Search results for: geochemical speciation of heavy metals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2250

Search results for: geochemical speciation of heavy metals

2100 An Assessment of Trace Heavy Metal Contamination of Some Edible Oils Regularly Marketed in Benue and Taraba States of Nigeria

Authors: Raphael Odoh, Obida J. Oko, Mary S. Dauda

Abstract:

The determination of Cd, Cr, Cu, Fe,Mn, Ni, Pb and Zn contents in edible oils (palm oil, ground-nut oil and soybean oil) bought from various markets of Benue and Taraba state were carried out with flame atomic absorption spectrophotometric technique. The method 3031 developed acid digestion of oils for metal analysis by atomic absorption or ICP spectrometry was used in the preparation of the edible oil samples for the determination of total metal content in this study. The overall results (µg/g) in palm oil sample ranged from 0.028-0.076, 0.035-0.092, 1.011-1.955, 2.101-4.892, 0.666-0.922, 0.054-0.095, 0.031-0.068 and 1.987-2.971 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively, while in ground-nut oil the overall results ranged from 0.011-0.042, 0.011-0.052, 0.133-0.788, 1.789-2.511, 0.078-0.765, 0.045-0.092, 0.011-0.028 and 1.098-1.997 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. Of the heavy metals considered Cd and Ni showed the highest contamination in the soybean oil sample. The overall results in soybean oil samples ranged from 0.011-0.015, 0.017-0.032, 0.453-0.987, 1.789-2.511, 0.089-0.321, 0.011-0.016, 0.012-0.065 and 1.011-1.997 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. The concentration of Pb was the highest. The degree of contamination by each metal was estimated by the transfer factor. The transfer factors obtained for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in edible oils (palm oil, ground-nut oil and soybean oil) were 10.800, 16.500, 16.000, 18.813, 15.115, 14.230, 23.000 and 9.418 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in palm oil, and 7.000, 12.500, 8.880, 11.333, 7.708, 10.833, 15.00 and 6.608 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in ground-nut oil while for soybean oil the transfer factors were 13.000, 11.000, 7.642, 11.578, 4.486, 13.00, 12.333 and 4.412 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. The inter-element correlation was found among metals in edible oil samples using Pearson’s correlation co-efficient. There were positive and negative correlations among the metals determined. All Metals determined showed degree of contamination but concentrations lower than the USP specification.

Keywords: Benue State, contamination, edible oils, heavy metals, markets, Taraba State

Procedia PDF Downloads 277
2099 Assessment of Soil Contamination on the Content of Macro and Microelements and the Quality of Grass Pea Seeds (Lathyrus sativus L.)

Authors: Violina R. Angelova

Abstract:

Comparative research has been conducted to allow us to determine the content of macro and microelements in the vegetative and reproductive organs of grass pea and the quality of grass pea seeds, as well as to identify the possibility of grass pea growth on soils contaminated by heavy metals. The experiment was conducted on an agricultural field subjected to contamination from the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances of 0.5 km and 8 km, respectively, from the source of pollution. On reaching commercial ripeness the grass pea plants were gathered. The composition of the macro and microelements in plant materials (roots, stems, leaves, seeds), and the dry matter content, sugars, proteins, fats and ash contained in the grass pea seeds were determined. Translocation factors (TF) and bioaccumulation factor (BCF) were also determined. The quantitative measurements were carried out through inductively-coupled plasma (ICP). The grass pea plant can successfully be grown on soils contaminated by heavy metals. Soil pollution with heavy metals does not affect the quality of the grass pea seeds. The seeds of the grass pea contain significant amounts of nutrients (K, P, Cu, Fe Mn, Zn) and protein (23.18-29.54%). The distribution of heavy metals in the organs of the grass pea has a selective character, which reduces in the following order: leaves > roots > stems > seeds. BCF and TF values were greater than one suggesting efficient accumulation in the above ground parts of grass pea plant. Grass pea is a plant that is tolerant to heavy metals and can be referred to the accumulator plants. The results provide valuable information about the chemical and nutritional composition of the seeds of the grass pea grown on contaminated soils in Bulgaria. The high content of macro and microelements and the low concentrations of toxic elements in the grass pea grown in contaminated soil make it possible to use the seeds of the grass pea as animal feed.

Keywords: Lathyrus sativus L, macroelements, microelements, quality

Procedia PDF Downloads 104
2098 Different Formula of Mixed Bacteria as a Bio-Treatment for Sewage Wastewater

Authors: E. Marei, A. Hammad, S. Ismail, A. El-Gindy

Abstract:

This study aims to investigate the ability of different formula of mixed bacteria as a biological treatments of wastewater after primary treatment as a bio-treatment and bio-removal and bio-adsorbent of different heavy metals in natural circumstances. The wastewater was collected from Sarpium forest site-Ismailia Governorate, Egypt. These treatments were mixture of free cells and mixture of immobilized cells of different bacteria. These different formulas of mixed bacteria were prepared under Lab. condition. The obtained data indicated that, as a result of wastewater bio-treatment, the removal rate was found to be 76.92 and 76.70% for biological oxygen demand, 79.78 and 71.07% for chemical oxygen demand, 32.45 and 36.84 % for ammonia nitrogen as well as 91.67 and 50.0% for phosphate after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. Moreover, the bio-removals of different heavy metals were found to reach 90.0 and 50. 0% for Cu ion, 98.0 and 98.5% for Fe ion, 97.0 and 99.3% for Mn ion, 90.0 and 90.0% Pb, 80.0% and 75.0% for Zn ion after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. The results indicated that 13.86 and 17.43% of removal efficiency and reduction of total dissolved solids were achieved after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively.

