Search results for: fracture mechanics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 959

Search results for: fracture mechanics

839 Experimental and Numerical Investigation of Fracture Behavior of Foamed Concrete Based on Three-Point Bending Test of Beams with Initial Notch

Authors: M. Kozłowski, M. Kadela

Abstract:

Foamed concrete is known for its low self-weight and excellent thermal and acoustic properties. For many years, it has been used worldwide for insulation to foundations and roof tiles, as backfill to retaining walls, sound insulation, etc. However, in the last years it has become a promising material also for structural purposes e.g. for stabilization of weak soils. Due to favorable properties of foamed concrete, many interests and studies were involved to analyze its strength, mechanical, thermal and acoustic properties. However, these studies do not cover the investigation of fracture energy which is the core factor governing the damage and fracture mechanisms. Only limited number of publications can be found in literature. The paper presents the results of experimental investigation and numerical campaign of foamed concrete based on three-point bending test of beams with initial notch. First part of the paper presents the results of a series of static loading tests performed to investigate the fracture properties of foamed concrete of varying density. Beam specimens with dimensions of 100×100×840 mm with a central notch were tested in three-point bending. Subsequently, remaining halves of the specimens with dimensions of 100×100×420 mm were tested again as un-notched beams in the same set-up with reduced distance between supports. The tests were performed in a hydraulic displacement controlled testing machine with a load capacity of 5 kN. Apart from measuring the loading and mid-span displacement, a crack mouth opening displacement (CMOD) was monitored. Based on the load – displacement curves of notched beams the values of fracture energy and tensile stress at failure were calculated. The flexural tensile strength was obtained on un-notched beams with dimensions of 100×100×420 mm. Moreover, cube specimens 150×150×150 mm were tested in compression to determine the compressive strength. Second part of the paper deals with numerical investigation of the fracture behavior of beams with initial notch presented in the first part of the paper. Extended Finite Element Method (XFEM) was used to simulate and analyze the damage and fracture process. The influence of meshing and variation of mechanical properties on results was investigated. Numerical models simulate correctly the behavior of beams observed during three-point bending. The numerical results show that XFEM can be used to simulate different fracture toughness of foamed concrete and fracture types. Using the XFEM and computer simulation technology allow for reliable approximation of load–bearing capacity and damage mechanisms of beams made of foamed concrete, which provides some foundations for realistic structural applications.

Keywords: foamed concrete, fracture energy, three-point bending, XFEM

Procedia PDF Downloads 268
838 Quantum Algebra from Generalized Q-Algebra

Authors: Muna Tabuni

Abstract:

The paper contains an investigation of the notion of Q algebras. A brief introduction to quantum mechanics is given, in that systems the state defined by a vector in a complex vector space H which have Hermitian inner product property. H may be finite or infinite-dimensional. In quantum mechanics, operators must be hermitian. These facts are saved by Lie algebra operators but not by those of quantum algebras. A Hilbert space H consists of a set of vectors and a set of scalars. Lie group is a differentiable topological space with group laws given by differentiable maps. A Lie algebra has been introduced. Q-algebra has been defined. A brief introduction to BCI-algebra is given. A BCI sub algebra is introduced. A brief introduction to BCK=BCH-algebra is given. Every BCI-algebra is a BCH-algebra. Homomorphism maps meanings are introduced. Homomorphism maps between two BCK algebras are defined. The mathematical formulations of quantum mechanics can be expressed using the theory of unitary group representations. A generalization of Q algebras has been introduced, and their properties have been considered. The Q- quantum algebra has been studied, and various examples have been given.

Keywords: Q-algebras, BCI, BCK, BCH-algebra, quantum mechanics

Procedia PDF Downloads 169
837 Combining Laws of Mechanics and Hydrostatics in Non Inertial Reference Frames

Authors: M. Blokh

Abstract:

Method of combined teaching laws of classical mechanics and hydrostatics in non-inertial reference frames for undergraduate students is proposed. Pressure distribution in a liquid (or gas) moving with acceleration is considered. Combined effect of hydrostatic force and force of inertia on a body immersed in a liquid can lead to paradoxical results, in a motion of pendulum in particular. The body motion under Stokes force influence and forces in rotating reference frames are investigated as well. Problems and difficulties in student perceptions are analyzed.

Keywords: hydrodynamics, mechanics, non-inertial reference frames, teaching

Procedia PDF Downloads 343
836 Finite Element Model to Evaluate Gas Conning Phenomenon in Naturally Fractured Oil Reservoirs

Authors: Reda Abdel Azim

Abstract:

