Search results for: furan compounds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2320

Search results for: furan compounds

1900 Chemical Composition and Antifungal Activity of Selected Essential Oils against Toxigenic Fungi Associated with Maize (Zea mays L.)

Authors: Birhane Atnafu, Chemeda Abedeta Garbaba, Fikre Lemessa, Abdi Mohammed, Alemayehu Chala

Abstract:

Essential oil is a bio-pesticide plant product used as an alternative to pesticides in managing plant pests, including fungal pathogens. Thus, the current study aims to investigate the chemical composition and antifungal activities of essential oils (EO) extracted from three aromatic plants i.e., Thymus vulgaris, Coriandrum sativum, and Cymbopogon martini. The leaf parts of those selected plants were collected from the Jimma area and their essential oil was extracted by hydro-distillation method in a Clevenger apparatus. The chemical composition of selected plant essential oil was analyzed by using Gas chromatography-mass spectrometry (GC/MS) and their inhibitory effects were tested in vitro on toxigenic fungi isolated from maize kernel. Chemical analysis results revealed the presence of 32 compounds in C. sativum with Hexanedioic acid, bis (2-ethylhexyl) ester (46. 9%), 2-Decenal, (E)- (12.6), and linalool (8.3%) being the dominant ones. T. vulgaris essential oils constituted 25 compounds, of which thymol (34.4%), o-cymene (17.5%), and Gamma-Terpinene (16.8%) were the major components. Twenty-five compounds were detected in C. martinii of which geraniol (51.4%), Geranyl acetate (14.5%), and Trans – ß-Ocimene (11.7%) were dominant. The EOs of the tested plants had very high antifungal activity (up to 100% efficacy) against Aspergillus flavus, Aspergillus niger, Fusarium graminearum and Fusarium verticillioides in vitro and on maize grains. The antifungal activities of these essential oils were dependent on the major components such as thymol, hexanedioic acid, bis (2-ethylhexyl) ester, and geraniol. The study affirmed the potential of these essential oils controlling as bio-fungicides to manage the effects of potentially toxigenic fungi associated with maize under post-harvest stages. This can reduce the consequences of the health impacts of the mold and toxigenic compounds produced in maize.

Keywords: bio-activity, bio-pesticides, maize, mycotoxin

Procedia PDF Downloads 35
1899 First-Principles Study of Xnmg3 (X=P, As, Sb, Bi) Antiperovskite Compounds

Authors: Kadda Amara, Mohammed Elkeurti, Mostefa Zemouli, Yassine Benallou

Abstract:

In this work, we present a study of the structural, elastic and electronic properties of the cubic antiperovskites XNMg3 (X=P, As, Sb and Bi) using the full-potential augmented plane wave plus local orbital (FP-LAPW+lo) within the Generalized Gradient Approximation based on PBEsol, Perdew 2008 functional. We determined the lattice parameters, the bulk modulus B and their pressure derivative B'. In addition, the elastic properties such as elastic constants (C11, C12 and C44), the shear modulus G, the Young modulus E, the Poisson's ratio ν and the B/G ratio are also given. For the band structure, density of states and charge density the exchange and correlation effects were treated by the Tran-Blaha modified Becke-Johnson potential to prevent the shortcoming of the underestimation of the energy gaps in both LDA and GGA approximations. The obtained results are compared to available experimental data and to other theoretical calculations.

Keywords: XNMg3 compounds, GGA-PBEsol, TB-mBJ, elastic properties, electronic properties

Procedia PDF Downloads 383
1898 Graphene-Based Nanobiosensors and Lab on Chip for Sensitive Pesticide Detection

Authors: Martin Pumera

Abstract:

Graphene materials are being widely used in electrochemistry due to their versatility and excellent properties as platforms for biosensing. Here we present current trends in the electrochemical biosensing of pesticides and other toxic compounds. We explore two fundamentally different designs, (i) using graphene and other 2-D nanomaterials as an electrochemical platform and (ii) using these nanomaterials in the laboratory on chip design, together with paramagnetic beads. More specifically: (i) We explore graphene as transducer platform with very good conductivity, large surface area, and fast heterogeneous electron transfer for the biosensing. We will present the comparison of these materials and of the immobilization techniques. (ii) We present use of the graphene in the laboratory on chip systems. Laboratory on the chip had a huge advantage due to small footprint, fast analysis times and sample handling. We will show the application of these systems for pesticide detection and detection of other toxic compounds.

Keywords: graphene, 2D nanomaterials, biosensing, chip design

Procedia PDF Downloads 525
1897 Electrochemical Sensor Based on Poly(Pyrogallol) for the Simultaneous Detection of Phenolic Compounds and Nitrite in Wastewater

Authors: Majid Farsadrooh, Najmeh Sabbaghi, Seyed Mohammad Mostashari, Abolhasan Moradi

Abstract:

Phenolic compounds are chief environmental contaminants on account of their hazardous and toxic nature on human health. The preparation of sensitive and potent chemosensors to monitor emerging pollution in water and effluent samples has received great consideration. A novel and versatile nanocomposite sensor based on poly pyrogallol is presented for the first time in this study, and its electrochemical behavior for simultaneous detection of hydroquinone (HQ), catechol (CT), and resorcinol (RS) in the presence of nitrite is evaluated. The physicochemical characteristics of the fabricated nanocomposite were investigated by emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET). The electrochemical response of the proposed sensor to the detection of HQ, CT, RS, and nitrite is studied using cyclic voltammetry (CV), chronoamperometry (CA), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The kinetic characterization of the prepared sensor showed that both adsorption and diffusion processes can control reactions at the electrode. In the optimized conditions, the new chemosensor provides a wide linear range of 0.5-236.3, 0.8-236.3, 0.9-236.3, and 1.2-236.3 μM with a low limit of detection of 21.1, 51.4, 98.9, and 110.8 nM (S/N = 3) for HQ, CT and RS, and nitrite, respectively. Remarkably, the electrochemical sensor has outstanding selectivity, repeatability, and stability and is successfully employed for the detection of RS, CT, HQ, and nitrite in real water samples with the recovery of 96.2%–102.4%, 97.8%-102.6%, 98.0%–102.4% and 98.4%–103.2% for RS, CT, HQ, and nitrite, respectively. These outcomes illustrate that poly pyrogallol is a promising candidate for effective electrochemical detection of dihydroxybenzene isomers in the presence of nitrite.