Keywords: wastewater bio-treatment , bio-sorption heavy metals, biological desalination, immobilized bacteria, free cell bacteria

Procedia PDF Downloads 166
2097 Investigation of the Heavy Metal Pollution of the River Ecosystems in the Lake Sevan Basin, Armenia

Authors: G. Gevorgyan, S. Khudaverdyan, A. Vaseashta

Abstract:

The Lake Sevan basin is situated in the eastern part of the Republic of Armenia (Gegharquniq marz/district). The heavy metal pollution of the some tributaries of Lake Sevan was investigated. Water sampling was performed in August and December, 2014 from the 4 observation sites: 1) Sotq river upstream (about 600 meters upstream from the Sotq gold mine); 2) Sotq river mouth; 3) Masrik river mouth; 4) Dzknaget river mouth. Heavy metal (V, Fe, Ni, Cu, As, Mo, Pb) concentrations in the water samples were determined by the standard methods using an atomic absorption spectrophotometer. The results of the study showed that heavy metal content mainly increased from the upstream of the Sotq river to the mouth of the Masrik river which may have been conditioned by the influence of gold mining activity as the Masrik and its tributary-Sotq rivers passing through the gold mining area were exposed to heavy metal pollution. The observation sites can be ranked by pollution degree as follows: №3> №2> №1> №4. The highest heavy metal pollution degree was observed in the Masrik river mouth which may have been conditioned by the direct impact of gold mining activity and the pressure of its tributary–the Sotq river which flows through the gold mining area. The lowest heavy metal pollution degree was registered in the Dzknaget river mouth which flowing through rural areas wasn’t subject to significant heavy metal pollution. According to the observation sites of the Sotq and Masrik rivers, high positive correlation was mainly observed between the concentrations of the investigated heavy metals (except nickel) which indicated that all the heavy metals except the nickel had the same anthropogenic pollution source which was the activity of the Sotq gold mine. In general, it is possible to state that the activity of the Sotq gold mine in the Lake Sevan basin caused the heavy metal pollution of the Sotq and Masrik rivers which may have posed environmental hazards. Heavy metals are nondegradable substances, and heavy metal pollution of freshwater systems may pose risks to the environment and human health through accumulation in the tissues of aquatic organisms, water-food chain as well as oral ingestion and dermal contact.

Keywords: Armenia, Lake Sevan basin, gold mining activity, river ecosystems, heavy metal pollution

Procedia PDF Downloads 559
2096 Application of Various Methods for Evaluation of Heavy Metal Pollution in Soils around Agarak Copper-Molybdenum Mine Complex, Armenia

Authors: K. A. Ghazaryan, H. S. Movsesyan, N. P. Ghazaryan

Abstract:

The present study was aimed in assessing the heavy metal pollution of the soils around Agarak copper-molybdenum mine complex and related environmental risks. This mine complex is located in the south-east part of Armenia, and the present study was conducted in 2013. The soils of the five riskiest sites of this region were studied: surroundings of the open mine, the sites adjacent to processing plant of Agarak copper-molybdenum mine complex, surroundings of Darazam active tailing dump, the recultivated tailing dump of “ravine - 2”, and the recultivated tailing dump of “ravine - 3”. The mountain cambisol was the main soil type in the study sites. The level of soil contamination by heavy metals was assessed by Contamination factors (Cf), Degree of contamination (Cd), Geoaccumulation index (I-geo) and Enrichment factor (EF). The distribution pattern of trace metals in the soil profile according to Cf, Cd, I-geo and EF values shows that the soil is much polluted. Almost in all studied sites, Cu, Mo, Pb, and Cd were the main polluting heavy metals, and this was conditioned by Agarak copper-molybdenum mine complex activity. It is necessary to state that the pollution problem becomes pressing as some parts of these highly polluted region are inhabited by population, and agriculture is highly developed there; therefore, heavy metals can be transferred into human bodies through food chains and have direct influence on public health. Since the induced pollution can pose serious threats to public health, further investigations on soil and vegetation pollution are recommended. Finally, Cf calculating based on distance from the pollution source and the wind direction can provide more reasonable results.

Keywords: Agarak copper-molybdenum mine complex, heavy metals, soil contamination, enrichment factor (EF), Armenia

Procedia PDF Downloads 201
2095 Heavy Metal Contamination in Soils: Detection and Assessment Using Machine Learning Algorithms Based on Hyperspectral Images

Authors: Reem El Chakik

Abstract:

The levels of heavy metals in agricultural lands in Lebanon have been witnessing a noticeable increase in the past few years, due to increased anthropogenic pollution sources. Heavy metals pose a serious threat to the environment for being non-biodegradable and persistent, accumulating thus to dangerous levels in the soil. Besides the traditional laboratory and chemical analysis methods, Hyperspectral Imaging (HSI) has proven its efficiency in the rapid detection of HMs contamination. In Lebanon, a continuous environmental monitoring, including the monitoring of levels of HMs in agricultural soils, is lacking. This is due in part to the high cost of analysis. Hence, this proposed research aims at defining the current national status of HMs contamination in agricultural soil, and to evaluate the effectiveness of using HSI in the detection of HM in contaminated agricultural fields. To achieve the two main objectives of this study, soil samples were collected from different areas throughout the country and were analyzed for HMs using Atomic Absorption Spectrophotometry (AAS). The results were compared to those obtained from the HSI technique that was applied using Hyspex SWIR-384 camera. The results showed that the Lebanese agricultural soils contain high contamination levels of Zn, and that the more clayey the soil is, the lower reflectance it has.

Keywords: agricultural soils in Lebanon, atomic absorption spectrophotometer, hyperspectral imaging., heavy metals contamination

Procedia PDF Downloads 77
2094 Expression of Metallothionein Gen and Protein on Hepatopancreas, Gill and Muscle of Perna viridis Caused by Biotoxicity Hg, Pb and Cd

Authors: Yulia Irnidayanti , J. J. Josua, A. Sugianto

Abstract:

Jakarta Bay with 13 rivers that flow into, the environment has deteriorated and is the most polluted bays in Asia. The entry of waste into the waters of the Bay of Jakarta has caused pollution. Heavy metal contamination has led to pollution levels and may cause toxicity to organisms that live in the sea, down to the cellular level and may affect the ecological balance. Various ways have been conducted to measure the impact of environmental degradation, such as by measuring the levels of contaminants in the environment, including measuring the accumulation of toxic compounds in the tissues of organisms. Biological responses or biomarkers known as a sensitive indicator but need relevant predictions. In heavy metal pollution monitoring, analysis of aquatic biota is very important from the analysis of the water itself. The content of metals in aquatic biota will usually always be increased from time to time due to the nature of metal bioaccumulation, so the aquatic biota is best used as an indicator of metal pollution in aquatic environments. The results of the content analysis results of sea water in coastal estuaries Angke, Kaliadem and Panimbang detected heavy metals cadmium, mercury, lead, but did not find zinc metal. Based on the results of protein electrophoresis methallotionein found heavy metals in the tissues hepatopancreas, gills and muscles, and also the mRNA expression of has detected.

