Search results for: geometric mechanics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1017

Search results for: geometric mechanics

957 Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior

Authors: N. Manoj

Abstract:

The aeroelastic behavior of engine nacelle strake when subjected to unsteady aerodynamic flows is investigated in this paper. Geometric nonlinear characteristics and modal parameters of nacelle strake are studied when it is under dynamic loading condition. Here, an N-S based Finite Volume solver is coupled with Finite Element (FE) based nonlinear structural solver to investigate the nonlinear characteristics of nacelle strake over a range of dynamic pressures at various phases of flight like takeoff, climb, and cruise conditions. The combination of high fidelity models for both aerodynamics and structural dynamics is used to predict the nonlinearities of strake (chine). The methodology adopted for present aeroelastic analysis is partitioned-based time domain coupled CFD and CSD solvers and it is validated by the consideration of experimental and numerical comparison of aeroelastic data for a cropped delta wing model which has a proven record. The present strake geometry is derived from theoretical formulation. The amplitude and frequency obtained from the coupled solver at various dynamic pressures is discussed, which gives a better understanding of its impact on aerodynamic design-sizing of strake.

Keywords: aeroelasticity, finite volume, geometric nonlinearity, limit cycle oscillations, strake

Procedia PDF Downloads 263
956 Parametric Estimation of U-Turn Vehicles

Authors: Yonas Masresha Aymeku

Abstract:

The purpose of capacity modelling at U-turns is to develop a relationship between capacity and its geometric characteristics. In fact, the few models available for the estimation of capacity at different transportation facilities do not provide specific guidelines for median openings. For this reason, an effort is made to estimate the capacity by collecting the data sets from median openings at different lane roads in Hyderabad City, India. Wide difference (43% -59%) among the capacity values estimated by the existing models shows the limitation to consider for mixed traffic situations. Thus, a distinct model is proposed for the estimation of the capacity of U-turn vehicles at median openings considering mixed traffic conditions, which would further prompt to investigate the effect of different factors that might affect the capacity.

Keywords: geometric, guiddelines, median, vehicles

Procedia PDF Downloads 25
955 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability

Procedia PDF Downloads 379
954 The Study on Mechanical Properties of Graphene Using Molecular Mechanics

Authors: I-Ling Chang, Jer-An Chen

Abstract:

The elastic properties and fracture of two-dimensional graphene were calculated purely from the atomic bonding (stretching and bending) based on molecular mechanics method. Considering the representative unit cell of graphene under various loading conditions, the deformations of carbon bonds and the variations of the interlayer distance could be realized numerically under the geometry constraints and minimum energy assumption. In elastic region, it was found that graphene was in-plane isotropic. Meanwhile, the in-plane deformation of the representative unit cell is not uniform along armchair direction due to the discrete and non-uniform distributions of the atoms. The fracture of graphene could be predicted using fracture criteria based on the critical bond length, over which the bond would break. It was noticed that the fracture behavior were directional dependent, which was consistent with molecular dynamics simulation results.

Keywords: energy minimization, fracture, graphene, molecular mechanics

Procedia PDF Downloads 370
953 Multimedia Firearms Training System

Authors: Aleksander Nawrat, Karol Jędrasiak, Artur Ryt, Dawid Sobel

Abstract:

The goal of the article is to present a novel Multimedia Firearms Training System. The system was developed in order to compensate for major problems of existing shooting training systems. The designed and implemented solution can be characterized by five major advantages: algorithm for automatic geometric calibration, algorithm of photometric recalibration, firearms hit point detection using thermal imaging camera, IR laser spot tracking algorithm for after action review analysis, and implementation of ballistics equations. The combination of the abovementioned advantages in a single multimedia firearms training system creates a comprehensive solution for detecting and tracking of the target point usable for shooting training systems and improving intervention tactics of uniformed services. The introduced algorithms of geometric and photometric recalibration allow the use of economically viable commercially available projectors for systems that require long and intensive use without most of the negative impacts on color mapping of existing multi-projector multimedia shooting range systems. The article presents the results of the developed algorithms and their application in real training systems.

