Search results for: fatigue
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 620

Search results for: fatigue

290 A Theoretical Study of Multi-Leaf Spring in Seismic Response Control

Authors: M. Ezati Kooshki , H. Pourmohamad

Abstract:

Leaf spring dampers are used for commercial vehicles and heavy tracks. The main function of this damper in these vehicles is protection against damage and providing comfort for drivers by creating suspension between road and vehicle. This paper presents a new device, circular leaf spring damper, which is frequently used on vehicles, aiming to gain seismic protection of structures. Finite element analyses were conducted on several one-story structures using finite element software (Abaqus, v6.10-1). The time history analysis was conducted on the records of Kobe (1995) and San Fernando (1971) ground motions to demonstrate the advantages of using leaf spring in structures as compared to simple bracing system. This paper also suggests extending the use of this damper in structures, considering its large control force despite high cycle fatigue properties and low prices.

Keywords: bracing system, finite element analysis, leaf spring, seismic protection, time history analysis

Procedia PDF Downloads 377
289 The Fight against Pollution of Heavy Metals

Authors: K. Menad, A. Feddag, M. A. Hassnaoui

Abstract:

We are living in a time and in a world heavily polluted. In the list of the great dangers awaiting the man can be placed on top of the list pollution by heavy metals: lead, mercury, cadmium, etc. Fatigue, Depression, Thyroid disorder, Alzheimer's, Parkinson's, Cancer, are some of the health problems caused by heavy metal pollution. The environmental protection has long since become a major political and economic issue. Among the priorities, include safeguarding water resources. All countries of the world are concerned either because they lack water or because they pollute it. There are several ways to remove these heavy metals; ion exchange by zeolites is one of these ways, which our work is based on. Zeolites were among the main clean up materials by either adsorption, ion exchange and catalysis. Lead and cadmium, heavy metals, is one of the main dangers fulminate the flora and fauna of our small planet, so many resources are deployed to remedy them. The elimination of lead and cadmium by ion exchange has been extensively studied. However, exchange capacity of more and larger formed a major challenge for researchers and industry.

Keywords: composite, ion excahnge, zeolite LTA, zeolite x

Procedia PDF Downloads 239
288 Influence of Major Axis on the Aerodynamic Characteristics of Elliptical Section

Authors: K. B. Rajasekarababu, J. Karthik, G. Vinayagamurthy

Abstract:

This paper is intended to explain the influence of major axis on aerodynamic characteristics of elliptical section. Many engineering applications such as off shore structures, bridge piers, civil structures and pipelines can be modelled as a circular cylinder but flow over complex bodies like, submarines, Elliptical wing, fuselage, missiles, and rotor blades, in which the parameters such as axis ratio can influence the flow characteristics of the wake and nature of separation. Influence of Major axis in Flow characteristics of elliptical sections are examined both experimentally and computationally in this study. For this research, four elliptical models with varying major axis [*AR=1, 4, 6, 10] are analysed. Experimental works have been conducted in a subsonic wind tunnel. Furthermore, flow characteristics on elliptical model are predicted from k-ε turbulence model using the commercial CFD packages by pressure based transient solver with Standard wall conditions.The analysis can be extended to estimation and comparison of Drag coefficient and Fatigue analysis of elliptical sections.

Keywords: elliptical section, major axis, aerodynamic characteristics, k-ε turbulence model

Procedia PDF Downloads 400
287 Fully Printed Strain Gauges: A Comparison of Aerosoljet-Printing and Micropipette-Dispensing

Authors: Benjamin Panreck, Manfred Hild

Abstract:

Strain sensors based on a change in resistance are well established for the measurement of forces, stresses, or material fatigue. Within the scope of this paper, fully additive manufactured strain sensors were produced using an ink of silver nanoparticles. Their behavior was evaluated by periodic tensile tests. Printed strain sensors exhibit two advantages: Their measuring grid is adaptable to the use case and they do not need a carrier-foil, as the measuring structure can be printed directly onto a thin sprayed varnish layer on the aluminum specimen. In order to compare quality characteristics, the sensors have been manufactured using two different technologies, namely aerosoljet-printing and micropipette-dispensing. Both processes produce structures which exhibit continuous features (in contrast to what can be achieved with droplets during inkjet printing). Briefly summarized the results show that aerosoljet-printing is the preferable technology for specimen with non-planar surfaces whereas both technologies are suitable for flat specimen.