Keywords: gills, heavy metal, hepatopancreas, metallothionein, muscle

Procedia PDF Downloads 363
2093 Chemical Leaching of Metals from Landfill’s Fine Fraction

Authors: E. Balkauskaitė, A. Bučinskas, R. Ivanauskas, M. Kriipsalu, G. Denafas

Abstract:

Leaching of heavy metals (chromium, zinc, copper) from the fine fraction of the Torma landfill (Estonia) was investigated. The leaching kinetics studies have determined the dependence of some metal’s concentration on the leaching time. Metals were leached with Aqua Regia, distilled water and EDTA (Ethylenediaminetetraacetic acid); process was most intensive 2 hours after the start of the experiment, except for copper with EDTA (0.5 h) and lead with EDTA (4 h). During leaching, steady concentrations of Fe, Mn, Cd and Pb were fully stabilized after 8 h; however concentrations of Cu and Ni were not stabilized after 10 h.

Keywords: fine fraction, landfills, leached metals, leaching kinetics

Procedia PDF Downloads 100
2092 Risk Assessment of Trace Metals in the Soil Surface of an Abandoned Mine, El-Abed Northwestern Algeria

Authors: Farida Mellah, Abdelhak Boutaleb, Bachir Henni, Dalila Berdous, Abdelhamid Mellah

Abstract:

Context/Purpose: One of the largest mining operations for lead and zinc deposits in northwestern Algeria in more than thirty years, El Abed is now the abandoned mine that has been inactive since 2004, leaving large amounts of accumulated mining waste under the influence of Wind, erosion, rain, and near agricultural lands. Materials & Methods: This study aims to verify the concentrations and sources of heavy metals for surface samples containing randomly taken soil. Chemical analyses were performed using iCAP 7000 Series ICP-optical emission spectrometer, using a set of environmental quality indicators by calculating the enrichment factor using iron and aluminum references, geographic accumulation index and geographic information system (GIS). On the basis of the spatial distribution. Results: The results indicated that the average metal concentration was: (As = 30,82),(Pb = 1219,27), (Zn = 2855,94), (Cu = 5,3), mg/Kg,based on these results, all metals except Cu passed by GBV in the Earth's crust. Environmental quality indicators were calculated based on the concentrations of trace metals such as lead, arsenic, zinc, copper, iron and aluminum. Interpretation: This study investigated the concentrations and sources of trace metals, and by using quality indicators and statistical methods, lead, zinc, and arsenic were determined from human sources, while copper was a natural source. And based on the spatial analysis on the basis of GIS, many hot spots were identified in the El-Abed region. Conclusion: These results could help in the development of future treatment strategies aimed primarily at eliminating materials from mining waste.

Keywords: soil contamination, trace metals, geochemical indices, El Abed mine, Algeria

Procedia PDF Downloads 33
2091 Evaluation of Health Risk Degree Arising from Heavy Metals Present in Drinking Water

Authors: Alma Shehu, Majlinda Vasjari, Sonila Duka, Loreta Vallja, Nevila Broli

Abstract:

Humans consume drinking water from several sources, including tap water, bottled water, natural springs, filtered tap water, etc. The quality of drinking water is crucial for human survival given the fact that the consumption of contaminated drinking water is related to many diseases and deaths all over the world. This study represents the investigation of the quality and health risks of different types of drinking waters being consumed by the population in Albania, arising from heavy metals content. Investigated water included industrialized water, tap water, and spring water. In total, 20 samples were analyzed for the content of Pb, Cd, Cr, Ni, Cu, Fe, Zn, Al, and Mn. Determination of each metal concentration in selected samples was conducted by atomic absorption spectroscopy method with electrothermal atomization, GFAAS. Water quality was evaluated by comparing the obtained metals concentrations with the recommended maximum limits, according to the European Directive (98/83/EC) and Guidelines for Drinking Water Quality (WHO, 2017). Metal Index (MI) was used to assess the overall water quality due to heavy metals content. Health risk assessment was conducted based on the recommendations of the USEPA (1996), human health risk assessment, via ingestion. Results of this investigation showed that Al, Ni, Fe, and Cu were the metals found in higher concentrations while Cd exhibited the lowest concentration. Among the analyzed metals, Al (one sample) and Ni (in five samples) exceeded the maximum allowed limit. Based on the pollution metal index, it was concluded that the overall quality of Glina bottled water can be considered as toxic to humans, while the quality of bottled water (Trebeshina) was classified as moderately toxic. Values of health risk quotient (HQ) varied between 1x10⁻⁶-1.3x10⁻¹, following the order Ni > Cd > Pb > Cu > Al > Fe > Zn > Mn. All the values were lower than 1, which suggests that the analyzed samples exhibit no health risk for humans.

Keywords: drinking water, health risk assessment, heavy metals, pollution index

Procedia PDF Downloads 104
2090 Ultrasound-Assisted Soil Washing Process for the Removal of Heavy Metals from Clays

Authors: Sophie Herr, Antoine Leybros, Yves Barre, Sergey Nikitenko, Rachel Pflieger

Abstract:

The proportion of soil contaminated by a wide range of pollutants (heavy metals, PCBs, pesticides, etc.) of anthropogenic origin is constantly increasing, and it is becoming urgent to address this issue. Among remediation methods, soil washing is an effective, relatively fast, and widely used process. This study assesses its coupling with ultrasound: indeed, sonication induces the formation of cavitation bubbles in solution that enhance local mass transfer through agitation and particle erosion. The removal of target toxic elements Ni(II) and Zn(II) from vermiculite clay has been studied under 20 kHz ultrasound and silent conditions. Several acids were tested, and HCl was chosen as the solvent. The effects of solid/liquid ratio and particle size were investigated. Metal repartition in the clay has been followed by Tessier's sequential extraction procedure. The results showed that more metal elements bound to the challenging residual phase were desorbed with 20 kHz ultrasound than in silent conditions. This supports the promising application of ultrasound for heavy metal desorption in difficult conditions. Further experiments were performed at high-frequency US (362 kHz), and it was shown that fragmentation of the vermiculite particles is then limited, while positive effects of US in the decontamination are kept.