Keywords: firearms shot detection, geometric recalibration, photometric recalibration, IR tracking algorithm, thermography, ballistics

Procedia PDF Downloads 193
952 A Comparative Study of Indoor Radon Concentrations between Dwellings and Workplaces in the Ko Samui District, Surat Thani Province, Southern Thailand

Authors: Kanokkan Titipornpun, Tripob Bhongsuwan, Jan Gimsa

Abstract:

The Ko Samui district of Surat Thani province is located in the high amounts of equivalent uranium in the ground surface that is the source of radon. Our research in the Ko Samui district aimed at comparing the indoor radon concentrations between dwellings and workplaces. Measurements of indoor radon concentrations were carried out in 46 dwellings and 127 workplaces, using CR-39 alpha-track detectors in closed-cup. A total of 173 detectors were distributed in 7 sub-districts. The detectors were placed in bedrooms of dwellings and workrooms of workplaces. All detectors were exposed to airborne radon for 90 days. After exposure, the alpha tracks were made visible by chemical etching before they were manually counted under an optical microscope. The track densities were assumed to be correlated with the radon concentration levels. We found that the radon concentrations could be well described by a log-normal distribution. Most concentrations (37%) were found in the range between 16 and 30 Bq.m-3. The radon concentrations in dwellings and workplaces varied from a minimum of 11 Bq.m-3 to a maximum of 305 Bq.m-3. The minimum (11 Bq.m-3) and maximum (305 Bq.m-3) values of indoor radon concentrations were found in a workplace and a dwelling, respectively. Only for four samples (3%), the indoor radon concentrations were found to be higher than the reference level recommended by the WHO (100 Bq.m-3). The overall geometric mean in the surveyed area was 32.6±1.65 Bq.m-3, which was lower than the worldwide average (39 Bq.m-3). The statistic comparison of the geometric mean indoor radon concentrations between dwellings and workplaces showed that the geometric mean in dwellings (46.0±1.55 Bq.m-3) was significantly higher than in workplaces (28.8±1.58 Bq.m-3) at the 0.05 level. Moreover, our study found that the majority of the bedrooms in dwellings had a closed atmosphere, resulting in poorer ventilation than in most of the workplaces that had access to air flow through open doors and windows at daytime. We consider this to be the main reason for the higher geometric mean indoor radon concentration in dwellings compared to workplaces.

Keywords: CR-39 detector, indoor radon, radon in dwelling, radon in workplace

Procedia PDF Downloads 256
951 Analysis of Delamination in Drilling of Composite Materials

Authors: Navid Zarif Karimi, Hossein Heidary, Giangiacomo Minak, Mehdi Ahmadi

Abstract:

In this paper analytical model based on the mechanics of oblique cutting, linear elastic fracture mechanics (LEFM) and bending plate theory has been presented to determine the critical feed rate causing delamination in drilling of composite materials. Most of the models in this area used LEFM and bending plate theory; hence, they can only determine the critical thrust force which is an incorporable parameter. In this model by adding cutting oblique mechanics to previous models, critical feed rate has been determined. Also instead of simplification in loading condition, actual thrust force induced by chisel edge and cutting lips on composite plate is modeled.

Keywords: composite material, delamination, drilling, thrust force

Procedia PDF Downloads 489
950 Software Improvements of the Accuracy in the Air-Electronic Measurement Systems for Geometrical Dimensions

Authors: Miroslav H. Hristov, Velizar A. Vassilev, Georgi K. Dukendjiev

Abstract:

Due to the constant development of measurement systems and the aim for computerization, unavoidable improvements are made for the main disadvantages of air gauges. With the appearance of the air-electronic measuring devices, some of their disadvantages are solved. The output electrical signal allows them to be included in the modern systems for measuring information processing and process management. Producer efforts are aimed at reducing the influence of supply pressure and measurement system setup errors. Increased accuracy requirements and preventive error measures are due to the main uses of air electronic systems - measurement of geometric dimensions in the automotive industry where they are applied as modules in measuring systems to measure geometric parameters, form, orientation and location of the elements.