Keywords: aerosoljet-printing, micropipette-dispensing, printed electronics, printed sensors, strain gauge

Procedia PDF Downloads 178
286 Mistuning in Radial Inflow Turbines

Authors: Valentina Futoryanova, Hugh Hunt

Abstract:

One of the common failure modes of the diesel engine turbochargers is high cycle fatigue of the turbine wheel blades. Mistuning of the blades due to the casting process is believed to contribute to the failure mode. Laser vibrometer is used to characterize mistuning for a population of turbine wheels through the analysis of the blade response to piezo speaker induced noise. The turbine wheel design under investigation is radial and is typically used in 6-12 L diesel engine applications. Amplitudes and resonance frequencies are reviewed and summarized. The study also includes test results for a paddle wheel that represents a perfectly tuned system and acts as a reference. Mass spring model is developed for the paddle wheel and the model suitability is tested against the actual data. Randomization is applied to the stiffness matrix to model the mistuning effect in the turbine wheels. Experimental data is shown to have good agreement with the model.

Keywords: vibration, radial turbines, mistuning, turbine blades, modal analysis, periodic structures, finite element

Procedia PDF Downloads 406
285 Water's Role in Creating a Sense of Belonging

Authors: Narges Nejati

Abstract:

Nowadays as science hasten toward technology, only quantity of construction noticed and there is a little attention toward quality of construction and there is no usage for element which was prevalent in traditional architecture. This is the cause of this issue that nowadays we see building that most of them just keep you from heat and cold of outside environment and there is no trace of any culture of their country or nation in it. And although we know that man is a creature that adores beauty by his nature, but this spiritual need of him is ignored. And designers by taking an enormous price instead of planning (spiritual designing) to release peace, they attend to planning which make a human soul bothered and ill. The present research is trying to illustrate price of concepts and principles of water usage as one of the elements of nature and also shows the water application in some of the Iranian constructions and the results show the motif of using water in constructions and also some benefits of using it in constructions. And also this matter can causes a reconnection between nature and constructing of a beautiful environment which is consonant and proportional with man’ physical, spiritual and cultural needs. And causes peace and comfort of men. A construction which man feels a friendly atmosphere in them which he has a sense of belonging to them not a construction which arouses feeling of weariness and fatigue.

Keywords: water usage, belonging, sustainable architecture, urban design

Procedia PDF Downloads 351
284 Finite Element Analysis of Hollow Structural Shape (HSS) Steel Brace with Infill Reinforcement under Cyclic Loading

Authors: Chui-Hsin Chen, Yu-Ting Chen

Abstract:

Special concentrically braced frames is one of the seismic load resisting systems, which dissipates seismic energy when bracing members within the frames undergo yielding and buckling while sustaining their axial tension and compression load capacities. Most of the inelastic deformation of a buckling bracing member concentrates in the mid-length region. While experiencing cyclic loading, the region dissipates most of the seismic energy being input into the frame. Such a concentration makes the braces vulnerable to failure modes associated with low-cycle fatigue. In this research, a strategy to improve the cyclic behavior of the conventional steel bracing member is proposed by filling the Hollow Structural Shape (HSS) member with reinforcement. It prevents the local section from concentrating large plastic deformation caused by cyclic loading. The infill helps spread over the plastic hinge region into a wider area hence postpone the initiation of local buckling or even the rupture of the braces. The finite element method is introduced to simulate the complicated bracing member behavior and member-versus-infill interaction under cyclic loading. Fifteen 3-D-element-based models are built by ABAQUS software. The verification of the FEM model is done with unreinforced (UR) HSS bracing members’ cyclic test data and aluminum honeycomb plates’ bending test data. Numerical models include UR and filled HSS bracing members with various compactness ratios based on the specification of AISC-2016 and AISC-1989. The primary variables to be investigated include the relative bending stiffness and the material of the filling reinforcement. The distributions of von Mises stress and equivalent plastic strain (PEEQ) are used as indices to tell the strengths and shortcomings of each model. The result indicates that the change of relative bending stiffness of the infill is much more influential than the change of material in use to increase the energy dissipation capacity. Strengthen the relative bending stiffness of the reinforcement results in additional energy dissipation capacity to the extent of 24% and 46% in model based on AISC-2016 (16-series) and AISC-1989 (89-series), respectively. HSS members with infill show growth in 𝜂Local Buckling, normalized energy cumulated until the happening of local buckling, comparing to UR bracing members. The 89-series infill-reinforced members have more energy dissipation capacity than unreinforced 16-series members by 117% to 166%. The flexural rigidity of infills should be less than 29% and 13% of the member section itself for 16-series and 89-series bracing members accordingly, thereby guaranteeing the spread over of the plastic hinge and the happening of it within the reinforced section. If the parameters are properly configured, the ductility, energy dissipation capacity, and fatigue-life of HSS SCBF bracing members can be improved prominently by the infill-reinforced method.