Keywords: desorption, heavy metals, ultrasound, vermiculite

Procedia PDF Downloads 108
2089 Consequential Effects of Coal Utilization on Urban Water Supply Sources – a Study of Ajali River in Enugu State Nigeria

Authors: Enebe Christian Chukwudi

Abstract:

Water bodies around the world notably underground water, ground water, rivers, streams, and seas, face degradation of their water quality as a result of activities associated with coal utilization including coal mining, coal processing, coal burning, waste storage and thermal pollution from coal plants which tend to contaminate these water bodies. This contamination results from heavy metals, presence of sulphate and iron, dissolved solids, mercury and other toxins contained in coal ash, sludge, and coal waste. These wastes sometimes find their way to sources of urban water supply and contaminate them. A major problem encountered in the supply of potable water to Enugu municipality is the contamination of Ajali River, the source of water supply to Enugu municipal by coal waste. Hydro geochemical analysis of Ajali water samples indicate high sulphate and iron content, high total dissolved solids(TDS), low pH (acidity values) and significant hardness in addition to presence of heavy metals, mercury, and other toxins. This is indicative of the following remedial measures: I. Proper disposal of mine wastes at designated disposal sites that are suitably prepared. II. Proper water treatment and III. Reduction of coal related contaminants taking advantage of clean coal technology.

Keywords: effects, coal, utilization, water quality, sources, waste, contamination, treatment

Procedia PDF Downloads 392
2088 Heavy Metals and Carcinogenic Risk Assessment in Free-Ranged Livestock of Lead-Contaminated Goldmine Communities of Zamfara State, Northern Nigeria

Authors: Sulaiman Rabiu, Muazu Gusau Abubakar, Jafar Usman Zakari

Abstract:

The consumption of meat is of great importance as it provides a good source of proteins and significant amount of essential trace element to the body. However, contamination of meat and meat products with heavy metals is becoming a serious threat to food safety and public health. Therefore, the present study is aimed to evaluate the concentration of some heavy metals in muscles and entrails of free-ranged cattle, sheep and goats. A total of sixty (60) fresh samples of muscles, liver, kidney, small intestines and stomach of free ranged cattle, sheep and goats were collected from abattoirs of different goldmine communities of Anka, Bukkuyum, Maru andTalata-Mafara Local Government Areas of Zamfara State, Nigeria. The samples were digested using 10 mL of a mixed 70% high grade concentration of HNO₃ and 65% HCl (4:1 v/v); the mixture was heated until dense fumes disappeared forming a clear transparent solution and diluted to 50 mL with deionized water. Actual concentrations of Cd, Cr, Cu, Co, As, Ni, Mn, Pb and Zn were determined using Microwave Plasma Atomic Emission Spectrophotometer (MP-AES). From the results obtained, goat liver had the highest mean concentration of lead, arsenic, cobalt and manganese (12.43± 0.31, 14.25±0.32, 3.47± 0.86 and 12.68± 0.92 mg/kg respectively) while goat kidney had the highest concentration of copper and zinc (10.08±0.61 and 24.16±1.30 mg/kg respectively). The highest concentrations of cadmium and nickel were recorded in sheep kidney (7.75± 0.65 and 2.08±0.10 mg/kg respectively). Cattle muscles had the highest chromium concentration than all the organs analysed. The target hazard quotients (THQs) for all the metals were below 1.0, but TR which is a risk indices for carcinogenicity indicates an alarming result that requires stringent control to protect public health.Therefore, intensive public health awareness on the risk associated with contamination of heavy metals in meat should be advocated.

Keywords: contamination, goldmine, heavy metals, meat

Procedia PDF Downloads 47
2087 Identification of Toxic Metal Deposition in Food Cycle and Its Associated Public Health Risk

Authors: Masbubul Ishtiaque Ahmed

Abstract:

Food chain contamination by heavy metals has become a critical issue in recent years because of their potential accumulation in bio systems through contaminated water, soil and irrigation water. Industrial discharge, fertilizers, contaminated irrigation water, fossil fuels, sewage sludge and municipality wastes are the major sources of heavy metal contamination in soils and subsequent uptake by crops. The main objectives of this project were to determine the levels of minerals, trace elements and heavy metals in major foods and beverages consumed by the poor and non-poor households of Dhaka city and assess the dietary risk exposure to heavy metal and trace metal contamination and potential health implications as well as recommendations for action. Heavy metals are naturally occurring elements that have a high atomic weight and a density of at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, and carcinogenicity.

Keywords: food chain, determine the levels of minerals, trace elements, heavy metals, production and use, human exposure, toxicity, carcinogenicity

Procedia PDF Downloads 248
2086 Analysis of Dust Particles in Snow Cover in the Surroundings of the City of Ostrava: Particle Size Distribution, Zeta Potential and Heavy Metal Content

Authors: Roman Marsalek

Abstract:

In this paper, snow samples containing dust particles from several sampling points around the city of Ostrava were analyzed. The pH values of sampled snow were measured and solid particles analyzed. Particle size, zeta potential and content of selected heavy metals were determined in solid particles. The pH values of most samples lay in the slightly acid region. Mean values of particle size ranged from 290.5 to 620.5 nm. Zeta potential values varied between -5 and -26.5 mV. The following heavy metal concentration ranges were found: copper 0.08-0.75 mg/g, lead 0.05-0.9 mg/g, manganese 0.45-5.9 mg/g and iron 25.7-280.46 mg/g. The highest values of copper and lead were found in the vicinity of busy crossroads, and on the contrary, the highest levels of manganese and iron were detected close to a large steelworks. The proportion between pH values, zeta potentials, particle sizes and heavy metal contents was established. Zeta potential decreased with rising pH values and, simultaneously, heavy metal content in solid particles increased. At the same time, higher metal content corresponded to lower particle size.

Keywords: dust, snow, zeta potential, particles size distribution, heavy metals

Procedia PDF Downloads 339
2085 Optimization of Ultrasound-Assisted Extraction and Microwave-Assisted Acid Digestion for the Determination of Heavy Metals in Tea Samples

Authors: Abu Harera Nadeem, Kingsley Donkor

Abstract:

Tea is a popular beverage due to its flavour, aroma and antioxidant properties—with the most consumed varieties being green and black tea. Antioxidants in tea can lower the risk of Alzheimer’s and heart disease and obesity. However, these teas contain heavy metals such as Hg, Cd, or Pb, which can cause autoimmune diseases like Graves disease. In this study, 11 heavy metals in various commercial green, black, and oolong tea samples were determined using inductively coupled plasma-mass spectrometry (ICP-MS). Two methods of sample preparation were compared for accuracy and precision, which were microwave-assisted digestion and ultrasonic-assisted extraction. The developed method was further validated by detection limit, precision, and accuracy. Results showed that the proposed method was highly sensitive with detection limits within parts-per-billion levels. Reasonable method accuracy was obtained by spiked experiments. The findings of this study can be used to delve into the link between tea consumption and disease and to provide information for future studies on metal determination in tea.