Keywords: air-electronic, geometrical parameters, improvement, measurement systems

Procedia PDF Downloads 202
949 Fracture Mechanics Modeling of a Shear-Cracked RC Beams Shear-Strengthened with FRP Sheets

Authors: Shahriar Shahbazpanahi, Alaleh Kamgar

Abstract:

So far, the conventional experimental and theoretical analysis in fracture mechanics have been applied to study concrete flexural- cracked beams, which are strengthened using fiber reinforced polymer (FRP) composite sheets. However, there is still little knowledge about the shear capacity of a side face FRP- strengthened shear-cracked beam. A numerical analysis is herein presented to model the fracture mechanics of a four-point RC beam, with two inclined initial notch on the supports, which is strengthened with side face FRP sheets. In the present study, the shear crack is forced to conduct by using an initial notch in supports. The ABAQUS software is used to model crack propagation by conventional cohesive elements. It is observed that the FRP sheets play important roles in preventing the propagation of shear cracks.

Keywords: crack, FRP, shear, strengthening

Procedia PDF Downloads 519
948 MapReduce Algorithm for Geometric and Topological Information Extraction from 3D CAD Models

Authors: Ahmed Fradi

Abstract:

In a digital world in perpetual evolution and acceleration, data more and more voluminous, rich and varied, the new software solutions emerged with the Big Data phenomenon offer new opportunities to the company enabling it not only to optimize its business and to evolve its production model, but also to reorganize itself to increase competitiveness and to identify new strategic axes. Design and manufacturing industrial companies, like the others, face these challenges, data represent a major asset, provided that they know how to capture, refine, combine and analyze them. The objective of our paper is to propose a solution allowing geometric and topological information extraction from 3D CAD model (precisely STEP files) databases, with specific algorithm based on the programming paradigm MapReduce. Our proposal is the first step of our future approach to 3D CAD object retrieval.

Keywords: Big Data, MapReduce, 3D object retrieval, CAD, STEP format

Procedia PDF Downloads 515
947 Teachers’ Instructional Decisions When Teaching Geometric Transformations

Authors: Lisa Kasmer

Abstract:

Teachers’ instructional decisions shape the structure and content of mathematics lessons and influence the mathematics that students are given the opportunity to learn. Therefore, it is important to better understand how teachers make instructional decisions and thus find new ways to help practicing and future teachers give their students a more effective and robust learning experience. Understanding the relationship between teachers’ instructional decisions and their goals, resources, and orientations (beliefs) is important given the heightened focus on geometric transformations in the middle school mathematics curriculum. This work is significant as the development and support of current and future teachers need more effective ways to teach geometry to their students. The following research questions frame this study: (1) As middle school mathematics teachers plan and enact instruction related to teaching transformations, what thinking processes do they engage in to make decisions about teaching transformations with or without a coordinate system and (2) How do the goals, resources and orientations of these teachers impact their instructional decisions and reveal about their understanding of teaching transformations? Teachers and students alike struggle with understanding transformations; many teachers skip or hurriedly teach transformations at the end of the school year. However, transformations are an important mathematical topic as this topic supports students’ understanding of geometric and spatial reasoning. Geometric transformations are a foundational concept in mathematics, not only for understanding congruence and similarity but for proofs, algebraic functions, and calculus etc. Geometric transformations also underpin the secondary mathematics curriculum, as features of transformations transfer to other areas of mathematics. Teachers’ instructional decisions in terms of goals, orientations, and resources that support these instructional decisions were analyzed using open-coding. Open-coding is recognized as an initial first step in qualitative analysis, where comparisons are made, and preliminary categories are considered. Initial codes and categories from current research on teachers’ thinking processes that are related to the decisions they make while planning and reflecting on the lessons were also noted. Surfacing ideas and additional themes common across teachers while seeking patterns, were compared and analyzed. Finally, attributes of teachers’ goals, orientations and resources were identified in order to begin to build a picture of the reasoning behind their instructional decisions. These categories became the basis for the organization and conceptualization of the data. Preliminary results suggest that teachers often rely on their own orientations about teaching geometric transformations. These beliefs are underpinned by the teachers’ own mathematical knowledge related to teaching transformations. When a teacher does not have a robust understanding of transformations, they are limited by this lack of knowledge. These shortcomings impact students’ opportunities to learn, and thus disadvantage their own understanding of transformations. Teachers’ goals are also limited by their paucity of knowledge regarding transformations, as these goals do not fully represent the range of comprehension a teacher needs to teach this topic well.

