeastern forests and economic vitality of the region’s timber industry. Currently, more than 1000 hectares of loblolly plantations in Alabama are affected with similar symptoms and have created concern among southeast landowners and forest managers. However, it is still uncertain whether LPND results from one or the combination of several fungal pathogens. Therefore, the objectives of the study were to identify and characterize the fungi associated with LPND in the southeastern USA and document the damage being done to loblolly pine as a result of repeated defoliation. Identification of fungi was confirmed using classical morphological methods (microscopic examination of the infected needles), conventional and species-specific priming (SSPP) PCR, and ITS sequencing. To date, 17 species of fungi, either cultured from pine needles or formed fruiting bodies on pine needles, were identified based on morphology and genetic sequence data. Among them, brown-spot pathogen Lecanostica acicola has been frequently recovered from pine needles in both spring and summer. Moreover, Ophistomatoid fungi such as Leptographium procerum, L. terebrantis are associated with pine decline have also been recovered from root samples of the infected stands. Trees have been increasingly and repeatedly chlorotic and defoliated from 2019 to 2020. Based on morphological observations and molecular data, emerging loblolly pine needle defoliation is due in larger part to the brown-spot pathogen L. acoicola followed by pine decline pathogens L. procerum and L. terebrantis. Root pathogens were suspected to emerge later, and their cumulative effects contribute to the widespread mortality of the trees. It is more likely that longer wet spring and warmer temperatures are favorable to disease development and may be important in the disease ecology of LPND. Therefore, the outbreak of the disease is assumed to be expanded over a large geographical area in a changing climatic condition.

Keywords: brown-spot fungi, emerging disease, defoliation, loblolly pine

Procedia PDF Downloads 108
80 Thermochemical and Biological Pretreatment Study for Efficient Sugar Release from Lignocellulosic Biomass (Deodar and Sal Wood Residues)

Authors: Neelu Raina, Parvez Singh Slathia, Deepali Bhagat, Preeti Sharma

Abstract:

Pretreatment of lignocellulosic biomass for generating suitable substrates (starch/ sugars) for conversion to bioethanol is the most crucial step. In present study waste from furniture industry i.e sawdust from softwood Cedrus deodara (deodar) and hardwood Shorea robusta (sal) was used as lignocellulosic biomass. Thermochemical pretreatment was given by autoclaving at 121°C temperature and 15 psi pressure. Acids (H2SO4,HCl,HNO3,H3PO4), alkali (NaOH,NH4OH,KOH,Ca(OH)2) and organic acids (C6H8O7,C2H2O4,C4H4O4) were used at 0.1%, 0.5% and 1% concentration without giving any residence time. 1% HCl gave maximum sugar yield of 3.6587g/L in deodar and 6.1539 g/L in sal. For biological pretreatment a fungi isolated from decaying wood was used , sawdust from deodar tree species was used as a lignocellulosic substrate and before thermochemical pretreatment sawdust was treated with fungal culture at 37°C under submerged conditions with a residence time of one week followed by a thermochemical pretreatment methodology. Higher sugar yields were obtained with sal tree species followed by deodar tree species, i.e., 6.0334g/L in deodar and 8.3605g/L in sal was obtained by a combined biological and thermochemical pretreatment. Use of acids along with biological pretreatment is a favourable factor for breaking the lignin seal and thus increasing the sugar yield. Sugar estimation was done using Dinitrosalicyclic assay method. Result validation is being done by statistical analysis.

Keywords: lignocellulosic biomass, bioethanol, pretreatment, sawdust

Procedia PDF Downloads 378
79 Cutting Propagation Studies in Pennisetum divisum and Tamarix aucheriana as Native Plant Species of Kuwait

Authors: L. Almulla

Abstract:

Native plants are better adapted to the local environment providing a more natural effect on landscape projects; their use will both conserve natural resources and produce sustainable greenery. Continuation of evaluation of additional native plants is essential to increase diversity of plant resources for greenery projects. Therefore, in this project an effort was made to study the mass multiplication of further native plants for greenery applications. Standardization of vegetative propagation methods is essential for conservation and sustainable utilization of native plants in restoration projects. Moreover, these simple propagation methods can be readily adapted by the local nursery sector in Kuwait. In the present study, various treatments were used to mass multiply selected plants using vegetative parts to secure maximum rooting and initial growth. Soft or semi-hardwood cuttings of selected native plants were collected from mother plants and subjected to different treatments. Pennisetum divisum can be vegetatively propagated by cuttings/off-shoots. However, Tamarix aucheriana showed maximum number of rooted cuttings and stronger vigor seedlings with the lowest growth hormone concentration. Standardizing the propagation techniques for the native plant species will add to the rehabilitation and landscape revegetation projects in Kuwait.

Keywords: Kuwait desert, landscape, rooting percentage, vegetative propagation

Procedia PDF Downloads 88