Keywords: ICP-MS, green tea, black tea, microwave-assisted acid digestion, ultrasound-assisted extraction

Procedia PDF Downloads 86
2084 Potential of Castor Bean (Ricinus Communis L.) for Phytoremediation of Soils Contaminated with Heavy Metals

Authors: Violina Angelova, Mariana Perifanova-Nemska, Krasimir Ivanov

Abstract:

The aim of this research was to investigate the potential for the use of Ricinus communis L. (castor oil plant) to remediate metal-polluted sites. This study was performed in industrially polluted soils containing high concentrations of Zn, Pb and Cd, situated at different distances (0.3, 2.0 and 15.0 km) from the source of pollution - the Non-Ferrous Metal Works near Plovdiv, Bulgaria. On reaching commercial ripeness, the castor oil plants were gathered and the contents of heavy metals in their different parts – roots, stems, leaves and seeds, were determined after dry ashing. Physico-chemical characterization, total, DTPA extractable and water-soluble metals in rhizospheric soil samples were carried. Translocation factors (TFs) were also determined. The quantitative measurements were carried out with ICP. A soxhlet extraction was used for the extraction of the oil, using hexane as solvent. The oil was recovered by simple distillation of the solvent. The residual oil obtained was investigated for physicochemical parameters and fatty acid composition. Bioaccumulation factor and translocation factor values (BAF and TF > 1) were greater than one suggesting efficient accumulation in the shoot. The castor oil plant may be preferred as a good candidate for phytoremediation (phytoextraction). These results indicate that R. communis has good potential for removing Pb from contaminated soils attributed to its fast growth, high biomass, strong absorption and accumulation for Pb. The concentrations of heavy metals in the oil were low as seed coats accumulated the highest concentrations of Cd and Pb. In addition, the result of the fatty acid composition analysis confirms the oil to be of good quality and can be used for industrial purposes such as cosmetics, soaps and paint.

Keywords: castor bean, heavy metals, phytoremediation, polluted soils

Procedia PDF Downloads 207
2083 Stabilization of Medical Waste Incineration Fly Ash in Cement Mortar Matrix

Authors: Tanvir Ahmed, Musfira Rahman, Rumpa Chowdhury

Abstract:

We performed laboratory experiments to assess the suitability of using medical waste incineration fly ash in cement as a construction material based on the engineering properties of fly ash-cement matrix and the leaching potential of toxic heavy metals from the stabilized mix. Fly ash-cement samples were prepared with different proportions of fly ash (0%, 5%, 10%, 15% and 20% by weight) in the laboratory controlled conditions. The solidified matrix exhibited a compressive strength from 3950 to 4980 psi when fly ash is mixed in varying proportions. The 28-day compressive strength has been found to decrease with the increase in fly ash content, but it meets the minimum requirement of compressive strength for cement-mortar. Soundness test results for cement-mortar mixes having up to 15% fly ash. Final and initial setting times of cement have been found to generally increase with fly ash content. Water requirement (for normal consistency) also increased with the increase in fly ash content in cement. Based on physical properties of the cement-mortar matrix it is recommended that up to 10% (by weight) medical waste incineration fly ash can be incorporated for producing cement-mortar of optimum quality. Leaching behaviours of several targeted heavy metals (As, Cu, Ni, Cd, Pb, Hg and Zn) were analyzed using Toxicity Characteristics Leaching Procedure (TCLP) on fly ash and solidified fly ash-cement matrix. It was found that the leached concentrations of As, Cu, Cd, Pb and Zn were reduced by 80.13%, 89.47%, 33.33% and 23.9% respectively for 10% fly ash incorporated cement-mortar matrix compared to that of original fly ash. The leached concentrations of heavy metals were from the matrix were far below the EPA land disposal limits. These results suggest that the solidified fly ash incorporated cement-mortar matrix can effectively confine and immobilize the heavy metals contained in the fly ash.

Keywords: cement-mortar, fly ash, leaching, waste management

Procedia PDF Downloads 139
2082 Physico-Chemical and Heavy Metals Analysis of Contaminated Ndawuse River in North Central of Nigeria

Authors: Abimbola Motunrayo Enitan, Ibironke Titilayo Enitan, John Odiyo

Abstract:

The study assessed quality of surface water across Ndawuse River Phase 1, District of the Federal Capital Territory (FCT), Abuja, Nigeria based on physico-chemical variables that are linked to agrochemical and eutrophication, as well as heavy metals concentrations. In total, sixteen surface water samples were obtained from five locations along the river. The results were compared with the standard limits set by both World Health Organization and Federal Environmental Protection Agency for drinking water. The results obtained indicated that BOD5, turbidity, 0.014-3.511 mg Fe/L and 0.078-0.14 mg Cr/L were all above the standard limits. The results further showed that the quality of surface water is being significantly affected by human activities around the Ndawuse River which could pose an adverse health risk to several communities that rely on these receiving water bodies primarily as their source of water. Therefore, there is a need for strict enforcement of environmental laws considering the physico-chemical analysis.

Keywords: Abuja, heavy metals, human exposure risk, Ndawuse River, Nigeria, surface water

Procedia PDF Downloads 226
2081 Toxic Heavy Metal Accumulation by Algerian Malva sylvestris L. Depending on Location Variation

Authors: Souhila Terfi, Fatma Hassaine-Sadi

Abstract:

In the present study, wet digestion with HCl and HNO3 mixture was used to extract the heavy metals (copper (Cu), chromium (Cr), zinc (Zn), lead (Pb) and cadmium (Cd)) from the leaves, the stems and the roots of Malva sylvestris L., which were subsequently analyzed by AAS. The samples (soil and parts of species) were collected from different sites: the industrial area (IA) (Rouiba), the rubbish dump area (RDA) (Boudouaou), the residential area (RA) with large open fields and construction activities (Blida), the Montaigne area (MA) (Chrea) and the high plateau area (HPA) (Berouaguia). The study showed differences in metal concentrations according to the analysed parts and the different sampling locations. In the contaminated site of the industrial area (IA), high content of the toxic heavy metals (Cd: 3.18 µg/g DW and Pb: 34.48 µg/g DW) were found in the leaves of Malva sylvestris L. This finding suggests that the consumers of this species could be exposed to a risk associated with this higher level of these toxic metals. It was found that Malva sylvestris L. is rich by Zn and Cu in some sites, which are considered to be the essential elements for the human health. The obtained results with the control site (Montaigne area) suggest that this species can be applicable in both the health and food, feasible alternatives as medicinal plant without any risk.