Keywords: coordinate plane, geometric transformations, instructional decisions, middle school mathematics

Procedia PDF Downloads 59
946 A Comparative Case Study on the Relationship between Solar Energy Potential and Block Typology and Density in Shanghai Context

Authors: Dan Zhu, Jie Shi

Abstract:

This study explores the relationship between solar potential and block typology and density by analyzing sixteen existing typical street blocks with different topologies and densities in Shanghai, a representative high-density urban in China. Several indicators are proposed to quantify, and a methodology is conducted to evaluate and compare the solar potential both on façade and roof across various selected urban forms. 1) The importance of appropriate solar energy indicators and geometric parameters to be used in comparative studies, and 2) the relationship between urban typology, density, and solar performance are discussed. In this way, the results reveal the key design attributes contributing to increasing solar potential.

Keywords: block typology, geometric parameters, high-density urban, solar potential

Procedia PDF Downloads 290
945 Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration

Authors: A. Ghodbane, M. Saad, J. F. Boland, C. Thibeault

Abstract:

Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model.

Keywords: actuators’ faults, fault detection and diagnosis, fault tolerant flight control, sliding mode control, geometric approach for fault reconstruction, Lyapunov stability

Procedia PDF Downloads 380
944 Determination of Forced Convection Heat Transfer Performance in Lattice Geometric Heat Sinks

Authors: Bayram Sahin, Baris Gezdirici, Murat Ceylan, Ibrahim Ates

Abstract:

In this experimental study, the effects of heat transfer and flow characteristics on lattice geometric heat sinks, where high rates of heat removal are required, were investigated. The design parameters were Reynolds number, the height of heat sink (H), horizontal (Sy) and vertical (Sx) distances between heat sinks. In the experiments, the Reynolds number ranged from 4000 to 20000; heat sink heights were (H) 20 mm and 40 mm; the distances (Sy) between the heat sinks in the flow direction were45 mm, 32 mm, 23.3 mm; the distances (Sx) between the heat sinks perpendicular to the flow direction were selected to be 23.3 mm, 12.5 mm and 6 mm. A total of 90 experiments were conducted and the maximum Nusselt number and minimum friction coefficient were targeted. Experimental results have shown that heat sinks in lattice geometry have a significant effect on heat transfer enhancement. Under the different experimental conditions, the highest increase in Nusselt number was 283% while the lowest increase was calculated as 66% as compared with the straight channel results. The lowest increase in the friction factor was also obtained as 173% according to the straight channel results. It is seen that the increase in heat sink height and flow velocity increased the level of turbulence in the channel, leading to higher Nusselt number and friction factor values.

Keywords: forced convection, heat transfer enhancement, lattice geometric heat sinks, pressure drop

Procedia PDF Downloads 169
943 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics

Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari

Abstract:

This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.

Keywords: axial loading, computational mechanics, energy absorption performance, crashworthiness behavior, deformation mode

Procedia PDF Downloads 408
942 A Review on Light Shafts Rendering for Indoor Scenes

Authors: Hatam H. Ali, Mohd Shahrizal Sunar, Hoshang Kolivand, Mohd Azhar Bin M. Arsad

Abstract:

Rendering light shafts is one of the important topics in computer gaming and interactive applications. The methods and models that are used to generate light shafts play crucial role to make a scene more realistic in computer graphics. This article discusses the image-based shadows and geometric-based shadows that contribute in generating volumetric shadows and light shafts, depending on ray tracing, radiosity, and ray marching technique. The main aim of this study is to provide researchers with background on a progress of light scattering methods so as to make it available for them to determine the technique best suited to their goals. It is also hoped that our classification helps researchers find solutions to the shortcomings of each method.

Keywords: shaft of lights, realistic images, image-based, and geometric-based

Procedia PDF Downloads 248
941 Modeling a Feedback Concept in a Spherical Thundercloud Cell

Authors: Zemlianskaya Daria, Egor Stadnichuk, Ekaterina Svechnikova

Abstract:

Relativistic runaway electron avalanches (RREAs) are generally accepted as a source of thunderstorms gamma-ray radiation. Avalanches' dynamics in the electric fields can lead to their multiplication via gamma-rays and positrons, which is called relativistic feedback. This report shows that a non-uniform electric field geometry leads to the new RREAs multiplication mechanism - “geometric feedback”, which occurs due to the exchange of high-energy particles between different accelerating regions within a thundercloud. This report will present the results of the simulation in GEANT4 of feedback in a spherical cell. Necessary conditions for the occurrence of geometric feedback were obtained from it.