Keywords: special concentrically braced frames, HSS, cyclic loading, infill reinforcement, finite element analysis, PEEQ

Procedia PDF Downloads 72
283 Studying the Behavior of Asphalt Mix and Their Properties in the Presence of Nano Materials

Authors: Aman Patidar, Dipankar Sarkar, Manish Pal

Abstract:

Due to rapid development, increase in the traffic load, higher traffic volume and seasonal variation in temperature, asphalt pavement shows distresses like rutting, fatigue and thermal cracking etc. because of this pavement fails during service life so that bitumen needs to be modified with some additive. In this study VG30 grade bitumen modify with addition of nanosilica with 1% to 5% (increment of 1%) by weight of bitumen. Hot mix asphalt (HMA) have higher mixing, laying and rolling temperatures which leads to higher consumption of fuel. To address this issue, a nano material named ZycoTherm which is chemical warm mix asphalt (WMA) additive is added to bitumen. Nanosilica modification (NSMB) results in the increase in stability compared to unmodified bitumen (UMB). WMA modified mix shows slightly higher stability than UMB and NSMB in a lower bitumen content. The Retained stability and tensile strength ratio (TSR) is more than 75% and 80% respectively for both mixes. Nanosilica with WMA has more resistant to temperature susceptibility, moisture susceptibility and short term aging than NSMB.

Keywords: HMA, nanosilica, NSMB, temperature, TSR, UMB, WMA

Procedia PDF Downloads 279
282 Optimizing PelletPAVE Rubberized Asphalt MIX Design Using Gyratory Compaction and Volumetrics

Authors: Hussain Al-Baghli

Abstract:

In comparison to hot mix asphalt (HMAs) composed of non-modified bitumens, the superior performance of rubberized HMAs is very well documented, and numerous trials in the USA and elsewhere have demonstrated excellent performance in terms of creep, fatigue, and durability. In this investigation, rubberized HMA technology was examined to address the most critical forms of pavement distresses in the State of Kuwait, namely, high-temperature rutting and moisture-induced raveling. Pelletpave additive was selected as the preferred technology since it offered a convenient method of directly modifying the exiting local HMA recipe without having to polymer modify the bitumen. Experimental work using various Pelletpave contents was carried out at Kuwait Institute for Scientific Research (KISR) to design an optimum rubberized HMA formulation prior to conducting a pilot-scale road trial. With the aid of a gyratory compactor, the compaction and volumetric properties of HMAs containing 2.5% and 3.0% Pelletpave additive were investigated at a range of bitumen contents, all by mass of total mix.

Keywords: modified bitumen, rubberized hot mix asphalt, gyratory compaction, volumetric properties

Procedia PDF Downloads 147
281 Modeling and Analysis of a Cycling Prosthetic

Authors: John Tolentino, Yong Seok Park

Abstract:

There are currently many people living with limb loss in the USA. The main causes for amputation can range from vascular disease, to trauma, or cancer. This number is expected increase over the next decade. Many patients have a single prosthetic for the first year but end up getting a second one to accommodate their changing physique. Afterwards, the prosthesis gets replaced every three to five years depending on how often it is used. This could cost the patient up to $500,000 throughout their lifetime. Complications do not end there, however. Due to the absence of nerves, it becomes more difficult to traverse terrain with a prosthetic. Moving on an incline or decline becomes difficult, thus curbs and stairs can be a challenge. Certain physical activities, such as cycling, could be even more strenuous. It will need to be relearned to accommodate for the change in weight, center of gravity, and transfer of energy from the leg to the pedal. The purpose of this research project is to develop a new, alternate below-knee cycling prosthetic using Dieter & Schmidt’s design process approach. It will be subjected to fatigue analysis under dynamic loading to observe the limitations as well as the strengths and weaknesses of the prosthetic. Benchmark comparisons will be made between existing prosthetics and the proposed one, examining the benefits and disadvantages. The resulting prosthetic will be 3D printed using acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) plastic.