Keywords: Malva sylvestris L., toxic heavy metal, medicinal plant, impact on human health

Procedia PDF Downloads 328
2080 Treatment of Acid Mine Drainage with Metallurgical Slag

Authors: Sukla Saha, Alok Sinha

Abstract:

Acid mine drainage (AMD) refers to the production of acidified water from abandoned mines and active mines as well. The reason behind the generation of this kind of acidified water is the oxidation of pyrites present in the rocks in and around mining areas. Thiobacillus ferrooxidans, which is a sulfur oxidizing bacteria, helps in the oxidation process. AMD is extremely acidic in nature, (pH 2-3) with high concentration of several trace and heavy metals such as Fe, Al, Zn, Mn, Cu and Co and anions such as chloride and sulfate. AMD has several detrimental effect on aquatic organism and environment. It can directly or indirectly contaminate the ground water and surface water as well. The present study considered the treatment of AMD with metallurgical slag, which is a waste material. Slag helped to enhance the pH of AMD to 8.62 from 1.5 with 99% removal of trace metals such as Fe, Al, Mn, Cu and Co. Metallurgical slag was proven as efficient neutralizing material for the treatment of AMD.

Keywords: acid mine drainage, Heavy metals, metallurgical slag, Neutralization

Procedia PDF Downloads 158
2079 Cadmium Contamination in Rice Cultivation in the City of Savadkooh in Iran

Authors: Ghazal Banitahmasb, Nazanin Khakipour

Abstract:

Potential contamination of rice by heavy metals such as Copper, Cobalt, Cadmium, Arsenic, Chromium, Mercury, Nickel, Lead and Magnesium in soil, water and pesticides affect the quality and nutritional properties of rice. The aim of this study was to evaluate the contamination of rice cultivated in the city of Savadkooh to Cadmium and its comparison with international standards. With the study on different areas of Savadkooh(a city in Mazanaran Province) 7 samples of rice with the soil in which they were grown was taken for sampling. According to the results of all rice grown in Savadkooh city there are some Cadmium but the amount measured is less than specified in the national standard, and is safe for consumers to use.

Keywords: cadmium, heavy metals, rice, Savadkooh

Procedia PDF Downloads 281
2078 Porous Alumina-Carbon Nanotubes Nanocomposite Membranes Processed via Spark Plasma Sintering for Heavy Metal Removal from Contaminated Water

Authors: H. K. Shahzad, M. A. Hussein, F. Patel, N. Al-Aqeeli, T. Laoui

Abstract:

The purpose of the present study was to use the adsorption mechanism with microfiltration synergistically for efficient heavy metal removal from contaminated water. Alumina (Al2O3) is commonly used for ceramic membranes development while recently carbon nanotubes (CNTs) have been considered among the best adsorbent materials for heavy metals. In this work, we combined both of these materials to prepare porous Al2O3-CNTs nanocomposite membranes via Spark Plasma Sintering (SPS) technique. Alumina was used as a base matrix while CNTs were added as filler. The SPS process parameters i.e. applied pressure, temperature, heating rate, and holding time were varied to obtain the best combination of porosity (64%, measured according to ASTM c373-14a) and strength (3.2 MPa, measured by diametrical compression test) of the developed membranes. The prepared membranes were characterized using X-ray diffraction (XRD), field emission secondary electron microscopy (FE-SEM), contact angle and porosity measurements. The results showed that properties of the synthesized membranes were highly influenced by the SPS process parameters. FE-SEM images revealed that CNTs were reasonably dispersed in the alumina matrix. The porous membranes were evaluated for their water flux transport as well as their capacity to adsorb heavy metals ions. Selected membranes were able to remove about 97% cadmium from contaminated water. Further work is underway to enhance the removal efficiency of the developed membranes as well as to remove other heavy metals such as arsenic and mercury.

Keywords: heavy metal removal, inorganic membrane, nanocomposite, spark plasma sintering

Procedia PDF Downloads 235
2077 Bioprospecting for Indigenous Ruderal Plants with Potentials for Phytoremediation of Soil Heavy Metals in the Southern Guinea Savanna of North Western Nigeria

Authors: Sunday Paul Bako, Augustine Uwanekwu Ezealor, Yahuza Tanimu

Abstract:

In a study to evaluate the response of indigenous ruderal plants to the metal deposition regime imposed by anthropogenic modification in the Southern Guinea Savanna of north Western Nigeria during the dry and wet seasons, herbaceous plants and samples of soils were collected in three 5m by 5m quadrats laid around the environs of the Kaduna Refinery and Petrochemical Company and the banks of River Kaduna. Heavy metal concentration (Cd, Ni, Cr, Cu, Fe, Mn and Zn) in soil and plant samples was determined using Energy Dispersive X-ray Fluorescence. Concentrations of heavy metals in soils were generally observed to be higher during the wet season in both locations although the differences were not statistically significant (P > 0.05). Concentrations of Cd, Zn, Cr, Cu and Ni in all the plants observed were found to be below levels described as phytotoxic to plants. However, above ‘normal’ concentrations of Cr was observed in most of the plant species sampled. The concentrations of Cr, Cu, Ni and Zn in soils around the KRPC and RKB were found to be above the acceptable limits. Although no hyper accumulator plant species was encountered in this study, twenty (20) plant species were identified to have high bioconcentration (BCF > 1.0) of Cd and Cu, which indicated tolerance of these plants to excessive or phytotoxic concentrations of these metals. In addition, they generally produce high above ground biomass, due to rapid vegetative growth. These are likely species for phytoextraction. Elevated concentration of metals in both soil and plant materials may cause a decrease in biodiversity due to direct toxicity. There are also risks to humans and other animals due to bioaccumulation across the food chain. There are further possibilities of further evaluating and genetically improving metal tolerance traits in some of these plant species in relation to their potential use in phytoremediation programmes in metal polluted sites.