Gas conning phenomenon considered one of the prevalent matter in oil field applications as it significantly affects the amount of produced oil, increase cost of production operation and it has a direct effect on oil reservoirs recovery efficiency as well. Therefore, evaluation of such phenomenon and study the reservoir mechanisms that may strongly affect invading gas to the producing formation is crucial. Gas conning is a result of an imbalance between two major forces controlling the oil production: gravitational and viscous forces especially in naturally fractured reservoirs where the capillary pressure forces are negligible. Once the gas invading the producing formation near the wellbore due to large producing oil rate, the oil gas contact will change and such reservoirs are prone to gas conning. Moreover, the oil volume expected to be produced requires the use of long horizontal perforated well. This work presents a numerical simulation study to predict and propose solutions to gas coning in naturally fractured oil reservoirs. The simulation work is based on discrete fractures and permeability tensors approaches. The governing equations are discretized using finite element approach and Galerkin’s least square technique (GLS) is employed to stabilize the equation solutions. The developed simulator is validated against Eclipse-100 using horizontal fractures. The matrix and fracture properties are modelled. Critical rate, breakthrough time and GOR are determined to be used in investigation of the effect of matrix and fracture properties on gas coning. Results show that fracture distribution in terms of diverse dip and azimuth has a great effect on conning occurring. In addition, fracture porosity, anisotropy ratio, and fracture aperture.

Keywords: gas conning, finite element, fractured reservoirs, multiphase

Procedia PDF Downloads 171
835 Railway Crane Accident: A Comparative Metallographic Test on Pins Fractured during Operation

Authors: Thiago Viana

Abstract:

Eventually train accidents occur on railways and for some specific cases it is necessary to use a train rescue with a crane positioned under a platform wagon. These tumbled machines are collected and sent to the machine shop or scrap yard. In one of these cranes that were being used to rescue a wagon, occurred a fall of hoist due to fracture of two large pins. The two pins were collected and sent for failure analysis. This work investigates the main cause and the secondary causes for the initiation of the fatigue crack. All standard failure analysis procedures were applied, with careful evaluation of the characteristics of the material, fractured surfaces and, mainly, metallographic tests using an optical microscope to compare the geometry of the peaks and valleys of the thread of the pins and their respective seats. By metallographic analysis, it was concluded that the fatigue cracks were started from a notch (stress concentration) in the valley of the threads of the pin applied to the right side of the crane (pin 1). In this, it was verified that the peaks of the threads of the pin seat did not have proper geometry, with sharp edges being present that caused such notches. The visual analysis showed that fracture of the pin on the left side of the crane (pin 2) was brittle type, being a consequence of the fracture of the first one. Recommendations for this and other railway cranes have been made, such as nondestructive testing, stress calculation, design review, quality control and suitability of the mechanical forming process of the seat threads and pin threads.

Keywords: crane, fracture, pin, railway

Procedia PDF Downloads 78
834 Modeling Slow Crack Growth under Thermal and Chemical Effects for Fitness Predictions of High-Density Polyethylene Material

Authors: Luis Marquez, Ge Zhu, Vikas Srivastava

Abstract:

High-density polyethylene (HDPE) is one of the most commonly used thermoplastic polymer materials for water and gas pipelines. Slow crack growth failure is a well-known phenomenon in high-density polyethylene material and causes brittle failure well below the yield point with no obvious sign. The failure of transportation pipelines can cause catastrophic environmental and economic consequences. Using the non-destructive testing method to predict slow crack growth failure behavior is the primary preventative measurement employed by the pipeline industry but is often costly and time-consuming. Phenomenological slow crack growth models are useful to predict the slow crack growth behavior in the polymer material due to their ability to evaluate slow crack growth under different temperature and loading conditions. We developed a quantitative method to assess the slow crack growth behavior in the high-density polyethylene pipeline material under different thermal conditions based on existing physics-based phenomenological models. We are also working on developing an experimental protocol and quantitative model that can address slow crack growth behavior under different chemical exposure conditions to improve the safety, reliability, and resilience of HDPE-based pipeline infrastructure.

Keywords: mechanics of materials, physics-based modeling, civil engineering, fracture mechanics

Procedia PDF Downloads 169
833 Arthroscopic Fixation of Posterior Cruciate Ligament Avulsion Fracture through Posterior Trans Septal Portal Using Button Fixation Device: Mini Tight Rope

Authors: Ratnakar Rao, Subair Khan, Hari Haran

Abstract:

Posterior cruciate ligament (PCL) avulsion fractures is a rare condition and commonly mismanaged.Surgical reattachment has been shown to produce better result compared with conservative management.Only few techniques are reported in arthroscopic fixation of PCL Avulsion Fracture and they are complex.We describe a new technique in fixation of the PCL Avulsion fracture through a posterior trans septal portal using button fixation device (Mini Tight Rope). Eighteen patients with an isolated posterior cruciate ligament avulsion fracture were operated under arthroscopy. Standard Antero Medial Portal and Antero Lateral portals made and additional Postero Medial and Postero Lateral portals made and trans Septal portal established. Avulsion fracture identified, elevated, prepared. Reduction achieved using PCL Tibial guide (Arthrex) and fixation was achieved using Mini Tight Rope,Arthrex (2 buttons with a suture). Reduction confirmed using probe and Image intensifier. Postoperative assessment made clinically and radiologically. 15 patients had good to excellent results with no posterior sag or instability. The range of motion was normal. No complications were recorded per operatively. 2 patients had communition of the fragment while drilling, for one patient it was managed by suturing technique and the second patient PCL Reconstruction was done. One patient had persistent instability with poor outcome. Establishing trans septal portal helps in better visualization of the posterior compartment of the knee. Assessment of the bony fragment, preparation 0f the bone bed andit protects from injury to posterior neurovascular structures. Fixation using the button with suture (Mini Tight Rope) is stable and easily reproducible for PCL Avulsion fracture with single large fragment.