Keywords: 3D Printing, Cycling, Prosthetic design, Synthetic design.

Procedia PDF Downloads 109
280 Investigation on the Properties of Particulate Reinforced AA2014 Metal Matrix Composite Materials Produced by Vacuum Infiltration Method

Authors: Isil Kerti, Onur Okur, Sibel Daglilar, Recep Calin

Abstract:

Particulate reinforced aluminium matrix composites have gained more importance in automotive, aeronautical and defense industries due to their specific properties like as low density, high strength and stiffness, good fatigue strength, dimensional stability at high temperature and acceptable tribological properties. In this study, 2014 Aluminium alloy used as a matrix material and B₄C and SiC were selected as reinforcements components. For production of composites materials, vacuum infiltration method was used. In the experimental studies, the reinforcement volume ratios were defined by mixing as totally 10% B₄C and SiC. Aging treatment (T6) was applied to the specimens. The effect of T6 treatment on hardness was determined by using Brinell hardness test method. The effects of the aging treatment on microstructure and chemical structure were analysed by making XRD, SEM and EDS analysis on the specimens.

Keywords: metal matrix composite, vacumm infiltration method, aluminum metal matrix, mechanical feature

Procedia PDF Downloads 281
279 Impact of Physiotherapy on COVID-19 and Post COVID-19 Patients, (Expert Physiotherapy and American Hospital, Case Study)

Authors: Jonida Hasanaj

Abstract:

Abstract: Four years after the pandemic, numerous studies discuss the long-term effects of COVID-19 on patients, with chronic fatigue syndrome being a prominent concern. Understanding the mechanisms behind this syndrome is crucial for developing prevention, treatment, and rehabilitation strategies. The appropriateness of physiotherapeutic treatment in covid 19 and post-COVID-19 patients has remained uncertain due to inconsistent diagnostic criteria, highlighting the need for further research. This paper intends to offer guidelines and specific suggestions for hospital-based physical therapists managing COVID-19 hospitalized patients at ‘’Expert Physiotherapy’ and ’American Hospital’ in Albania using a national approach in accordance with worldwide initiatives. Several studies indicate that chronic tiredness syndrome and high intracranial pressure could result from failure of the post-Covid-19 lymphatic system. Enabling the patient to intensify their physical activity and enhance their ability to move, exercise, and even resume a regular life cycle is the aim of physiotherapy treatment.

Keywords: mobility, physiotherapy, post-covid 19, rehabilitation, results

Procedia PDF Downloads 34
278 Activation Parameters of the Low Temperature Creep Controlling Mechanism in Martensitic Steels

Authors: M. Münch, R. Brandt

Abstract:

Martensitic steels with an ultimate tensile strength beyond 2000 MPa are applied in the powertrain of vehicles due to their excellent fatigue strength and high creep resistance. However, the creep controlling mechanism in martensitic steels at ambient temperatures up to 423 K is not evident. The purpose of this study is to review the low temperature creep (LTC) behavior of martensitic steels at temperatures from 363 K to 523 K. Thus, the validity of a logarithmic creep law is reviewed and the stress and temperature dependence of the creep parameters α and β are revealed. Furthermore, creep tests are carried out, which include stepped changes in temperature or stress, respectively. On one hand, the change of the creep rate due to a temperature step provides information on the magnitude of the activation energy of the LTC controlling mechanism and on the other hand, the stress step approach provides information on the magnitude of the activation volume. The magnitude, the temperature dependency, and the stress dependency of both material specific activation parameters may deliver a significant contribution to the disclosure of the nature of the LTC rate controlling mechanism.

Keywords: activation parameters, creep mechanisms, high strength steels, low temperature creep

Procedia PDF Downloads 146
277 Postural Orthostatic Tachycardia Syndrome: A Case Study and Discussion of Its Epidemiology, Pathophysiology, Diagnosis, and Management

Authors: Zayd Parekh, Amish Prasad, Baraa Souman

Abstract:

Postural orthostatic tachycardia syndrome (POTS) is characterized by orthostatic intolerance due to an exaggerated tachycardia in response to standing upright. This exaggerated orthostatic tachycardia is defined as the heart rate (HR) rising 30 beats above a baseline value while supine or seated within ten minutes. The tachycardia can lead to symptoms of orthostatic intolerance such as palpitations, lightheadedness, exercise intolerance, fatigue, and anxiety. POTS can go undiagnosed for many years due to its similarities with other cardiac and psychiatric conditions and nonspecific presentation, making it crucial to raise awareness for it in the medical field. The following case study discusses a 30-year-old female who was evaluated in the emergency room several times before being referred to the clinic for POTS. An overview of what tests are performed with this patient is also provided, highlighting the diagnostic work-up for POTS and the process of ruling out other differentials being considered. Finally, the epidemiology, the various theories regarding its pathophysiology, the diagnostic process, and pharmacological and non-pharmacological management for POTS are reviewed.