Keywords: bioprospecting, phytoremediation, heavy metals, Nigeria

Procedia PDF Downloads 246
2076 Pb and NI Removal from Aqueous Environment by Green Synthesized Iron Nanoparticles Using Fruit Cucumis Melo and Leaves of Ficus Virens

Authors: Amandeep Kaur, Sangeeta Sharma

Abstract:

Keeping in view the serious entanglement of heavy metals ( Pb+2 and Ni+2) ions in an aqueous environment, a rapid search for efficient adsorbents for the adsorption of heavy metals has become highly desirable. In this quest, green synthesized Fe np’s have gathered attention because of their excellent adsorption capability of heavy metals from aqueous solution. This research report aims at the fabrication of Fe np’s using the fruit Cucumis melo and leaves of Ficus virens via a biogenic synthesis route. Further, synthesized CM-Fe-np’s and FV-Fe-np’s have been tested as potential bio-adsorbents for the removal of Pb+2 and Ni+2 by carrying out adsorption batch experiments. The influence of myriad parameters like initial concentration of Pb/Ni (5,10,15,20,25 mg/L), contact time (10 to 200 min.), adsorbent dosage (0.5, 0.10, 0.15 mg/L), shaking speed (120 to 350 rpm) and pH value (6,7,8,9) has been investigated. The maximum removal with CM-Fe-np’s and FV-Fe-np’s has been achieved at pH 7, metal conc. 5 mg/L, dosage 0.9 g/L, shaking speed 200 rpm and reaction contact time 200 min during the adsorption experiment. The results obtained are found to be in accordance with Freundlich and Langmuir's adsorption models; consequently, they could be highly applicable to the wastewater treatment plant.

Keywords: adsorption, biogenic synthesis, nanoparticles, nickel, lead

Procedia PDF Downloads 56
2075 Effect of Bacillus Pumilus Strains on Heavy Metal Accumulation in Lettuce Grown on Contaminated Soil

Authors: Sabeen Alam, Mehboob Alam

Abstract:

The research work entitled “Effect of Bacillus pumilus strains on heavy metal accumulation in lettuce grown on contaminated soil” focused on functional role of Bacillus pumilus strains inoculated with lettuce seed in mitigating heavy metal in chromite mining soil. In this experiment, factor A was three Bacillus pumilus strains (sequence C-2PMW-8, C-1 SSK-8 and C-1 PWK-7) while soil used for this experiment was collected from Prang Ghar mining site and lettuce seeds were grown in three levels of chromite mining soil (2.27, 4.65 and 7.14 %). For mining soil minimum days to germinate noted in lettuce grown on garden soil inoculated with sequence. Maximum germination percentage noted was for C-1 SSK-8 grown on garden soil, maximum lettuce height for sequence C-2 PWM-8, fresh leaf weight for C-1 PWK-7 inoculated lettuce, dry weight of lettuce leaf for lettuce inoculated with C-1 SSK-8 and C-1 PWK-7 strains, number of leaves per plant for lettuce inoculated with C-1 SSK-8, leaf area for C-2 PMW-8 inoculated lettuce, survival percentage for C-1 SSK-8 treated lettuce and chlorophyll content for C-2 PMW-8. Results related to heavy metals accumulation showed that minimum chromium was in lettuce and in soil for all three sequences, cadmium (Cd) in lettuce and in soil for all three sequences, manganese (Mn) in lettuce and in soil for three sequences, lead (Pb) in lettuce and in soil for three sequences. It can be concluded that chromite mining soil significantly reduced the growth and survival of lettuce, but when lettuce was inoculated with Bacillus.pumilus strains, it enhances growth and survival. Similarly, minimum heavy metal accumulation in plant and soil, regardless of type of Bacillus pumilus used, all three sequences has same mitigating effect on heavy metal in both soil and lettuce. All the three Bacillus pumilus strains ensured reduction in heavy metals content (Mn, Cd, Cr) in lettuce, below the maximum permissible limits of WHO 2011.

Keywords: bacillus pumilus, heavy metals, permissible limits, lettuce, chromite mining soil, mitigating effect

Procedia PDF Downloads 17
2074 Assessment of Toxic Impact of Metals on Different Instars of Silkworm, Bombyx Mori

Authors: Muhammad Dildar Gogi, Muhammad Arshad, Muhammad Ahsan Khan, M. Sufian, Ahmad Nawaz, Mubashir Iqbal, Muhammad Junaid Nisar, Waleed Afzal Naveed

Abstract:

Larvae of silkworm (Bombyx mori) exhibit very high mortality when reared on mulberry leaves collected from mulberry orchards which get contaminated with metallic/nonmetallic compounds through either drift-deposition or chemigation. There is need to screen out such metallic compound for their toxicity at their various concentrations. The present study was carried out to assess toxicity of metals in different instars of silkworm. Aqueous solutions of nine heavy-metal based salts were prepared by dissolving 50, 100, 150, 200, 250, 300, 350 and 400 mg of each salt in one liter of water and were applied on the mulberry leaves by leaf-dip methods. The results reveal that mortality in 1st, 2nd, 3rd, 4th and 5th instar larvae caused by each heavy metal salts increased with an increase in their concentrations. The 1st instar larvae were found more susceptible to metal salts followed by 2nd, 3rd, 4th and 5th instar larvae of silkworm. Overall, Nickel chloride proved more toxic for all larval instar as it demonstrated approximately 40-99% mortality. On the basis of LC2 and larval mortality, the order of toxicity of heavy metals against all five larval instar was Nickel chloride (LC₂ = 1.9-13.9 mg/L; & 15.0±1.2-69.2±1.7% mortality) followed by Chromium nitrate (LC₂ = 3.3-14.8 mg/L; & 13.3±1.4-62.4±2.8% mortality), Cobalt nitrate (LC₂ = 4.3-30.9; &11.4±0.07-54.9±2.0% mortality), Lead acetate (LC₂ =8.8-53.3 mg/L; & 9.5±1.3-46.4±2.9% mortality), Aluminum sulfate (LC₂ = 15.5-76.6 mg/L; & 8.4±0.08-42.1±2.8% mortality), Barium sulfide (LC₂ = 20.9-105.9; & 7.7±1.1-39.2±2.5% mortality), Copper sulfate (LC2 = 28.5-12.4 mg/L; & 7.3±0.06-37.1±2.4% mortality), Manganese chloride (LC₂ = 29.9-136.9 mg/L; & 6.8±0.09-35.3±1.6% mortality) and Zinc nitrate (LC₂ = 36.3-15 mg/L; & 6.2±1.2-32.1±1.9% mortality). Zinc nitrate @ 50 and 100 mg/L, Barium sulfide @ 50 mg/L, Manganese chloride @ 50 and 100 mg/L and Copper sulfate @ 50 mg/L proved safe for 5th instar larvae as these interaction attributed no mortality. All the heavy metal salts at a concentration of 50 mg/L demonstrated less than 10% mortality.