Keywords: electrochemical sensor, poly pyrogallol, phenolic compounds, simultaneous determination

Procedia PDF Downloads 39
1896 Composition and Acaricidal Activity of Elettaria cardamomum Essential Oil Against Oligonychus afrasiaticus

Authors: Abid Hussain, Muhammad Rizwan-ul-Haq, Hassan Al-Ayedh, Ahmed M. Al-Jabr

Abstract:

Oligonychus afrasiaticus, is an important pest that devastates date palms (Phoenix dactylifera). They caused serious damage to date palm fruits. They start feeding on dates at Kimri stage (greenish color dates with high sugar and moisture level) resulting severe fruit losses and rendering them unfit for human consumption. Currently, acaricides are the only tool available to Saudi growers to prevent O. afrasiaticus damage. Many acaricides are available in the Saudi markets in order to control the mites on date palm trees but their efficacy against O. afrasiaticus is questionable. The intensive use of acaricides has led to resistance in many mite species around the globe and their control becomes exceedingly challenging. The current investigation explored for the first time the acaricidal potential of Elettaria cardamomum essential oil for the environmentally safe management of date mites in the laboratory. E. cardamomum exhibited acaricidal activities in a dose dependent manner. GC-MS fractionation of E. cardamomum detected numerous compounds. Among the identified compounds, Guaniol caused 100% mortality compared to other identified compounds including (+)-α-Pinene, Camphene, (-)-B-Pinene, 3-Carene, (R)-(+)-Limonene, and Citral. Our laboratory results showed that E. cardamomum and its constituents especially Guaniol are promising for the eco-friendly management of date mites, O. afrasiaticus, although their field efficacy remains to be evaluated.

Keywords: cardamom, old world date mite, natural acaricide, toxicity

Procedia PDF Downloads 293
1895 Revealing Potential Drug Targets against Proto-Oncogene Wnt10B by Comparative Molecular Docking

Authors: Shazia Mannan, Zunera Khalid, Hammad-Ul-Mubeen

Abstract:

Wingless type Mouse mammary tumor virus (MMTV) Integration site-10B (Wnt10B) is an important member of the Wnt protein family that functions as cellular messenger in paracrine manner. Aberrant Wnt10B activity is the cause of several abnormalities including cancers of breast, cervix, liver, gastric tract, esophagus, pancreas as well as physiological problems like obesity, and osteoporosis. The objective of this study was to determine the possible inhibitors against aberrant expression of Wnt10B in order to prevent and treat the physiological disorders associated with it. Wnt10B3D structure was predicted by using comparative modeling and then analyzed by PROCHECK, Verify3D, and Errat. The model having 84.54% quality value was selected and acylated to satisfy the hydrophobic nature of Wnt10B. For search of inhibitors, virtual screening was performed on Natural Products (NP) database. The compounds were filtered and ligand-based screening was performed using the antagonist for mouse Wnt-3A. This resulted in a library of 272 unique compounds having most potent drug like activities for Wnt-4. Out of the 271 molecules analyzed three small molecules ZINC35442871, ZINC85876388, and ZINC00754234 having activity against Wnt4 abbarent expression were found common through docking experiment of Wnt10B. It is concluded that the three molecules ZINC35442871, ZINC85876388, and ZINC00754234 can be considered as lead compounds for performing further drug designing experiments against aberrant Wnt expressions.

Keywords: Wnt10B inhibitors, comparative computational studies, proto-oncogene, molecular docking

Procedia PDF Downloads 133
1894 Indoor Air Pollution of the Flexographic Printing Environment

Authors: Jelena S. Kiurski, Vesna S. Kecić, Snežana M. Aksentijević

Abstract:

The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed in situ, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter F than Fcritical for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity.

Keywords: flexographic printing, indoor air, multiple regression analysis, pollution emission

Procedia PDF Downloads 169
1893 Wireworms under the Sword of Damocles: Attraction to Maize Root Volatiles

Authors: Diana La Forgia, Jean Baptiste Thibord, François Verheggen

Abstract:

Volatiles Organic Compound (VOCs) are one of the many features of defense used by plants in their eternal fight against pests. Their main role is to attract the natural enemies of the herbivores. But on another hand, they can be used by the same herbivores to locate plants while foraging. In an attempt to fill a gap of knowledge in a complex web of interactions, we focused on wireworms (Coleoptera:Elateridae). Wireworms whose larvae feed on roots are one of the most spread pests of valuable crops such as maize and potatoes, causing important economical damage. Little is known about the root compounds that are playing a role in the attraction of the larvae. In order to know more about these compounds, we compared four different maize varieties (Zea mays mays) that are known to have different levels of attraction, from weak to strong, for wireworms in fields. We tested the attraction of larvae in laboratory conditions in dual-choice olfactometer assays where they were offered all possible combinations of the four maize varieties. Contemporary, we collected the VOCs of each variety during 24h using a push-and-pull system. The collected samples were then analyzed by gas chromatography coupled with a mass spectrometer (GC-MS) to identify their molecular profiles. The choice of the larvae was dependent on the offered combination and some varieties were preferred to others. Differences were also observed in terms of quantitative and qualitative emissions of volatile profiles between the maize varieties. Our aim is to develop traps based on VOCs from maize roots to open a new frontier in wireworms management.

Keywords: integrated pest management, maize roots, plant defense, volatile organic compounds, wireworms

Procedia PDF Downloads 132
1892 Evaluation of Antioxidants in Medicinal plant Limoniastrum guyonianum

Authors: Assia Belfar, Mohamed Hadjadj, Messaouda Dakmouche, Zineb Ghiaba

Abstract:

Introduction: This study aims to phytochemical screening; Extracting the active compounds and estimate the effectiveness of antioxidant in Medicinal plants desert Limoniastrum guyonianum (Zeïta) from South Algeria. Methods: Total phenolic content and total flavonoid content using Folin-Ciocalteu and aluminum chloride colorimetric methods, respectively. The total antioxidant capacity was estimated by the following methods: DPPH (1.1-diphenyl-2-picrylhydrazyl radical) and reducing power assay. Results: Phytochemical screening of the plant part reveals the presence of phenols, saponins, flavonoids and tannins. While alkaloids and Terpenoids were absent. The acetonic extract of L. guyonianum was extracted successively with ethyl acetate and butanol. Extraction of yield varied widely in the L. guyonianum ranging from (0.9425 %to 11.131%). The total phenolic content ranged from 53.33 mg GAE/g DW to 672.79 mg GAE/g DW. The total flavonoid concentrations varied from 5.45 to 21.71 mg/100g. IC50 values ranged from 0.02 ± 0.0004 to 0.13 ± 0.002 mg/ml. All extracts showed very good activity of ferric reducing power, the higher power was in butanol fraction (23.91 mM) more effective than BHA, BHT and VC. Conclusions: Demonstrated this study that the acetonic extract of L. guyonianum contain a considerable quantity of phenolic compounds and possess a good antioxidant activity. Can be used as an easily accessible source of Natural Antioxidants and as a possible food supplement and in the pharmaceutical industry.