Keywords: PCL avulsion, arthroscopy, transeptal, minitight rope technique

Procedia PDF Downloads 232
832 Effect of Different Carbon Fabric Orientations on the Fracture Properties of Carbon Fabric Reinforced Polymer Composites

Authors: S. F. Halim, H. F. Naguib, S. N. Lawandy, R. S. Hegazy, M. N. Baheg

Abstract:

The main drawbacks of the traditional carbon fabric reinforced epoxy resin (CFRP) are low strain failure, delamination between composites layers, and low impact resistance due to the brittleness of epoxy resin. The aim of this study is to enhance the fracture properties of the CFRP composites laminates via the variation of composite's designs. A series of composites were fabricated in which bidirectional (00/900) carbon fabric (CF) layers were laid inside the resin matrix with orientation codes as F1 [(00, 900)/ (00, 900)], F2 [(900, 00)/ (00, 900)] and F3 [(00,900)/ (900, 00). The mechanical and dynamic properties of the composites were estimated. In addition, the morphology of samples surface was examined by scanning electron microscope (SEM) after impact fracture. The results revealed that the CFRP properties could be tailored fitting specific applications by controlling the fabric orientation inside the CFRP composite design. F2 orientation [(900, 00)/ (00.900)] showed the highest tensile and flexural strength values. On the other hand, the impact strength values of composites were in the order F1 > F2 > F3. The storage modulus, loss modulus, and glass transition temperature Tg values obtained from the dynamic mechanical analysis (DMA) examination was in the order F1 > F2 > F3. The variation in the properties of the composite was clearly explained by the SEM micrographs as the failure of F3 orientation properties was referred to as the complete breakage of the CF layers upon fracture.

Keywords: carbon fiber, CFRP, composites, epoxy resins, flexural strength

Procedia PDF Downloads 95
831 Laser-TIG Welding-Brazing for Dissimilar Metals between Aluminum Alloy and Steel

Authors: Xiangfang Xu, Bintao Wu, Yugang Miao, Duanfeng Han

Abstract:

Experiments were conducted on 5A06 aluminum alloy and Q235 steel using the laser-TIG hybrid heat source welding-brazing method to realize the reliable connection of Al/Fe dissimilar metals and the welding characteristics were analyzed. It was found that the joints with uniform seam and high tensile strength could be obtained using such a method, while the welding process demanded special welding parameters. Spectrum measurements showed that the Al and Fe atoms diffused more thoroughly at the brazing interface and formed a 3μm-thick intermetallic compound layer at the Al/Fe joints brazed connection interface. Shearing tests indicated that the shearing strength of the Al/Fe welding-brazed joint was 165MPa. The fracture occurred near the melting zone of aluminum alloy, which belonged to the mixed mode with the ductile fracture as the base and the brittle fracture as the supplement.

Keywords: Al/Fe dissimilar metals, laser-TIG hybrid heat source, shearing strength, welding-brazing method

Procedia PDF Downloads 354
830 Knowledge and Capabilities of Primary Caregivers in Providing Quality Care for Elderly Patients with Post- Operative Hip Fracture, Songklanagarind Hospital

Authors: Manee Hasap, Mongkolchai Hasap, Tasanee Nasae

Abstract:

The purpose of this study was to evaluate the primary caregivers’ knowledge and capabilities for providing quality care to be hospitalized post-hip fracture surgery elderly patients. The theoretical framework of the study was derived from the concepts of dependent care agency in Orem’s Self-Care theory, and family care provision for the elderly and chronically ill patients. 59 subjects were purposively selected. The subjects were primary caregivers of post-operated hip fracture elderly patients who had been admitted to the Orthopaedic Ward of Songklanagarind Hospital. Demographic data of the caregivers and patients were collected by non-participant observation using the evaluation and recording forms. The reliability of caregivers’ knowledge measurement (0.86) was obtained by KR-20 and that of caregivers’ capabilities for post-operative care evaluation form (0.97) obtained from 2 observers by interrater reliability. The data were analyzed using descriptive statistic, which were frequency, percentage, mean, and standard deviation. The result of this study indicated that elderly patients with post-hip fracture surgery had many pre-discharge self care limitations. Approximately, 75% of the caregivers had knowledge to respond to patient’s essential needs at a high level, while the rest (25%) had this knowledge a moderate level. For observation, 57.63% of the subjects had capabilities in care practice at a moderate level; 28.81% had capabilities in care practice at a high level, while 13.56% had at a low level. The result of this study can be used as basic information for patients and caregivers capabilities developing plan especially, providing patients’ activities, accident surveillance and complications prevention for a good life quality of elderly patients after hip surgery both hospitalization and rehabilitation at home.