Keywords: heavy-metals, larval-instars, lethal-concentration, mortality, silkworm

Procedia PDF Downloads 183
2073 The Use of Microorganisms in the Bioleaching of Soils Polluted with Heavy Metals

Authors: I. M. Sur, A. M. Chirila-Babau, T. Gabor, V. Micle

Abstract:

This paper shows researches in order to extract Cr, Cu and Ni from the polluted soils. Research is based on preliminary studies regarding the usage of Thiobacillus ferrooxidans bacterium (9K medium) for bioleaching of soil polluted with heavy metal (Cu, Cr and Ni). The microorganisms (Thiobacillus ferooxidans) selected directly from polluted soil samples were used in this experimental work. Soil samples used in the experimental research were taken from an area polluted with heavy metals from Romania. The soil samples are subjected to the cleaning process using the 9K medium solution (20 mL and 40 mL, respectively), stirred 200 rpm for 20 hours at a controlled temperature (30 ˚C). During the experiment (0, 2, 4, 8 and 20 h), liquid samples have been extracted and analyzed using the Atomic Absorption Spectrophotometer AA-6800 (AAS) in order to determine the Cr, Cu and Ni concentration. Experiments led to the conclusion that these soils can be depolluted by bioleaching, being a biological treatment method involving the use of microorganisms to favor the extraction of Cr, Cu and Ni from polluted soils.

Keywords: bioleaching, extraction, microorganisms, soil, polluted, Thiobacillus ferooxidans

Procedia PDF Downloads 131
2072 Multifunctional β-Cyclodextrin-EDTA-Chitosan Polymer Adsorbent Synthesis for Simultaneous Removal of Heavy Metals and Organic Dyes from Wastewater

Authors: Monu Verma, Hyunook Kim

Abstract:

Heavy metals and organic dyes are the major sources of water pollution. Herein, a trifunctional β−cyclodextrin−ethylenediaminetetraacetic acid−chitosan (β−CD−EDTA−CS) polymer was synthesized using an easy and simple chemical route by the reaction of activated β−CD with CS through EDTA as a cross-linker (amidation reaction) for the removal of inorganic and organic pollutants from aqueous solution under different parameters such as pH, time effect, initial concentration, reusability, etc. The synthesized adsorbent was characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, field scanning electron microscopy, energy dispersive spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analyzer techniques to investigate their structural, functional, morphological, elemental compositions, surface area, and thermal properties, respectively. Two types of heavy metals, i.e., mercury (Hg²⁺) and cadmium (Cd²⁺), and three organic dyes, i.e., methylene blue (MB), crystal violet (CV), and safranin O (SO), were chosen as inorganic and organic pollutants, respectively, to study the adsorption capacity of β-CD-EDTA-CS in aqueous solution. The β-CD-EDTA-CS shows a monolayer adsorption capacity of 346.30 ± 14.0 and 202.90 ± 13.90 mg g−¹ for Hg²⁺ and Cd²⁺, respectively, and a heterogeneous adsorption capacity of 107.20 ± 5.70, 77.40 ± 5.30 and 55.30 ± 3.60 mg g−¹ for MB, CV and SO, respectively. Kinetics results followed pseudo-second order (PSO) kinetics behavior for both metal ions and dyes, and higher rate constants values (0.00161–0.00368 g mg−¹ min−¹) for dyes confirmed the cavitation of organic dyes (physisorption). In addition, we have also demonstrated the performance of β-CD-EDTA-CS for the four heavy metals, Hg²⁺, Cd²⁺, Ni²⁺, and Cu²⁺, and three dyes MB, CV, and SO in secondary treated wastewater. The findings of this study indicate that β-CD-EDTA-CS is simple and easy to synthesize and can be used in wastewater treatment.

Keywords: adsorption isotherms, adsorption mechanism, amino-β-cyclodextrin, heavy metal ions, organic dyes

Procedia PDF Downloads 77
2071 Contamination with Heavy Metals of Frozen Fish Sold in Open Markets in Ondo City, Southwest Nigeria

Authors: Adebisi M. Tiamiyu, Adewale F. Adeyemi, Olu-Ayobamikale V. Irewunmi

Abstract:

Fish consumption has increased in recent years in both developing and advanced countries, owing to increased awareness of its nutritional and therapeutic benefits and its availability and affordability relative to other animal protein sources. Fish and fish products, however, are extremely prone to contamination by a wide range of hazardous organic and inorganic substances. This study assessed the levels of three heavy metals, copper (Cu), iron (Fe), and zinc (Zn), in frozen fish imported into Nigeria and sold in Ondo City for their safety for human consumption as recommended by WHO and FEPA. Three species of frozen fish (Scombrus scombrus, Merluccius merluccius, and Clupea harengus) were purchased, and the wet tissues (gills, muscles, and liver) were digested using a 3:1 mixture of nitric acid (HNO3) and hydrochloric acid (HCL). An atomic absorption spectrophotometer (AAS) was used to detect the amount of metal in the tissues. The levels of heavy metals in different fish species' organs varied. The fish had Zn > Fe > Cu heavy metal concentrations in that order. While the concentration of Cu and Fe in the tissues of all three fish species studied were within the WHO and FEPA prescribed limits for food fish, the concentration of Zn in the muscles of M. merluccius (0.262±0.052), C. harengus harengus (0.327±0.099), and S. scombrus (0.362±0.119) was above the prescribed limit (0.075 ppm) set by FEPA. An excessive amount of zinc in the body can cause nausea, headaches, decreased immunity, and appetite loss.

Keywords: heavy metal, atomic absorption spectrophotometer, fish, agencies

Procedia PDF Downloads 20