Keywords: orthostatic intolerance, postural orthostatic tachycardia syndrome, syncope, tachycardia

Procedia PDF Downloads 46
276 An Analytical Approach to Calculate Thermo-Mechanical Stresses in Integral Abutment Bridge Piles

Authors: Jafar Razmi

Abstract:

Integral abutment bridges are bridges that do not have joints. If these bridges are subject to large seasonal and daily temperature variations, the expansion and contraction of the bridge slab is transferred to the piles. Since the piles are deep into the soil, displacement induced by slab can cause bending and stresses in piles. These stresses cause fatigue and failure of piles. A complex mechanical interaction exists between the slab, pile, soil and abutment. This complex interaction needs to be understood in order to calculate the stresses in piles. This paper uses a mechanical approach in developing analytical equations for the complex structure to determine the stresses in piles. The solution to these analytical solutions is developed and compared with finite element analysis results and experimental data. Our comparison shows that using analytical approach can accurately predict the displacement in piles. This approach offers a simplified technique that can be utilized without the need for computationally extensive finite element model.

Keywords: integral abutment bridges, piles, thermo-mechanical stress, stress and strains

Procedia PDF Downloads 214
275 Investigation of the Multiaxial Pedicle Screw Tulip Design Using Finite Element Analysis

Authors: S. Daqiqeh Rezaei, S. Mohajerzadeh, M. R. Sharifi

Abstract:

Pedicle screws are used to stabilize vertebrae and treat several types of spinal diseases and injuries. Multiaxial pedicle screws are a type of pedicle screw that increase surgical versatility, but they also increase design complexity. Failure of multiaxial pedicle screws caused by static loading, dynamic loading and fatigue can lead to irreparable damage to the patient. Inappropriate deformation of the multiaxial pedicle screw tulip can cause system failure. Investigation of deformation and stress in these tulips can be employed to optimize multiaxial pedicle screw design. The sensitivity of this matter necessitates precise analyzing and modeling of pedicle screws. In this work, three commercial multiaxial pedicle screw tulips and a newly designed tulip are investigated using finite element analysis. Employing video measuring machine (VMM), tulips are modeled. Afterwards, utilizing ANSYS, static analysis is performed on these models. In the end, stresses and displacements of the models are compared.

Keywords: pedicle screw, multiaxial pedicle screw, finite element analysis, static analysis

Procedia PDF Downloads 333
274 Solutions for Large Diameter Piles Stifness Used in Offshore Wind Turbine Farms

Authors: M. H. Aissa, Amar Bouzid Dj

Abstract:

As known, many countries are now planning to build new wind farms with high capacity up to 5MW. Consequently, the size of the foundation increase. These kinds of structures are subject to fatigue damage from environmental loading mainly due to wind and waves as well as from cyclic loading imposed through the rotational frequency (1P) through mass and aerodynamic imbalances and from the blade passing frequency (3P) of the wind turbine which make them behavior dynamically very sensitive. That is why natural frequency must be determined with accuracy from the existing data of the soil and the foundation stiffness sources of uncertainties, to avoid the resonance of the system. This paper presents analytical expressions of stiffness foundation with large diameter in linear soil behavior in different soil stiffness profile. To check the accuracy of the proposed formulas, a mathematical model approach based on non-dimensional parameters is used to calculate the natural frequency taking into account the soil structure interaction (SSI) compared with the p-y method and measured frequency in the North Sea Wind farms.