Keywords: electric field, GEANT4, gamma-rays, relativistic runaway electron avalanches (RREAs), relativistic feedback, the thundercloud

Procedia PDF Downloads 148
940 An Integrated Modular Approach Based Simulation of Cold Heavy Oil Production

Authors: Hamidreza Sahaleh

Abstract:

In this paper, the authors display an incorporated secluded way to deal with quantitatively foresee volumetric sand generation and improved oil recuperation. This model is in light of blend hypothesis with erosion mechanics, in which multiphase hydrodynamics and geo-mechanics are coupled in a predictable way by means of principal unknowns, for example, saturation, pressure, porosity, and formation displacements. Foamy oil is demonstrated as a scattering of gas bubbles caught in the oil, where these gas air bubbles keep up a higher repository weight. A secluded methodology is then received to adequately exploit the current propelled standard supply and stress-strain codes. The model is actualized into three coordinated computational modules, i.e. erosion module, store module, and geo-mechanics module. The stress, stream and erosion mathematical statements are understood independently for every time addition, and the coupling terms (porosity, penetrability, plastic shear strain, and so on) are gone among them and iterated until certain union is accomplished on a period step premise. The framework is capable regarding its abilities, yet practical in terms of computer requirements and maintenance. Numerical results of field studies are displayed to show the capacities of the model. The impacts of foamy oil stream and sand generation are additionally inspected to exhibit their effect on the upgraded hydrocarbon recuperation.

Keywords: oil recuperation, erosion mechanics, foamy oil, erosion module.

Procedia PDF Downloads 246
939 Determinants of House Dust, Endotoxin, and β- (1→ 3)-D-Glucan in Homes of Turkish Children

Authors: Afsoun Nikravan, Parisa Babaei, Gulen Gullu

Abstract:

We aimed to study the association between house dust endotoxin, β-(1→3)-D-glucan, and asthma in a sample representative of the Turkish population. We analyzed data from 240 participants. The house dust was collected from the homes of 110 asthmatics and 130 control (without asthma) school-aged children (6-11 years old). House dust from the living room and from bedroom floors were analyzed for endotoxin and beta-glucan contents. House dust was analyzed for endotoxin content by the kinetic limulus amoebocyte lysate assay and for β-(1→3)-D-glucan by the inhibition enzyme immunoassay. The parents answered questions regarding potential determinants. We found geometric means 187.5 mg/m² for dust. According to statistical values, the endotoxin geometric mean was 13.86×103 EU/g for the control group and 6.16×103 EU/g for the asthma group. As a result, the amount of bacterial endotoxin was measured at a higher level in the homes of children without asthma. The geometric mean for beta-glucan was 46.52 µg/g and 44.39 µg/g for asthma and control groups, respectively. No associations between asthma and microbial agents were observed in Turkish children. High correlations (r > 0.75) were found between floor dust and endotoxin loads, while endotoxin and β-(1→3)-D-glucan concentrations were not correlated. The type of flooring (hard-surface or textile) was the strongest determinant for loads of floor dust and concentrations of endotoxin. Water damage and dampness at home were determinants of β-(1→3)-D-glucan concentrations. Endotoxin and β-(1→3)-D-glucan concentrations in Turkish house dust might lower than concentrations seen in other European countries.

Keywords: indoor air quality, asthma, microbial pollutants, case-control

Procedia PDF Downloads 86
938 Effect of Column Stiffness and Orientation on Seismic Behaviour of Buildings with Vertical Irregularities

Authors: Saraswati Verma, Ankit Batra

Abstract:

In the modern day, structures are designed with a lot of complexities due to economical, aesthetical, and functional needs causing various levels of irregularities to be induced. In the past, several studies have repeatedly shown that irregular structures suffer more damage than regular structures during earthquakes. The present study makes an effort to study the contribution of the orientation of columns in the seismic behaviour of buildings with vertical irregularities namely, soft storey irregularity, mass irregularity and geometric irregularity. The response of the various models is analysed using sap2000 version 14. The parameters through which a comparative response is investigated are displacement, variation in the stiffness contribution, and inter-storey drift. Models with different configurations of column orientations were studied for each vertical irregularity and it was observed that column orientation contributed significantly in affecting a better seismic response. Square columns of the same cross-sectional area showed a good response as compared to that of rectangular columns. The study concludes that as displacement values for buildings with a soft storey and mass irregularity are very high, square columns could be used to minimise the effect of displacement in x and y-axis. In buildings with geometric irregularity, exterior column orientations can be played with to enhance the stiffness in the shorter direction to control the displacement and drift values in both x and y directions.