Keywords: care givers’ knowledge, care givers’ capabilities, elderly hip fracture patients, patients

Procedia PDF Downloads 527
829 The Ductile Fracture of Armor Steel Targets Subjected to Ballistic Impact and Perforation: Calibration of Four Damage Criteria

Authors: Imen Asma Mbarek, Alexis Rusinek, Etienne Petit, Guy Sutter, Gautier List

Abstract:

Over the past two decades, the automotive, aerospace and army industries have been paying an increasing attention to Finite Elements (FE) numerical simulations of the fracture process of their structures. Thanks to the numerical simulations, it is nowadays possible to analyze several problems involving costly and dangerous extreme loadings safely and at a reduced cost such as blast or ballistic impact problems. The present paper is concerned with ballistic impact and perforation problems involving ductile fracture of thin armor steel targets. The target fracture process depends usually on various parameters: the projectile nose shape, the target thickness and its mechanical properties as well as the impact conditions (friction, oblique/normal impact...). In this work, the investigations are concerned with the normal impact of a conical head-shaped projectile on thin armor steel targets. The main aim is to establish a comparative study of four fracture criteria that are commonly used in the fracture process simulations of structures subjected to extreme loadings such as ballistic impact and perforation. Usually, the damage initiation results from a complex physical process that occurs at the micromechanical scale. On a macro scale and according to the following fracture models, the variables on which the fracture depends are mainly the stress triaxiality ƞ, the strain rate, temperature T, and eventually the Lode angle parameter Ɵ. The four failure criteria are: the critical strain to failure model, the Johnson-Cook model, the Wierzbicki model and the Modified Hosford-Coulomb model MHC. Using the SEM, the observations of the fracture facies of tension specimen and of armor steel targets impacted at low and high incident velocities show that the fracture of the specimens is a ductile fracture. The failure mode of the targets is petalling with crack propagation and the fracture facies are covered with micro-cavities. The parameters of each ductile fracture model have been identified for three armor steels and the applicability of each criterion was evaluated using experimental investigations coupled to numerical simulations. Two loading paths were investigated in this study, under a wide range of strain rates. Namely, quasi-static and intermediate uniaxial tension and quasi-static and dynamic double shear testing allow covering various values of stress triaxiality ƞ and of the Lode angle parameter Ɵ. All experiments were conducted on three different armor steel specimen under quasi-static strain rates ranging from 10-4 to 10-1 1/s and at three different temperatures ranging from 297K to 500K, allowing drawing the influence of temperature on the fracture process. Intermediate tension testing was coupled to dynamic double shear experiments conducted on the Hopkinson tube device, allowing to spot the effect of high strain rate on the damage evolution and the crack propagation. The aforementioned fracture criteria are implemented into the FE code ABAQUS via VUMAT subroutine and they were coupled to suitable constitutive relations allow having reliable results of ballistic impact problems simulation. The calibration of the four damage criteria as well as a concise evaluation of the applicability of each criterion are detailed in this work.

Keywords: armor steels, ballistic impact, damage criteria, ductile fracture, SEM

Procedia PDF Downloads 285
828 Risk of Fractures at Different Anatomic Sites in Patients with Irritable Bowel Syndrome: A Nationwide Population-Based Cohort Study

Authors: Herng-Sheng Lee, Chi-Yi Chen, Wan-Ting Huang, Li-Jen Chang, Solomon Chih-Cheng Chen, Hsin-Yi Yang

Abstract:

A variety of gastrointestinal disorders, such as Crohn’s disease, ulcerative colitis, and coeliac disease, are recognized as risk factors for osteoporosis and osteoporotic fractures. One recent study suggests that individuals with irritable bowel syndrome (IBS) might also be at increased risk of osteoporosis and osteoporotic fractures. Up to now, the association between IBS and the risk of fractures at different anatomic sites occurrences is not completely clear. We conducted a population-based cohort analysis to investigate the fracture risk of IBS in comparison with non-IBS group. We identified 29,505 adults aged ≥ 20 years with newly diagnosed IBS using the Taiwan National Health Insurance Research Database in 2000-2012. A comparison group was constructed of patients without IBS who were matched according to gender and age. The occurrence of fracture was monitored until the end of 2013. We analyzed the risk of fracture events to occur in IBS by using Cox proportional hazards regression models. Patients with IBS had a higher incidence of osteoporotic fractures compared with non-IBS group (12.34 versus 9.45 per 1,000 person-years) and an increased risk of osteoporotic fractures (adjusted hazard ratio [aHR] = 1.27, 95 % confidence interval [CI] = 1.20 – 1.35). Site specific analysis showed that the IBS group had a higher risk of fractures for spine, forearm, hip and hand than did the non-IBS group. With further stratification for gender and age, a higher aHR value for osteoporotic fractures in IBS group was seen across all age groups in males, but seen in elderly females. In addition, female, elderly, low income, hypertension, coronary artery disease, cerebrovascular disease, and depressive disorders as independent osteoporotic fracture risk factors in IBS patients. The IBS is considered as a risk factor for osteoporotic fractures, particularly in female individuals and fracture sites located at the spine, forearm, hip and hand.