Keywords: limoniastrum guyonianum, phenolics compounds, flavonoid compound, antioxidant activity

Procedia PDF Downloads 321
1891 Comparison of Different Extraction Methods for the Determination of Polyphenols

Authors: Senem Suna

Abstract:

Extraction of bioactive compounds from several food/food products comes as an important topic and new trend related with health promoting effects. As a result of the increasing interest in natural foods, different methods are used for the acquisition of these components especially polyphenols. However, special attention has to be paid to the selection of proper techniques or several processing technologies (supercritical fluid extraction, microwave-assisted extraction, ultrasound-assisted extraction, powdered extracts production) for each kind of food to get maximum benefit as well as the obtainment of phenolic compounds. In order to meet consumer’s demand for healthy food and the management of quality and safety requirements, advanced research and development are needed. In this review, advantages, and disadvantages of different extraction methods, their opportunities to be used in food industry and the effects of polyphenols are mentioned in details. Consequently, with the evaluation of the results of several studies, the selection of the most suitable food specific method was aimed.

Keywords: bioactives, extraction, powdered extracts, supercritical fluid extraction

Procedia PDF Downloads 212
1890 Functional Yoghurt Enriched with Microencapsulated Olive Leaves Extract Powder Using Polycaprolactone via Double Emulsion/Solvent Evaporation Technique

Authors: Tamer El-Messery, Teresa Sanchez-Moya, Ruben Lopez-Nicolas, Gaspar Ros, Esmat Aly

Abstract:

Olive leaves (OLs), the main by-product of the olive oil industry, have a considerable amount of phenolic compounds. The exploitation of these compounds represents the current trend in food processing. In this study, OLs polyphenols were microencapsulated with polycaprolactone (PCL) and utilized in formulating novel functional yoghurt. PCL-microcapsules were characterized by scanning electron microscopy, and Fourier transform infrared spectrometry analysis. Their total phenolic (TPC), total flavonoid (TFC) contents, and antioxidant activities (DPPH, FRAP, ABTS), and polyphenols bioaccessibility were measured after oral, gastric, and intestinal steps of in vitro digestion. The four yoghurt formulations (containing 0, 25, 50, and 75 mg of PCL-microsphere/100g yoghurt) were evaluated for their pH, acidity, syneresis viscosity, and color during storage. In vitro digestion significantly affected the phenolic composition in non-encapsulated extract while had a lower impact on encapsulated phenolics. Higher protection was provided for encapsulated OLs extract, and their higher release was observed at the intestinal phase. Yoghurt with PCL-microsphere had lower viscosity, syneresis, and color parameters, as compared to control yoghurt. Thus, OLs represent a valuable and cheap source of polyphenols which can be successfully applied, in microencapsulated form, to formulate functional yoghurt.

Keywords: yoghurt quality attributes, olive leaves, phenolic and flavonoids compounds, antioxidant activity, polycaprolactone as microencapsulant

Procedia PDF Downloads 118
1889 In Silico Exploration of Quinazoline Derivatives as EGFR Inhibitors for Lung Cancer: A Multi-Modal Approach Integrating QSAR-3D, ADMET, Molecular Docking, and Molecular Dynamics Analyses

Authors: Mohamed Moussaoui

Abstract:

A series of thirty-one potential inhibitors targeting the epidermal growth factor receptor kinase (EGFR), derived from quinazoline, underwent 3D-QSAR analysis using CoMFA and CoMSIA methodologies. The training and test sets of quinazoline derivatives were utilized to construct and validate the QSAR models, respectively, with dataset alignment performed using the lowest energy conformer of the most active compound. The best-performing CoMFA and CoMSIA models demonstrated impressive determination coefficients, with R2 values of 0.981 and 0.978, respectively, and Leave One Out cross-validation determination coefficients, Q2, of 0.645 and 0.729, respectively. Furthermore, external validation using a test set of five compounds yielded predicted determination coefficients, R2 test, of 0.929 and 0.909 for CoMFA and CoMSIA, respectively. Building upon these promising results, eighteen new compounds were designed and assessed for drug-likeness and ADMET properties through in-silico methods. Additionally, molecular docking studies were conducted to elucidate the binding interactions between the selected compounds and the enzyme. This comprehensive analysis enhances the understanding of quinazoline derivatives as potential anti-cancer agents and provides valuable insights for lead optimization in the early stages of drug discovery, particularly for developing highly potent anticancer therapeutics.

Keywords: 3D-QSAR, CoMFA, CoMSIA, ADMET, molecular docking, quinazoline, molecular dynamic, egfr inhibitors, lung cancer, anticancer

Procedia PDF Downloads 2
1888 In-Situ Fabrication of ZnO PES Membranes for Treatment of Pharmaceuticals

Authors: Oranso T. Mahlangi, Bhekie B. Mamba

Abstract:

The occurrence of trace organic compounds (TOrCs) in water has raised health concerns for living organisms. The majority of TorCs, including pharmaceuticals and volatile organic compounds, are poorly monitored, partly due to the high cost of analysis and less strict water quality guidelines in South Africa. Therefore, the removal of TorCs is important to guarantee safe potable water. In this study, ZnO nanoparticles were fabricated in situ in polyethersulfone (PES) polymer solutions. This was followed by membrane synthesis using the phase inversion technique. Techniques such as FTIR, Raman, SEM, AFM, EDS, and contact angle measurements were used to characterize the membranes for several physicochemical properties. The membranes were then evaluated for their efficiency in treating pharmaceutical wastewater and resistance to organic (sodium alginate) and protein (bovine serum albumin) fouling. EDS micrographs revealed uniform distribution of ZnO nanoparticles within the polymer matrix, while SEM images showed uniform fingerlike structures. The addition of ZnO increased membrane roughness as well as hydrophilicity (which in turn improved water fluxes). The membranes poorly rejected monovalent and divalent salts (< 10%), making them resistant to flux decline due to concentration polarization effects. However, the membranes effectively removed carbamazepine, caffeine, sulfamethoxazole, ibuprofen, and naproxen by over 50%. ZnO PES membranes were resistant to organic and protein fouling compared to the neat membrane. ZnO PES ultrafiltration membranes may provide a solution in the reclamation of wastewater.