Keywords: soft storey, mass irregularity, geometric irregularity, column orientation, square column

Procedia PDF Downloads 354
937 Geometric Morphometric Analysis of Allometric Variation in the Hand Morphology of Adults

Authors: Aleksandr S. Ermolenko

Abstract:

Allometry is an important factor of morphological integration, contributing to the organization of the phenotype and its variability. The allometric change in the shape of the hand is particularly important in primate evolution, as the hand has important taxonomic features. Some of these features are known to parts with the shape, especially the ratio of the lengths of the index and ring fingers (2d: 4d ratio). The hand is a fairly well-studied system in the context of the evolutionary development of complex morphological structures since it consists of various departments (basipodium, metapodium, acropodium) that form a single structure –autopodium. In the present study, we examined the allometric variability of acropodium. We tested the null hypothesis that there would be no difference in allometric variation between the two components. Geometric morphometry based on a procrustation of 16 two-dimensional (2D) landmarks was analyzed using multivariate shape-by-size regressions in samples from 100 people (50 men and 50 women). The results obtained show that men have significantly greater allometric variability for the ring finger (variability in the transverse axis prevails), while women have significantly greater allometric variability for the index finger (variability in the longitudinal axis prevails). The influence of the middle finger on the shape of the hand is typical for both men and women. The influence of the little finger on the shape of the hand, regardless of gender, was not revealed. The results of this study support the hypothesis that allometry contributes to the organization of variation in the human hand.

Keywords: human hand, size and shape, 2d:4d ratio, geometric morphometry

Procedia PDF Downloads 123
936 Bubbling in Gas Solids Fluidization at a Strouhal Number Tuned for Low Energy Dissipation

Authors: Chenxi Zhang, Weizhong Qian, Fei Wei

Abstract:

Gas solids multiphase flow is common in many engineering and environmental applications. Turbulence and multiphase flows are two of the most challenging topics in fluid mechanics, and when combined they pose a formidable challenge, even in the dilute dispersed regime. Dimensionless numbers are important in mechanics because their constancy can imply dynamic similarity between systems, despite possible differences in medium or scale. In the fluid mechanics literature, the Strouhal number is usually associated with the dimensionless shedding frequency of a von Karman wake; here we introduce this dimensionless number to investigate bubbling in gas solids fluidization. St=fA/U, which divides stroke frequency (f) and amplitude (A) by forward speed (U). The bubble behavior in a large two-dimensional bubbling fluidized bed (500mm×30mm×6000mm) is investigated. Our result indicates that propulsive efficiency is high and energy dissipation is low over a narrow range of St and usually within the interval 0.2Keywords: bubbles, Strouhal number, two-phase flow, energy dissipation

Procedia PDF Downloads 220
935 Immediate Geometric Solution of Irregular Quadrilaterals: A Digital Tool Applied to Topography

Authors: Miguel Mariano Rivera Galvan

Abstract:

The purpose of this research was to create a digital tool by which users can obtain an immediate and accurate solution of the angular characteristics of an irregular quadrilateral. The development of this project arose because of the frequent absence of a polygon’s geometric information in land ownership accreditation documents. The researcher created a mathematical model using a linear approximation iterative method, employing various disciplines and techniques including trigonometry, geometry, algebra, and topography. This mathematical model uses as input data the surface of the quadrilateral, as well as the length of its sides, to obtain its interior angles and make possible its representation in a coordinate system. The results are as accurate and reliable as the user requires, offering the possibility of using this tool as a support to develop future engineering and architecture projects quickly and reliably.