Keywords: irritable bowel syndrome, fracture, gender difference, longitudinal health insurance database, public health

Procedia PDF Downloads 201
827 A Method to Identify Areas for Hydraulic Fracturing by Using Production Logging Tools

Authors: Armin Shirbazo, Hamed Lamei Ramandi, Mohammad Vahab, Jalal Fahimpour

Abstract:

Hydraulic fracturing, especially multi-stage hydraulic fracturing, is a practical solution for wells with uneconomic production. The wide range of applications is appraised appropriately to have a stable well-production. Production logging tool, which is known as PLT in the oil and gas industry, is counted as one of the most reliable methods to evaluate the efficiency of fractures jobs. This tool has a number of benefits and can be used to prevent subsequent production failure. It also distinguishes different problems that occurred during well-production. In this study, the effectiveness of hydraulic fracturing jobs is examined by using the PLT in various cases and situations. The performance of hydraulically fractured wells is investigated. Then, the PLT is employed to gives more information about the properties of different layers. The PLT is also used to selecting an optimum fracturing design. The results show that one fracture and three-stage fractures behave differently. In general, the one-stage fracture should be created in high-quality areas of the reservoir to have better performance, and conversely, in three-stage fractures, low-quality areas are a better candidate for fracturing

Keywords: multi-stage fracturing, horizontal well, PLT, fracture length, number of stages

Procedia PDF Downloads 160
826 Effect of Institution Volume on Mortality and Outcomes in Osteoporotic Hip Fracture Care

Authors: J. Milton, C. Uzoigwe, O. Ayeko, B. Offorha, K. Anderson, R. G. Middleton

Abstract:

Background: We used the UK National Hip Fracture database to determine the effect of institution hip fracture case volume on hip fracture healthcare outcomes in 2019. Using logistic regression for each healthcare outcome, we compared the best performing 50 units with the poorest performing 50 units in order to determine if the unit volume was associated with performance for each particular outcome. Method: We analysed 175 institutions treating a total of 67,673 patients over the course of a year. Results: The number of hip fractures seen per unit ranged between 86 and 952. Larger units tendered to perform health assessments more consistently and mobilise patients more expeditiously post-operatively. Patients treated at large institutions had shorter lengths of stay. With regard to most other outcomes, there was no association between unit case volume and performance, notably compliance with the Best Practice Tariff, time to surgery, proportion of eligible patients undergoing total hip arthroplasty, length of stay, delirium risk, and pressure sore risk assessments. Conclusion: There is no relationship between unit volume and the majority of health care outcomes. It would seem that larger institutions tend to perform better at parameters that are dependent upon personnel numbers. However, where the outcome is contingent, even partially, on physical infrastructure capacity, there was no difference between larger and smaller units.

Keywords: institution volume, mortality, neck of femur fractures, osteoporosis

Procedia PDF Downloads 63
825 Identification of High Stress Regions in Proximal Femur During Single-Leg Stance and Sideways Fall Using QCT-Based Finite Element Model

Authors: Hossein Kheirollahi, Yunhua Luo

Abstract:

Studying stress and strain trends in the femur and recognizing femur failure mechanism is very important for preventing hip fracture in the elderly. The aim of this study was to identify high stress and strain regions in the femur during normal walking and falling to find the mechanical behavior and failure mechanism of the femur. We developed a finite element model of the femur from the subject’s quantitative computed tomography (QCT) image and used it to identify potentially high stress and strain regions during the single-leg stance and the sideways fall. It was found that fracture may initiate from the superior region of femoral neck and propagate to the inferior region during a high impact force such as sideways fall. The results of this study showed that the femur bone is more sensitive to strain than stress which indicates the effect of strain, in addition to effect of stress, should be considered for failure analysis.

Keywords: finite element analysis, hip fracture, strain, stress

Procedia PDF Downloads 476
824 The Introduction of Modern Diagnostic Techniques and It Impact on Local Garages

Authors: Mustapha Majid

Abstract:

Gone were the days when technicians/mechanics will have to spend too much time trying to identify a mechanical fault and rectify the problem. Now the emphasis is on the use of Automobile diagnosing Equipment through the use of computers and special software. An investigation conducted at Tamale Metropolis and Accra in the Northern and Greater Accra regions of Ghana, respectively. Methodology for data gathering were; questionnaires, physical observation, interviews, and newspaper. The study revealed that majority of mechanics lack computer skills which can enable them use diagnosis tools such as Exhaust Gas Analyzer, Scan Tools, Electronic Wheel Balancing machine, etc.

Keywords: diagnosing, local garages and modern garages, lack of knowledge of diagnosing posing an existential threat, training of local mechanics

Procedia PDF Downloads 119
823 Quantum Mechanics Approach for Ruin Probability

Authors: Ahmet Kaya

Abstract:

Incoming cash flows and outgoing claims play an important role to determine how is companies’ profit or loss. In this matter, ruin probability provides to describe vulnerability of the companies against ruin. Quantum mechanism is one of the significant approaches to model ruin probability as stochastically. Using the Hamiltonian method, we have performed formalisation of quantum mechanics < x|e-ᵗᴴ|x' > and obtained the transition probability of 2x2 and 3x3 matrix as traditional and eigenvector basis where A is a ruin operator and H|x' > is a Schroedinger equation. This operator A and Schroedinger equation are defined by a Hamiltonian matrix H. As a result, probability of not to be in ruin can be simulated and calculated as stochastically.