Keywords: trace organic compounds, pharmaceuticals, membrane fouling, wastewater reclamation

Procedia PDF Downloads 117
1887 Chemical and Biological Examination of De-Oiled Indian Propolis

Authors: Harshada Vaidya-Kannur, Dattatraya Naik

Abstract:

Propolis, one of the beehive products also referred as bee-glue is sticky dark coloured complex mixture of compounds. The volatile oil can be isolated from the propolis by hydrodistillation. The mark that is left behind after the removal of volatile oil is referred as the de-oiled propolis. Antioxidant as well as anti-inflammatory properties of total ethanolic extract of de-oiled propolis (TEEDP) was investigated. Another lot of deoiled propolis was successively exacted with hexane, ethyl acetate and ethanol. Activities of these fractions were also determined. Antioxidant activity was determined by studying ABTS, DPPH and NO radical scavenging. Determination of anti-inflammatory activity was carried out by topical TPA induced mouse ear oedema model. It is noteworthy that ethyl acetate fraction of deoiled propolis (EAFDP) exhibited 49.45 % TEAC activity at the concentration 0.2 mg/ml which is equivalent to the activity of trolox at the concentration 0.2 mg/ml. Its DPPH scavenging activity (72.56%) was closely comparable to that of trolox (75%). However its NO scavenging activity was comparatively low. From IC50 values it could be concluded that the efficiency of scavenging ABTS radicals by the de-oiled propolis was more pronounced as compared to scavenging of other radicals. Studies by TPA induced mouse ear inflammation model indicated that the de-oiled propolis of Indian origin had significant topical anti-inflammatory activity. The EAFDP was found to be the most active fraction for this activity also. The purification of EAFP yielded six pure crystalline compounds. These compounds were identified by their physical data and spectral data.

Keywords: anti-inflammatory activity, anti-oxidant activity, column chromatography, de-oiled propolis

Procedia PDF Downloads 267
1886 Quality Assessment of the Essential Oil from Eucalyptus globulus Labill of Blida (Algeria) Origin

Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat

Abstract:

Eucalyptus essential oil is extracted from Eucalyptus globulus of the Myrtaceae family and is also known as Tasmanian blue gum or blue gum. Despite the reputation earned by aromatic and medicinal plants of Algeria. The objectives of this study were: (i) the extraction of the essential oil from the leaves of Eucalyptus globulus Labill., Myrtaceae grown in Algeria, and the quantification of the yield thereof, (ii) the identification and quantification of the compounds in the essential oil obtained, and (iii) the determination of physical and chemical properties of EGEO. The chemical constituents of Eucalyptus globulus essential oil (EGEO) of Blida origin has not previously been investigated. Thus, the present study has been conducted for the determination of chemical constituents and different physico-chemical properties of the EGEO. Chemical composition of the EGEO, grown in Algeria, was analysed by Gas Chromatography-Mass Spectrometry. The chemical components were identified on the basis of Retention Time and comparing with mass spectral database of standard compounds. Relative amounts of detected compounds were calculated on the basis of GC peak areas. Fresh leaves of E. globulus on steam distillation yielded 0.96% (v/w) of essential oil whereas the analysis resulted in the identification of a total of 11 constituents, 1.8 cineole (85.8%), α-pinene (7.2%), and β-myrcene (1.5%) being the main components. Other notable compounds identified in the oil were β-pinene, limonene, α-phellandrene, γ-terpinene, linalool, pinocarveol, terpinen-4-ol, and α-terpineol. The physical properties such as specific gravity, refractive index and optical rotation and the chemical properties such as saponification value, acid number and iodine number of the EGEO were examined. The oil extracted has been analyzed to have 1.4602-1.4623 refractive index value, 0.918-0.919 specific gravity (sp.gr.), +9 - +10 optical rotation that satisfy the standards stipulated by European Pharmacopeia. All the physical and chemical parameters were in the range indicated by the ISO standards. Our findings will help to access the quality of the Eucalyptus oil which is important in the production of high value essential oils that will help to improve the economic condition of the community as well as the nation.

Keywords: chemical composition, essential oil, eucalyptol, gas chromatography

Procedia PDF Downloads 292
1885 Phenolic Composition and Contribution of Individual Compounds to Antioxidant Activity of Malus domestica Borkh Fruit Cultivars

Authors: Raudone Lina, Raudonis Raimondas, Liaudanskas Mindaugas, Pukalskas Audrius, Viskelis Pranas, Janulis Valdimaras

Abstract:

Human health fortification, its protection and disease prophylaxis are the main problems of the health care systems. Plant origin materials and their preparations are applied for the prevention of the common diseases. Oxidative stress takes part in the pathogenesis of many autoimmune, neurodegenerative, tumor and ageing processes. The antioxidants are able to protect the human body from the free radicals and to stop the progression of numerous chronic diseases. The research of plant origin materials is relevant for the search of natural antioxidants. A group of compounds that gained scientific attention due to antioxidant properties and effects on human health are phenolic compounds. Phenolic compounds are widely abundant in various parts of plants, i.e. leaves, stems, roots, flowers and fruits. Most commonly consumed fruits all over the world are apples. It is very important to analyze the antioxidant activity of apples as they are extensively used in the prevention of various diseases. The aim of this study was to determine the antioxidant profiles of Malus domestica Borkh fruit cultivars (Aldas, Auksis, Connel Red, Ligol, Lodel, Rajka) and to identify the phenolic compounds with potent contribution to antioxidant activity. Nineteen constituents were identified in apple cultivars using ultra high performance liquid chromatography coupled to quadruple and time-of-flight mass spectrometers (UPLC–QTOF–MS). Phytochemical profile was constituted of phenolic acids, procyanidins, quercetin derivatives and dihydrochalcones. Reducing and radical scavenging activities of individual constituents were determined using high performance liquid chromatography (HPLC) coupled to post-column FRAP and ABTS assay, respectively. Significant differences of total radical scavenging and reducing activity (expressed as trolox equivalents, TE µmol/g) were determined between the investigated cultivars. Chlorogenic acid and complex of procyanidins were the main contributors to antioxidant activity determining up to 35 % and 55 % of total TE values, respectively. Determined phenolic composition and antioxidant activity significantly depend on apple cultivars. It is important to determine the individual compounds that are significant for antioxidant activity and that could be investigated in vivo systems. The identification of the antioxidants provides information for the further research of standardized extracts that could be used for pharmaceutical preparations with specific phenolic traits.