Keywords: digital tool, geometry, mathematical model, quadrilateral, solution

Procedia PDF Downloads 117
934 Continuous Synthesis of Nickel Nanoparticles by Hydrazine Reduction

Authors: Yong-Su Jo, Seung-Min Yang, Seok Hong Min, Tae Kwon Ha

Abstract:

The synthesis of nickel nanoparticles by the reduction of nickel chloride with hydrazine in an aqueous solution. The effect of hydrazine concentration on batch-processed particle characteristics was investigated using Field Emission Scanning Electron Microscopy (FESEM). Both average particle size and geometric standard deviation (GSD) were decreasing with increasing hydrazine concentration. The continuous synthesis of nickel nanoparticles by microemulsion method was also studied using FESEM and X-ray Diffraction (XRD). The average size and geometric standard deviation of continuous-processed particles were 87.4 nm and 1.16, respectively. X-ray diffraction revealed continuous-processed particles were pure nickel crystalline with a face-centered cubic (fcc) structure.

Keywords: nanoparticle, hydrazine reduction, continuous process, microemulsion method

Procedia PDF Downloads 426
933 Effect of Geometric Imperfections on the Vibration Response of Hexagonal Lattices

Authors: P. Caimmi, E. Bele, A. Abolfathi

Abstract:

Lattice materials are cellular structures composed of a periodic network of beams. They offer high weight-specific mechanical properties and lend themselves to numerous weight-sensitive applications. The periodic internal structure responds to external vibrations through characteristic frequency bandgaps, making these materials suitable for the reduction of noise and vibration. However, the deviation from architectural homogeneity, due to, e.g., manufacturing imperfections, has a strong influence on the mechanical properties and vibration response of these materials. In this work, we present results on the influence of geometric imperfections on the vibration response of hexagonal lattices. Three classes of geometrical variables are used: the characteristics of the architecture (relative density, ligament length/cell size ratio), imperfection type (degree of non-periodicity, cracks, hard inclusions) and defect morphology (size, distribution). Test specimens with controlled size and distribution of imperfections are manufactured through selective laser sintering. The Frequency Response Functions (FRFs) in the form of accelerance are measured, and the modal shapes are captured through a high-speed camera. The finite element method is used to provide insights on the extension of these results to semi-infinite lattices. An updating procedure is conducted to increase the reliability of numerical simulation results compared to experimental measurements. This is achieved by updating the boundary conditions and material stiffness. Variations in FRFs of periodic structures due to changes in the relative density of the constituent unit cell are analysed. The effects of geometric imperfections on the dynamic response of periodic structures are investigated. The findings can be used to open up the opportunity for tailoring these lattice materials to achieve optimal amplitude attenuations at specific frequency ranges.

Keywords: lattice architectures, geometric imperfections, vibration attenuation, experimental modal analysis

Procedia PDF Downloads 99
932 Nonlocal Phenomena in Quantum Mechanics

Authors: Kazim G. Atman, Hüseyin Sirin

Abstract:

In theoretical physics, nonlocal phenomena has always been subject of debate. However, in the conventional mathematical approach where the developments of the physical systems are investigated by using the standard mathematical tools, nonlocal effects are not taken into account. In order to investigate the nonlocality in quantum mechanics and fractal property of space, fractional derivative operators are employed in this study. In this manner, fractional creation and annihilation operators are introduced and Einstein coefficients are taken into account as an application of concomitant formalism in quantum field theory. Therefore, each energy mode of photons are considered as fractional quantized harmonic oscillator hereby Einstein coefficients are obtained. Nevertheless, wave function and energy eigenvalues of fractional quantum mechanical harmonic oscillator are obtained via the fractional derivative order α which is a measure of the influence of nonlocal effects. In the case α = 1, where space becomes homogeneous and continuous, standard physical conclusions are recovered.

Keywords: Einstein’s Coefficients, Fractional Calculus, Fractional Quantum Mechanics, Nonlocal Theories

Procedia PDF Downloads 146
931 Finite Eigenstrains in Nonlinear Elastic Solid Wedges

Authors: Ashkan Golgoon, Souhayl Sadik, Arash Yavari

Abstract:

Eigenstrains in nonlinear solids are created due to anelastic effects such as non-uniform temperature distributions, growth, remodeling, and defects. Eigenstrains understanding is indispensable, as they can generate residual stresses and strongly affect the overall response of solids. Here, we study the residual stress and deformation fields of an incompressible isotropic infinite wedge with a circumferentially-symmetric distribution of finite eigenstrains. We construct a material manifold, whose Riemannian metric explicitly depends on the eigenstrain distribution, thereby we turn the problem into a classical nonlinear elasticity problem, where we find an embedding of the Riemannian material manifold into the ambient Euclidean space. In particular, we find exact solutions for the residual stress and deformation fields of a neo-Hookean wedge having a symmetric inclusion with finite radial and circumferential eigenstrains. Moreover, we numerically solve a similar problem when a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains is placed in a neo-Hookean wedge. Generalization of the eigenstrain problem to other geometries are also discussed.