Keywords: ruin probability, quantum mechanics, Hamiltonian technique, operator approach

Procedia PDF Downloads 302
822 Geothermal Prospect Prediction at Mt. Ciremai Using Fault and Fracture Density Method

Authors: Rifqi Alfadhillah Sentosa, Hasbi Fikru Syabi, Stephen

Abstract:

West Java is a province in Indonesia which has a number of volcanoes. One of those volcanoes is Mt. Ciremai, located administratively at Kuningan and Majalengka District, and is known for its significant geothermal potential in Java Island. This research aims to assume geothermal prospects at Mt. Ciremai using Fault and Fracture Density (FFD) Method, which is correlated to the geochemistry of geothermal manifestations around the mountain. This FFD method is using SRTM data to draw lineaments, which are assumed associated with fractures and faults in the research area. These faults and fractures were assumed as the paths for reservoir fluids to reached surface as geothermal manifestations. The goal of this method is to analyze the density of those lineaments found in the research area. Based on this FFD Method, it is known that area with high density of lineaments located on Mt. Kromong at the northern side of Mt. Ciremai. This prospect area is proven by its higher geothermometer values compared to geothermometer values calculated at the south area of Mt. Ciremai.

Keywords: geothermal prospect, fault and fracture density, Mt. Ciremai, surface manifestation

Procedia PDF Downloads 321
821 Conservative Treatment Versus Percutaneous Wire Fixation in treatment of Distal Radial Fracture in Elderly

Authors: Abdelfatah Elsenosy, Mahmoud Ebrahim

Abstract:

Background: Distal radius fractures are commonly encountered in orthopedic practice, especially in elderly patients. A number of clinical papers have supported the idea that anatomic restoration of the distal end of the radius is essential to gain superior results. Aim and objectives: The aim of the study is to systematically review the literature for the management of distal end radius in elderly persons (conservative treatment versus percutaneous wire fixation) as regards radiological and functional outcomes. Subjects and methods: Studies were identified from the Medline, Cochrane, EMBASE, and Google Scholar databases were searched until 2019 using combinations of the following search terms: distal radius fracture, conservative treatment, non-operative treatment, and nonsurgical treatment, surgical treatment, operative, elderly, and older. Reference lists of relevant studies were manually searched. Results: There was no statistical significance difference between CI and PKF groups’ frequency of complication in all of the selected studies. Based on the results, we recommend more analysis regarding every parameter of the radiographic and functional results and specific complications related to each fixation need to be accomplished, which requires more Randomized controlled trials (RCTs) with high quality. Conclusion: Surgical treatment seems to be more effective distal radius fracture compared with conservative treatment when the radiographic outcomes were analyzed, and no significant differences were detected in the functional outcomes and complication rate.

Keywords: radius, fracture, surgical, RCTs, conservative, radiographic, outcomes, orthopedic

Procedia PDF Downloads 125
820 A Simple Technique for Centralisation of Distal Femoral Nail to Avoid Anterior Femoral Impingement and Perforation

Authors: P. Panwalkar, K. Veravalli, M. Tofighi, A. Mofidi

Abstract:

Introduction: Anterior femoral perforation or distal anterior nail position is a known complication of femoral nailing specifically in pertrochantric fractures fixed with cephalomedullary nail. This has been attributed to wrong entry point for the femoral nail, nail with large radius of curvature or malreduced fracture. Left alone anterior perforation of femur or abutment of nail on anterior femur will result in pain and risk stress riser at distal femur and periprosthetic fracture. There have been multiple techniques described to avert or correct this problem ranging from using different nail, entry point change, poller screw to deflect the nail position, use of shorter nail or use of curved guidewire or change of nail to ensure a nail with large radius of curvature Methods: We present this technique which we have used in order to centralise the femoral nail either when the nail has been put anteriorly or when the guide wire has been inserted too anteriorly prior to the insertion of the nail. This technique requires the use of femoral reduction spool from the nailing set. This technique was used by eight trainees of different level of experience under supervision. Results: This technique was easily reproducible without any learning curve without a need for opening of fracture site or change in the entry point with three different femoral nailing sets in twenty-five cases. The process took less than 10 minutes even when revising a malpositioned femoral nail. Conclusion: Our technique of using femoral reduction spool is easily reproducible and repeatable technique for avoidance of non-centralised femoral nail insertion and distal anterior perforation of femoral nail.