Keywords: FRAP, ABTS, antioxidant, phenolic, apples, chlorogenic acid

Procedia PDF Downloads 380
1884 Antioxidant Activity and Total Phenolic Content within the Aerial Parts of Artemisia absinthium

Authors: Hallal Nouria, Kharoubi Omar

Abstract:

Wormwood (Artemisia absinthium L.) is a medicinal and aromatic bitter herb, which has been used as a medicine from ancient times. It has traditionally been used as anthelmintic, choleretic, antiseptic, balsamic, depurative, digestive, diuretic, emmenagogue and in treating leukemia and sclerosis. The species was cited to be used externally as cataplasm of crushed leaves for snake and scorpion bites or decoction for wounds and sores applied locally as antiseptic and antifungal. Wormwood extract have high contents of total phenolic compounds and total flavonoids indicating that these compounds contribute to antiradical and antioxidative activity. Most of the degenerative diseases are caused by free radicals. Antioxidants are the agents responsible for scavenging free radicals. The aim of present study was to evaluate the phytochemical and in vitro antioxidant properties of Wormwood extract. DPPH assay and reducing power assay were the method adopted to study antioxidant potentials of extracts. Standard methods were used to screen preliminary phytochemistry and quantitative analysis of tannin, phenolics and flavanoids. Aqueous and alcoholic extracts were showed good antioxidant effect with IC50 ranges from 62 μg/ml for aqueous and 116μg/ml for alcoholic extracts. Phenolic compounds, tannins and flavonoids were the major phytochemicals present in both the extracts. Percentage of inhibition increased with the increased concentration of extracts. The aqueous and alcoholic extract yielded 20, 15& 3, 59 mg/g gallic acid equivalent phenolic content 2, 78 & 1,83 mg/g quercetin equivalent flavonoid and 2, 34 & 6, 40 g tannic acid equivalent tannins respectively. The aqueous and methanol extracts of the aerial parts showed a positive correlation between the total phenolic content and the antioxidant activity measured in the plant samples. The present study provides evidence that both extracts of Artemisia absinthium is a potential source of natural antioxidant.

Keywords: pharmaceutical industries, medicinal and aromatic plant, antioxidants, phenolic compounds, Artemisia absinthium

Procedia PDF Downloads 405
1883 Valorization of Mineralogical Byproduct TiO₂ Using Photocatalytic Degradation of Organo-Sulfur Industrial Effluent

Authors: Harish Kuruva, Vedasri Bai Khavala, Tiju Thomas, K. Murugan, B. S. Murty

Abstract:

Industries are growing day to day to increase the economy of the country. The biggest problem with industries is wastewater treatment. Releasing these wastewater directly into the river is more harmful to human life and a threat to aquatic life. These industrial effluents contain many dissolved solids, organic/inorganic compounds, salts, toxic metals, etc. Phenols, pesticides, dioxins, herbicides, pharmaceuticals, and textile dyes were the types of industrial effluents and more challenging to degrade eco-friendly. So many advanced techniques like electrochemical, oxidation process, and valorization have been applied for industrial wastewater treatment, but these are not cost-effective. Industrial effluent degradation is complicated compared to commercially available pollutants (dyes) like methylene blue, methylene orange, rhodamine B, etc. TiO₂ is one of the widely used photocatalysts which can degrade organic compounds using solar light and moisture available in the environment (organic compounds converted to CO₂ and H₂O). TiO₂ is widely studied in photocatalysis because of its low cost, non-toxic, high availability, and chemically and physically stable in the atmosphere. This study mainly focused on valorizing the mineralogical product TiO₂ (IREL, India). This mineralogical graded TiO₂ was characterized and compared with its structural and photocatalytic properties (industrial effluent degradation) with the commercially available Degussa P-25 TiO₂. It was testified that this mineralogical TiO₂ has the best photocatalytic properties (particle shape - spherical, size - 30±5 nm, surface area - 98.19 m²/g, bandgap - 3.2 eV, phase - 95% anatase, and 5% rutile). The industrial effluent was characterized by TDS (total dissolved solids), ICP-OES (inductively coupled plasma – optical emission spectroscopy), CHNS (Carbon, Hydrogen, Nitrogen, and sulfur) analyzer, and FT-IR (fourier-transform infrared spectroscopy). It was observed that it contains high sulfur (S=11.37±0.15%), organic compounds (C=4±0.1%, H=70.25±0.1%, N=10±0.1%), heavy metals, and other dissolved solids (60 g/L). However, the organo-sulfur industrial effluent was degraded by photocatalysis with the industrial mineralogical product TiO₂. In this study, the industrial effluent pH value (2.5 to 10), catalyst concentration (50 to 150 mg) were varied, and effluent concentration (0.5 Abs) and light exposure time (2 h) were maintained constant. The best degradation is about 80% of industrial effluent was achieved at pH 5 with a concentration of 150 mg - TiO₂. The FT-IR results and CHNS analyzer confirmed that the sulfur and organic compounds were degraded.

Keywords: wastewater treatment, industrial mineralogical product TiO₂, photocatalysis, organo-sulfur industrial effluent

Procedia PDF Downloads 88
1882 Performance of Bimetallic Catalyst in the Oxidation of Volatile Organic Compounds

Authors: Faezeh Aghazadeh

Abstract:

The catalytic activity of Pt/γ-Al₂O₃ and Pt-Fe/γ-Al₂O₃ catalysts was investigated to bring about the complete oxidation of 2-Propanol. Among them, Pt-Fe/γ-Al₂O₃ was found to be the most promising catalyst based on activity. The catalysts were characterized by (XRD), (SEM), (TEM) and ICP-AES techniques. Iron loadings on Pt/γ-Al₂O₃ had a great effect on catalytic activity, and Pt-Fe/γ-Al₂O₃ (1.75 wt% Fe) catalyst at calcination temperature 300°C was observed to be the most active, which might be contributed to the favorable synergetic effects between Pt and Fe, high activity and the well-dispersed bimetallic phase. The combustion of 2-Propanol in the vapor phase was carried out in a conventional flow U-shape glass reactor used in the differential mode at atmospheric pressure. 2-Propanol was analyzed by a gas chromatograph VARIAN 3800 CX equipped with an FID. As observed, better performance and activity were observed for Pt-Fe/Al₂O₃ bimetallic catalyst. These results indicate that the high dispersion on support gives a positive effect on catalytic activity.

Keywords: volatile organic compounds, bimetallic catalyst, catalytic activity, low temperature

Procedia PDF Downloads 115
1881 Evaluation of Phytochemical and Fatty Acids Content and Composition in Iranian Borage (Echium amoenum) in Different Habitate of Iran

Authors: Esmaeil Babakhanzadeh Sajirani, Mohamadjavad Shakouri

Abstract:

Iranian Gole GavZaban (Echium amoenum fich & mey), is one of the most important medicinal plant in north of iran . is dry petals used for tonic, tranquillizer, diaphoretic, cough suppressant and a remedy for sore throat in treditional Iranian medicine. This study is the report about the analysis of phytochemical and seeds oil of Echium amoenum's in different habitates and accessions of Iran. The results showed that the oil content of seeds was 36% and eleven fatty acids were identified and quantified by gas chromatography (GC). The major fatty acids wereα-Linolenicacid (39.99), Linoleic acid (20.86), linolenic acid (20%) and Oleic acid (15.36) respectively. The amount of phenols, tannins, flavonoids and anthocyanins with increasing height, increased amount of these compounds. So that the highest rates of these compounds were observed at an altitude of 2125 meters in ciposht accession.