Keywords: finite eigenstrains, geometric mechanics, inclusion, inhomogeneity, nonlinear elasticity

Procedia PDF Downloads 227
930 Numerical Simulation of Erosion Control in Slurry Pump Casing by Geometrical Flow Pattern Modification Analysis

Authors: A. R. Momeninezhad

Abstract:

Erosion of Slurry Pumps in Related Industries, is one of the major costs in their production process. Many factories in extractive industries try to find ways to diminish this cost. In this paper, we consider the flow pattern modifications by geometric variations made of numerical simulation of flow inside pump casing, which is one of the most important parts analyzed for erosion. The mentioned pump is a cyclone centrifugal slurry pump, which is operating in Sarcheshmeh Copper Industries in Kerman-Iran, named and tagged as HM600 cyclone pump. Simulation shows many improvements in local wear information and situations for better and more qualified design of casing shape and impeller position, before and after geometric corrections. By theory of liquid-solid two-phase flow, the local wear defeats are analyzed and omitted.

Keywords: flow pattern, slurry pump, simulation, wear

Procedia PDF Downloads 425
929 Optimization of the Numerical Fracture Mechanics

Authors: H. Hentati, R. Abdelmoula, Li Jia, A. Maalej

Abstract:

In this work, we present numerical simulations of the quasi-static crack propagation based on the variation approach. We perform numerical simulations of a piece of brittle material without initial crack. An alternate minimization algorithm is used. Based on these numerical results, we determine the influence of numerical parameters on the location of crack. We show the importance of trying to optimize the time of numerical computation and we present the first attempt to develop a simple numerical method to optimize this time.

Keywords: fracture mechanics, optimization, variation approach, mechanic

Procedia PDF Downloads 575
928 Novel Hole-Bar Standard Design and Inter-Comparison for Geometric Errors Identification on Machine-Tool

Authors: F. Viprey, H. Nouira, S. Lavernhe, C. Tournier

Abstract:

Manufacturing of freeform parts may be achieved on 5-axis machine tools currently considered as a common means of production. In particular, the geometrical quality of the freeform parts depends on the accuracy of the multi-axis structural loop, which is composed of several component assemblies maintaining the relative positioning between the tool and the workpiece. Therefore, to reach high quality of the geometries of the freeform parts the geometric errors of the 5 axis machine should be evaluated and compensated, which leads one to master the deviations between the tool and the workpiece (volumetric accuracy). In this study, a novel hole-bar design was developed and used for the characterization of the geometric errors of a RRTTT 5-axis machine tool. The hole-bar standard design is made of Invar material, selected since it is less sensitive to thermal drift. The proposed design allows once to extract 3 intrinsic parameters: one linear positioning and two straightnesses. These parameters can be obtained by measuring the cylindricity of 12 holes (bores) and 11 cylinders located on a perpendicular plane. By mathematical analysis, twelve 3D points coordinates can be identified and correspond to the intersection of each hole axis with the least square plane passing through two perpendicular neighbour cylinders axes. The hole-bar was calibrated using a precision CMM at LNE traceable the SI meter definition. The reversal technique was applied in order to separate the error forms of the hole bar from the motion errors of the mechanical guiding systems. An inter-comparison was additionally conducted between four NMIs (National Metrology Institutes) within the EMRP IND62: JRP-TIM project. Afterwards, the hole-bar was integrated in RRTTT 5-axis machine tool to identify its volumetric errors. Measurements were carried out in real time and combine raw data acquired by the Renishaw RMP600 touch probe and the linear and rotary encoders. The geometric errors of the 5 axis machine were also evaluated by an accurate laser tracer interferometer system. The results were compared to those obtained with the hole bar.

Keywords: volumetric errors, CMM, 3D hole-bar, inter-comparison

Procedia PDF Downloads 361