Keywords: femoral fracture, nailing, malposition, surgery

Procedia PDF Downloads 94
819 Thickness Effect on Concrete Fracture Toughness K1c

Authors: Benzerara Mohammed, Redjel Bachir, Kebaili Bachir

Abstract:

The cracking of the concrete is a more crucial problem with the development of the complex structures related to technological progress. The projections in the knowledge of the breaking process make it possible today for better prevention of the risk of the fracture. The breaking strength brutal of a quasi-fragile material like the concrete called Toughness, is measured by a breaking value of the factor of intensity of the constraints K1C for which the crack is propagated, it is an intrinsic property of material. Many studies reported in the literature treating of the concrete were carried out on specimens which are in fact inadequate compared to the intrinsic characteristic to identify. We started from this established fact, in order to compare the evolution of the parameter of toughness K1C measured by calling upon ordinary concrete specimens of three prismatics geometries different (10*10*84) cm³ and (5*20*120) cm³ &(12*20*120) cm³ containing from the side notches various depths simulating of the cracks was set up. The notches are carried out using triangular pyramidal plates into manufactured out of sheet coated placed at the centre of the specimens at the time of the casting, then withdrawn to leave the trace of a crack. The tests are carried out in 3 points bending test in mode 1 of fracture, by using the techniques of mechanical fracture. The evolution of the parameter of toughness K1C measured with the three geometries specimens gives almost the same results. They are acceptable and return in the beach of the results determined by various researchers (toughness of the ordinary concrete turns to the turn of the 1 MPa √m). These results inform us about the presence of an economy on the level of the geometrie specimen (5*20*120) cm³, therefore to use plates specimens later if one wants to master the toughness of this material complexes, astonishing but always essential that is the concrete.

Keywords: elementary representative volume, concrete, fissure, toughness

Procedia PDF Downloads 189
818 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes

Authors: Madushani Rodrigo, Banuka Athuraliya

Abstract:

In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.

Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16

Procedia PDF Downloads 24
817 Modeling of Thermally Induced Acoustic Emission Memory Effects in Heterogeneous Rocks with Consideration for Fracture Develo

Authors: Vladimir A. Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied by a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: degree of rock disturbance, non-destructive testing, thermally induced acoustic emission memory effects, structure and texture of rocks

Procedia PDF Downloads 234
816 Analysis of the Plastic Zone Under Mixed Mode Fracture in Bonded Composite Repair of Aircraft

Authors: W. Oudad, H. Fikirini, K. Boulenouar

Abstract:

Material fracture by opening (mode I) is not alone responsible for fracture propagation. Many industrial examples show the presence of mode II and mixed mode I + II. In the present work the three-dimensional and non-linear finite element method is used to estimate the performance of the bonded composite repair of metallic aircraft structures by analyzing the plastic zone size ahead of repaired cracks under mixed mode loading. The computations are made according to Von Mises and Tresca criteria. The extension of the plastic zone which takes place at the tip of a crack strictly depends on many variables, such as the yield stress of the material, the loading conditions, the crack size and the thickness of the cracked component, The obtained results show that the presence of the composite patch reduces considerably the size of the plastic zone ahead of the crack. The effects of the composite orientation layup (adhesive properties) and the patch thickness on the plastic zone size ahead of repaired cracks were analyzed.

Keywords: crack, elastic-plastic, J integral, patch, plastic zone

Procedia PDF Downloads 411
815 Using Wavelet Uncertainty Relations in Quantum Mechanics: From Trajectories Foam to Newtonian Determinism

Authors: Paulo Castro, J. R. Croca, M. Gatta, R. Moreira

Abstract:

Owing to the development of quantum mechanics, we will contextualize the foundations of the theory on the Fourier analysis framework, thus stating the unavoidable philosophical conclusions drawn by Niels Bohr. We will then introduce an alternative way of describing the undulatory aspects of quantum entities by using gaussian Morlet wavelets. The description has its roots in de Broglie's realistic program for quantum physics. It so happens that using wavelets it is possible to formulate a more general set of uncertainty relations. A set from which it is possible to theoretically describe both ends of the behavioral spectrum in reality: the indeterministic quantum trajectorial foam and the perfectly drawn Newtonian trajectories.

Keywords: philosophy of quantum mechanics, quantum realism, morlet wavelets, uncertainty relations, determinism

Procedia PDF Downloads 129
814 Simplified Linearized Layering Method for Stress Intensity Factor Determination

Authors: Jeries J. Abou-Hanna, Bradley Storm

Abstract:

This paper looks to reduce the complexity of determining stress intensity factors while maintaining high levels of accuracy by the use of a linearized layering approach. Many techniques for stress intensity factor determination exist, but they can be limited by conservative results, requiring too many user parameters, or by being too computationally intensive. Multiple notch geometries with various crack lengths were investigated in this study to better understand the effectiveness of the proposed method. By linearizing the average stresses in radial layers around the crack tip, stress intensity factors were found to have error ranging from -10.03% to 8.94% when compared to analytically exact solutions. This approach proved to be a robust and efficient method of accurately determining stress intensity factors.

Keywords: fracture mechanics, finite element method, stress intensity factor, stress linearization

Procedia PDF Downloads 105
813 Integrating Historical Narratives with Merge Games as Tools for Pedagogy In Education

Authors: Aathira H.

Abstract:

Digital games can act as catalysts for educational transformation in the current scenario. Children and adolescence acquire this digital knowledge quickly and hence digital games can act as one of the most effective media for technology-mediated learning. Mobile gaming industries have seen the rise of a new trending genre of games, i.e., “Merge games” which is currently thriving in the market. This paper analysis on how gamifying historic and cultural narratives with merge mechanics can be an effective way to educate school children. Through the study of how merge mechanics in games have currently emerged as a trend., this paper argues how it can be integrated with a strong narrative which can convey history in an engaging way for education.