Keywords: accession, phytochemical, oil components, Iranian borage

Procedia PDF Downloads 227
1880 Synthesis and in-vitro Evaluation of Quinozolines as Potent EGFR Inhibitor

Authors: Vinaya Kambappa, Chinnadurai Mani, Komaraiah Palle

Abstract:

Non-small cell-lung cancer (NSCLC) cells have increased expression of EGFR, which makes them a potential target for cancer therapy. Based on molecular docking and previous reports, we designed and synthesized quinazoline derivatives as potent EGFR inhibitors. Among the derivatives, three compounds showed good antiproliferative activity against A-549 and H-1299 cells. Furthermore, these compounds inhibited EGFR signaling exhibiting diminishing p-EGFR and its downstream proteins like p-Akt, p-Erk1/2, and p-mTOR; however, it did not alter the levels of EGFR, Akt, Erk1/2 and mTOR proteins. Flow cytometric analysis indicated the accumulation of cells at G1 phase suggesting induction of apoptosis, which was further confirmed by annexin V/propidium iodide staining. Our study suggested that quinazoline scaffold can be developed as novel EGFR kinase inhibitors for cancer therapy.

Keywords: apoptosis, non-small cell-lung cancer cells, EGFR, quinazoline

Procedia PDF Downloads 161
1879 Hexahydropyrimidine-2,4-Diones: Synthesis and Cytotoxic Activity

Authors: M. Koksal, T. Ozyazici, E. Gurdal, M. Yarım, E. Demirpolat, M. B. Y. Aycan

Abstract:

The discovery of new drugs in cancer chemotherapy is still a major topic because of severe side effects, selectivity problems and resistance development potential of existing drugs. In recent years, combined anticancer therapies or multi-acting drugs are clinically preferred over traditional cytotoxic treatment, with the aim of avoiding resistance and toxic side effects. Arrangement of multi-acting targets can be carried out either by combination of several drugs with different mechanisms or by usage of a single chemical compound capable of regulating several targets of a disease with multiple factors. In literature, several pyrimidine and piperazine derivatives have been involved in the structure of many compounds which have been used as chemotherapeutic agents along with wide clinical applications. The aim of this study is to combine pyrimidine and piperazine core structures to research and develop novel piperazinylpyrimidine derivatives with selective cytotoxicity over cancer cells. In this study, a group of novel 6-fluorophenyl-3-[2-(substitutedpiperazinyl)ethyl] hexahydropyrimidine-2,4-dione derivatives designed to observe the desired anticancer activity due to pyrimidine and piperazine based scaffolds. Target compounds were obtained by the reaction of appropriate piperazine derivatives and 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-dione. The synthetic pathway of 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-dione was started with Rodionov reaction using aldehyde, malonic acid and ammonium acetate in ethanol. Isolated β-fluorophenyl-β-amino acids were treated with 2-chloroethylisocyanate in the presence of an aqueous sodium hydroxide solution at room temperature to yield the sodium salts of the corresponding ureido acids. By addition of a mineral acid, ureido acids were precipitated. Later, these ureido acids were refluxed in thionyl chloride to give the 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-di-one which were furthermore treated with secondary amines. Structures of purified compounds were characterized with IR, 1H-NMR, 13C-NMR, mass spectroscopies and elemental analysis. All of the compounds gave satisfactory analytical and spectroscopic data, which were in full accordance with their depicted structures. In IR spectra of the compounds, N-H group was seen at 3230-3213 cm⁻¹. C-H was seen at 3100-2820 cm⁻¹ and C=O vibrational peaks were observed approximately at 1725 and 1665 cm⁻¹ in accordance with literature. In the NMR spectra of target compounds, the methylene protons of piperazine give two separate multiplet peaks around 3.5 and 4.5 ppm representing the successful N-alkylation of the structure. The cytotoxic activity of the synthesized compounds was investigated on human bronchial epithelial (BEAS 2B), lung (A549), colon adenocarcinoma (COLO205) and breast (MCF7) cell lines, by means of sulphorhodamine B (SRB) assays in triplicate. IC₅₀ values of the screened derivatives were found in range of 11.8-78 µM. This project was supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Project no: 215S157).

Keywords: cytotoxicity, hexahydropyrimidine, piperazine, sulphorhodamine B assay

Procedia PDF Downloads 130
1878 Synergistic Effect of Eugenol Acetate with Betalactam Antibiotic on Betalactamase and Its Bioinformatics Analysis

Authors: Vinod Nair, C. Sadasivan

Abstract:

Beta-lactam antibiotics are the most frequently prescribed medications in modern medicine. The antibiotic resistance by the production of enzyme beta-lactamase is an important mechanism seen in microorganisms. Resistance to beta-lactams mediated by beta-lactamases can be overcome successfully with the use of beta-lactamase inhibitors. New generations of the antibiotics contain mostly synthetic compounds, and many side effects have been reported for them. Combinations of beta-lactam and beta-lactamase inhibitors have become one of the most successful antimicrobial strategies in the current scenario of bacterial infections. Plant-based drugs are very cheap and having lesser adverse effect than synthetic compounds. The synergistic effect of eugenol acetate with beta-lactams restores the activity of beta-lactams, allowing their continued clinical use. It is reported here the enhanced inhibitory effect of phytochemical, eugenol acetate, isolated from the plant Syzygium aromaticum with beta-lactams on beta-lactamase. The compound was found to have synergistic effect with the antibiotic amoxicillin against antibiotic-resistant strain of S.aureus. The enzyme was purified from the organism and incubated with the compound. The assay showed that the compound could inhibit the enzymatic activity of beta-lactamase. Modeling and molecular docking studies indicated that the compound can fit into the active site of beta-lactamase and can mask the important residue for hydrolysis of beta-lactams. The synergistic effects of eugenol acetate with beta-lactam antibiotics may justify, the use of these plant compounds for the preparation of β-lactamase inhibitors against β-lactam resistant S.aureus.

Keywords: betalactamase, eugenol acetate, synergistic effect, molecular modeling

Procedia PDF Downloads 224
1877 Evaluation of Developmental Toxicity and Teratogenicity of Perfluoroalkyl Compounds Using FETAX

Authors: Hyun-Kyung Lee, Jehyung Oh, Young Eun Jeong, Hyun-Shik Lee

Abstract:

Perfluoroalkyl compounds (PFCs) are environmental toxicants that persistently accumulate in the human blood. Their widespread detection and accumulation in the environment raise concerns about whether these chemicals might be developmental toxicants and teratogens in the ecosystem. We evaluated and compared the toxicity of PFCs of containing various numbers of carbon atoms (C8-11 carbons) on vertebrate embryogenesis. We assessed the developmental toxicity and teratogenicity of various PFCs. The toxic effects on Xenopus embryos were evaluated using different methods. We measured teratogenic indices (TIs) and investigated the mechanisms underlying developmental toxicity and teratogenicity by measuring the expression of organ-specific biomarkers such as xPTB (liver), Nkx2.5 (heart), and Cyl18 (intestine). All PFCs that we tested were found to be developmental toxicants and teratogens. Their toxic effects were strengthened with increasing length of the fluorinated carbon chain. Furthermore, we produced evidence showing that perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFuDA) are more potent developmental toxicants and teratogens in an animal model compared to the other PFCs we evaluated [perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA)]. In particular, severe defects resulting from PFDA and PFuDA exposure were observed in the liver and heart, respectively, using the whole mount in situ hybridization, real-time PCR, pathologic analysis of the heart, and dissection of the liver. Our studies suggest that most PFCs are developmental toxicants and teratogens, however, compounds that have higher numbers of carbons (i.e., PFDA and PFuDA) exert more potent effects.

Keywords: PFC, xenopus, fetax, development

Procedia PDF Downloads 326
1876 Rooting Out Breast Cancer by Repressing ER Gene Expression: Correlating Bioactivity of Pomegranate Rind with Chemical Constituents Identified by HPLC-MS/MS

Authors: Alaa M. M. Badr Eldin, Marwa I. Ezzat, Mohammed S. Sedeek, Manal S. Afifi, Omar M. Sabry

Abstract:

Cytotoxic activity of the total methanol extract against breast cancer cell line MCF-7 was amazing IC50 at 54 ug/ml. 130 polyphenolic compounds were tentatively identified in pomegranate peel (Punica granatum L.) methanol extract using HPLC-MS/MS technique. The antiestrogenic activity of the polyphenolic constituents found in pomegranate extract was confirmed experimentally in-vitro and by the in-silico molecular docking using gallagic acid, ellagic acid, and Punicalagin as these are considered model compounds confirmed in pomegranate peel extract. The methanolic extract was found to suppress ER, TGF-β, and NF-kB in-vitro gene expression strongly, and that was verified by qPCR and Western Blot gel electrophoresis techniques.

Keywords: HPLC-MS/MS, pomegranate, breast cancer, ovarian cancer, ER, TGF-β, NF-kB

Procedia PDF Downloads 78
1875 Synthesis and Characterization of Chromenoformimidate

Authors: Houcine Ammar

Abstract:

Chromenederivatives are an important class of heterocycles that are found in a wide range of natural products. Chromenes are commonly used as cosmetics, food additives, and possibly biodegradable agrochemicals. Recently, the synthesis of chromene derivatives has drawn more attention due to their pharmacological and biological applications. In the present work, we are interested in the synthesis and characterization of chromeno [2,3-b] pyridin-4-yl) formimidate, carried out in 4 steps: (i) the synthesis of 3-cyanoiminocoumarins is realized first by Knœvenagel reaction by reacting malonitrile with variously substituted o-phenolic benzaldehydes. In order to undergo reduction by sodium tetraborohydride NaBH4 to lead to new 2-amino-3-cyano-4H-chromenes, these compounds were easily transformed by the action of malonitrile leading to 2,4-diamino-5H-chromeno [2,3-b] pyridine-3-carbonitrile under microwave activation. For the final step, the action of triethylorthoformate on 2,4-diamino-5H-chromeno [2,3-b] pyridine-3-carbonitrile leads to new chromeno [2,3-b] pyridinheterocycles. -4-yl) formimidate. The synthesized compounds have been characterized by different spectroscopic techniques 1 H-NMR, 13 C-NMR, and IRTF.

Keywords: chromene, microwave, knovenagel condensation, chromeno [2, 3-b] pyridine

Procedia PDF Downloads 66
1874 Study of Polyphenol Profile and Antioxidant Capacity in Italian Ancient Apple Varieties by Liquid Chromatography

Authors: A. M. Tarola, R. Preti, A. M. Girelli, P. Campana

Abstract:

Safeguarding, studying and enhancing biodiversity play an important and indispensable role in re-launching agriculture. The ancient local varieties are therefore a precious resource for genetic and health improvement. In order to protect biodiversity through the recovery and valorization of autochthonous varieties, in this study we analyzed 12 samples of four ancient apple cultivars representative of Friuli Venezia Giulia, selected by local farmers who work on a project for the recovery of ancient apple cultivars. The aim of this study is to evaluate the polyphenolic profile and the antioxidant capacity that characterize the organoleptic and functional qualities of this fruit species, besides having beneficial properties for health. In particular, for each variety, the following compounds were analyzed, both in the skins and in the pulp: gallic acid, catechin, chlorogenic acid, epicatechin, caffeic acid, coumaric acid, ferulic acid, rutin, phlorizin, phloretin and quercetin to highlight any differences in the edible parts of the apple. The analysis of individual phenolic compounds was performed by High Performance Liquid Chromatography (HPLC) coupled with a diode array UV detector (DAD), the antioxidant capacity was estimated using an in vitro essay based on a Free Radical Scavenging Method and the total phenolic compounds was determined using the Folin-Ciocalteau method. From the results, it is evident that the catechins are the most present polyphenols, reaching a value of 140-200 μg/g in the pulp and of 400-500 μg/g in the skin, with the prevalence of epicatechin. Catechins and phlorizin, a dihydrohalcone typical of apples, are always contained in larger quantities in the peel. Total phenolic compounds content was positively correlated with antioxidant activity in apple pulp (r2 = 0,850) and peel (r2 = 0,820). Comparing the results, differences between the varieties analyzed and between the edible parts (pulp and peel) of the apple were highlighted. In particular, apple peel is richer in polyphenolic compounds than pulp and flavonols are exclusively present in the peel. In conclusion, polyphenols, being antioxidant substances, have confirmed the benefits of fruit in the diet, especially as a prevention and treatment for degenerative diseases. They demonstrated to be also a good marker for the characterization of different apple cultivars. The importance of protecting biodiversity in agriculture was also highlighted through the exploitation of native products and ancient varieties of apples now forgotten.