Keywords: game-based learning, merge mechanics, historical narratives, gaming innovations

Procedia PDF Downloads 75
812 A Study on the Effect of Mg and Ag Additions and Age Hardening Treatment on the Properties of As-Cast Al-Cu-Mg-Ag Alloys

Authors: Ahmed. S. Alasmari, M. S. Soliman, Magdy M. El-Rayes

Abstract:

This study focuses on the effect of the addition of magnesium (Mg) and silver (Ag) on the mechanical properties of aluminum based alloys. The alloying elements will be added at different levels using the factorial design of experiments of 22; the two factors are Mg and Ag at two levels of concentration. The superior mechanical properties of the produced Al-Cu-Mg-Ag alloys after aging will be resulted from a unique type of precipitation named as Ω-phase. The formed precipitate enhanced the tensile strength and thermal stability. This paper further investigated the microstructure and mechanical properties of as cast Al–Cu–Mg–Ag alloys after being complete homogenized treatment at 520 °C for 8 hours followed by isothermally age hardening process at 190 °C for different periods of time. The homogenization at 520 °C for 8 hours was selected based on homogenization study at various temperatures and times. The alloys’ microstructures were studied by using optical microscopy (OM). In addition to that, the fracture surface investigation was performed using a scanning electronic microscope (SEM). Studying the microstructure of aged Al-Cu-Mg-Ag alloys reveal that the grains are equiaxed with an average grain size of about 50 µm. A detailed fractography study for fractured surface of the aged alloys exhibited a mixed fracture whereby the random fracture suggested crack propagation along the grain boundaries while the dimples indicated that the fracture was ductile. The present result has shown that alloy 5 has the highest hardness values and the best mechanical behaviors.

Keywords: precipitation hardening, aluminum alloys, aging, design of experiments, analysis of variance, heat treatments

Procedia PDF Downloads 130
811 A Systematic Review of Patient-Reported Outcomes and Return to Work after Surgical vs. Non-surgical Midshaft Humerus Fracture

Authors: Jamal Alasiri, Naif Hakeem, Saoud Almaslmani

Abstract:

Background: Patients with humeral shaft fractures have two different treatment options. Surgical therapy has lesser risks of non-union, mal-union, and re-intervention than non-surgical therapy. These positive clinical outcomes of the surgical approach make it a preferable treatment option despite the risks of radial nerve palsy and additional surgery-related risk. We aimed to evaluate patients’ outcomes and return to work after surgical vs. non-surgical management of shaft humeral fracture. Methods: We used databases, including PubMed, Medline, and Cochrane Register of Controlled Trials, from 2010 to January 2022 to search for potential randomised controlled trials (RCTs) and cohort studies comparing the patients’ related outcome measures and return to work between surgical and non-surgical management of humerus fracture. Results: After carefully evaluating 1352 articles, we included three RCTs (232 patients) and one cohort study (39 patients). The surgical intervention used plate/nail fixation, while the non-surgical intervention used a splint or brace procedure to manage shaft humeral fracture. The pooled DASH effects of all three RCTs at six (M.D: -7.5 [-13.20, -1.89], P: 0.009) I2:44%) and 12 months (M.D: -1.32 [-3.82, 1.17], p:0.29, I2: 0%) were higher in patients treated surgically than in non-surgical procedures. The pooled constant Murley score at six (M.D: 7.945[2.77,13.10], P: 0.003) I2: 0%) and 12 months (M.D: 1.78 [-1.52, 5.09], P: 0.29, I2: 0%) were higher in patients who received non-surgical than surgical therapy. However, pooled analysis for patients returning to work for both groups remained inconclusive. Conclusion: Altogether, we found no significant evidence supporting the clinical benefits of surgical over non-surgical therapy. Thus, the non-surgical approach remains the preferred therapeutic choice for managing shaft humeral fractures due to its lesser side effects.

Keywords: shaft humeral fracture, surgical treatment, Patient-related outcomes, return to work, DASH

Procedia PDF Downloads 69
810 Obtain the Stress Intensity Factor (SIF) in a Medium Containing a Penny-Shaped Crack by the Ritz Method

Authors: A. Tavangari, N. Salehzadeh

Abstract:

In the crack growth analysis, the Stress Intensity Factor (SIF) is a fundamental prerequisite. In the present study, the mode I stress intensity factor (SIF) of three-dimensional penny-Shaped crack is obtained in an isotropic elastic cylindrical medium with arbitrary dimensions under arbitrary loading at the top of the cylinder, by the semi-analytical method based on the Rayleigh-Ritz method. This method that is based on minimizing the potential energy amount of the whole of the system, gives a very close results to the previous studies. Defining the displacements (elastic fields) by hypothetical functions in a defined coordinate system is the base of this research. So for creating the singularity conditions at the tip of the crack the appropriate terms should be found.

Keywords: penny-shaped crack, stress intensity factor, fracture mechanics, Ritz method

Procedia PDF Downloads 336