Keywords: apple, biodiversity, polyphenols, antioxidant activity, HPLC-DAD, characterization

Procedia PDF Downloads 117
1873 In-silico Antimicrobial Activity of Bioactive Compounds of Ricinus communis against DNA Gyrase of Staphylococcus aureus as Molecular Target

Authors: S. Rajeswari

Abstract:

Medicinal Plant extracts and their bioactive compounds have been used for antimicrobial activities and have significant remedial properties. In the recent years, a wide range of investigations have been carried out throughout the world to confirm antimicrobial properties of different medicinally important plants. A number of plants showed efficient antimicrobial activities, which were comparable to that of synthetic standard drugs or antimicrobial agents. The large family Euphorbiaceae contains nearly about 300 genera and 7,500 speciesand one among is Ricinus communis or castor plant which has high traditional and medicinal value for disease free healthy life. Traditionally the plant is used as laxative, purgative, fertilizer and fungicide etc. whereas the plant possess beneficial effects such as anti-oxidant, antihistamine, antinociceptive, antiasthmatic, antiulcer, immunomodulatory anti diabetic, hepatoprotective, anti inflammatory, antimicrobial, and many other medicinal properties. This activity of the plant possess due to the important phytochemical constituents like flavonoids, saponins, glycosides, alkaloids and steroids. The presents study includes the phytochemical properties of Ricinus communis and to prediction of the anti-microbial activity of Ricinus communis using DNA gyrase of Staphylococcus aureus as molecular target. Docking results of varies chemicals compounds of Ricinus communis against DNA gyrase of Staphylococcus aureus by maestro 9.8 of Schrodinger show that the phytochemicals are effective against the target protein DNA gyrase. our studies suggest that the phytochemical from Ricinus communis such has INDICAN (G.Score 4.98) and SUPLOPIN-2(G.Score 5.74) can be used as lead molecule against Staphylococcus infections.

Keywords: euphorbiaceae, antimicrobial activity, Ricinus communis, Staphylococcus aureus

Procedia PDF Downloads 458
1872 Chemical Characterization, Crystallography and Acute Toxicity Evaluation of Two Boronic-Carbohydrate Adducts

Authors: Héctor González Espinosa, Ricardo Ivan Cordova Chávez, Alejandra Contreras Ramos, Itzia Irene Padilla Martínez, José Guadalupe Trujillo Ferrara, Marvin Antonio Soriano Ursúa

Abstract:

Boronic acids are able to create diester bonds with carbohydrates because of their hydroxyl groups; in nature, there are some organoborates with these characteristics, such as the calcium fructoborate, formed by the union of two fructose molecules and a boron atom, synthesized by plants. In addition, it has been observed that, in animal cells only the compounds with cis-diol functional groups are capable of linking to boric or boronic acids. The formation of these organoboron compounds could impair the physical and chemical properties of the precursors, even their acute toxicity. In this project, two carbohydrate-derived boron-containing compounds from D-fructose and D-arabinose and phenylboronic acid are analyzed by different spectroscopy techniques such as Raman, Infrared with Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR) and X-ray diffraction crystallography to describe their chemical characteristics. Also, an acute toxicity test was performed to determine their LD50 using the Lorke’s method. It was confirmed by multiple spectra the formation of the adducts by the generation of the diester bonds with a β-D-pyranose of fructose and arabinose. The most prominent findings were the presence of signals corresponding to the formation of new bonds, like the stretching of B-O bonds, or the absence of signals of functional groups like the hydroxyls presented in the reagents used for the synthesis of the adducts. The NMR spectra yielded information about the stereoselectivity in the synthesis reaction, observed by the interaction of the protons and their vicinal atoms in the anomeric and second position carbons; but also, the absence of a racemic mix by the finding of just one signal in the range for the anomeric carbon in the 13C NMR spectra of both adducts. The acute toxicity tests by the Lorke’s method showed that the LD50 value for both compounds is 1265 mg/kg. Those results let us to propose these adducts as highly safe agents for further biological evaluation with medical purposes.

Keywords: acute toxicity, adduct, boron, carbohydrate, diester bond

Procedia PDF Downloads 29
1871 Isolation, Selection and Identification of Bacteria for Bioaugmentation of Paper Mills White Water

Authors: Nada Verdel, Tomaz Rijavec, Albin Pintar, Ales Lapanje

Abstract:

Objectives: White water circuits of woodfree paper mills contain suspended, dissolved, and colloidal particles, such as cellulose, starch, paper sizings, and dyes. By closing the white water circuits, these particles start to accumulate and affect the production. Due to high amount of organic matter that scavenge radicals and adsorbs onto catalyst surfaces, treatment of white water with photocatalysis is inappropriate. The most suitable approach should be bioaugmentation-assisted bioremediation. Accordingly, objectives were: - to isolate bacteria capable of degrading organic compounds used for the papermaking process - to select the most active bacteria for bioaugmentation. Status: The state-of-the-art of bioaugmentation of pulp and paper mill effluents is mostly based on biodegradation of lignin. Whereas in white water circuits of woodfree paper mills only papermaking compounds are present. As far as one can tell from the literature, the study on degradation activities of bacteria for all possible compounds of the papermaking process is a novelty. Methodology: The main parameters of the selected white water were systematically analyzed during a period of two months. Bacteria were isolated on selective media with particular carbon source. Organic substances used as carbon source either enter white water circuits as base paper or as recycled broke. The screening of bacterial activities for starch, cellulose, latex, polyvinyl alcohol, alkyl ketene dimers, and resin acids was followed by addition of lugol. Degraders of polycyclic aromatic dyes were selected by cometabolism tests; cometabolism is simultaneous biodegradation of two compounds, in which the degradation of the second compound depends on the presence of the first. The obtained strains were identified by 16S rRNA sequencing. Findings: 335 autochthonous strains were isolated on plates with selected carbon source. The isolated strains were selected according to degradation of the particular carbon source. The ultimate degraders of cationic starch, cellulose, and sizings are Pseudomonas sp. NV-CE12-CF and Aeromonas sp. NV-RES19-BTP. The most active strains capable of degrading azo dyes are Aeromonas sp. NV-RES19-BTP and Sphingomonas sp. NV-B14-CF. Klebsiella sp. NV-Y14A-BTP degrade polycyclic aromatic direct blue 15 and also yellow dye, Agromyces sp. NV-RED15A-BF and Cellulosimicrobium sp. NV-A4-BF are specialists for whitener and Aeromonas sp. NV-RES19-BTP is general degrader of all compounds. To the white water adapted bacteria were isolated and selected according to their degradation activities for particular organic substances. Mostly isolated bacteria are specialized to lower the competition in the microbial community. Degraders of readily-biodegradable compounds do not degrade recalcitrant polycyclic aromatic dyes and vice versa. General degraders are rare.

Keywords: bioaugmentation, biodegradation of azo dyes, cometabolism, smart wastewater treatment technologies

Procedia PDF Downloads 167