Keywords: offshore wind turbines, semi analytical FE analysis, p-y curves, piles foundations

Procedia PDF Downloads 440
273 Subacute Thyroiditis Triggered by Sinovac and Oxford-AstraZeneca Vaccine

Authors: Ratchaneewan Salao, Steven W. Edwards, Kiatichai Faksri, Kanin Salao

Abstract:

Background: A two-dose regimen of COVID-19 vaccination (inactivated whole virion SARS-CoV-2 and adenoviral vector) has been widely used. Side effects are very low, but several adverse effects have been reported. Methods: A 40-year-old female patient, with a previous history of thyroid goitre, developed severe neck pain, headache, nausea and fatigue 7-days after receiving second vaccination with Vaxzevria® (Oxford-AstraZeneca). Clinical and laboratory findings, including thyroid function tests and ultrasound of thyroid glands, were performed. Results: Her left thyroid gland was multinodular enlarged, and severely tender on palpation. She had difficulty in swallowing and had tachycardia but no signs of hyperthyroidism. Laboratory results supported a diagnosis of subacute thyroiditis. She was prescribed NSAID (Ibuprofen 400 mg) and dexamethasone for 3-days and her symptoms resolved. Conclusions: Although this is an extremely rare event, physicians may encounter more cases of this condition due to the extensive vaccination program using this combination of vaccines.

Keywords: SARS-CoV-2, adenoviral vector vaccines, vaccination, subacute thyroiditis

Procedia PDF Downloads 39
272 Occupational Safety in Construction Projects

Authors: Heba Elbibas, Esra Gnijeewa, Zedan Hatush

Abstract:

This paper presents research on occupational safety in construction projects, where the importance of safety management in projects was studied, including the preparation of a safety plan and program for each project and the identification of the responsibilities of each party to the contract. The research consists of two parts: 1-Field visits: which were field visits to three construction projects, including building projects, road projects, and tower installation. The safety level of these projects was evaluated through a checklist that includes the most important safety elements in terms of the application of these items in the projects. 2-Preparation of a questionnaire: which included supervisors and engineers and aimed to determine the level of awareness and commitment of different project categories to safety standards. The results showed the following: i) There is a moderate occupational safety policy. ii) The preparation and storage of maintenance reports are not fully complied with. iii) There is a moderate level of training on occupational safety for project workers. iv) The company does not impose penalties on safety violators permanently. v) There is a moderate policy for equipment and machinery safety. vi) Self-injuries occur due to (fatigue, lack of attention, deliberate error, and emotional factors), with a rate of 82.4%.

Keywords: management, safety, occupational safety, classification

Procedia PDF Downloads 67
271 The World of Fireworks Factory Working Children in Bocaue, Bulacan

Authors: Agnes Crisostomo, Alvin Joseph Mapoy

Abstract:

This is a qualitative study which focuses on ten (10) children, with a mean age of 13.6, working in fireworks factories in Bocaue, Bulacan. The municipality of Bocaue was chosen since it is the center of trade for fireworks, and child laborers can easily penetrate in factories here. The researcher wanted to know what the possible negative effects are caused by working at an early age of a child in the physical, psychosocial, intellectual and emotional aspects of life. Results showed that social status of their parents and their lack of income forced the children to work for their family. Second, the child laborers still allot time for studying. They still do not give up in pursuing education even if they experience fatigue and illness which affect their physical development. Third, working has a great influence to the child’s life. Fourth, through socializing with others, they become more aware of life’s hardships. Usually, their co-workers are also their family members and friends; this is how they know the social status is their place, that due to poverty even the children should work for a living. Fifth, these child laborers are still hoping for a better future. Despite of their poor situation, they are still hoping that they can turn it upside down through education, perseverance and determination.

Keywords: child labor, emotional, intellectual, psychosocial

Procedia PDF Downloads 236
270 A Next-Generation Pin-On-Plate Tribometer for Use in Arthroplasty Material Performance Research

Authors: Lewis J. Woollin, Robert I. Davidson, Paul Watson, Philip J. Hyde

Abstract:

Introduction: In-vitro testing of arthroplasty materials is of paramount importance when ensuring that they can withstand the performance requirements encountered in-vivo. One common machine used for in-vitro testing is a pin-on-plate tribometer, an early stage screening device that generates data on the wear characteristics of arthroplasty bearing materials. These devices test vertically loaded rotating cylindrical pins acting against reciprocating plates, representing the bearing surfaces. In this study, a pin-on-plate machine has been developed that provides several improvements over current technology, thereby progressing arthroplasty bearing research. Historically, pin-on-plate tribometers have been used to investigate the performance of arthroplasty bearing materials under conditions commonly encountered during a standard gait cycle; nominal operating pressures of 2-6 MPa and an operating frequency of 1 Hz are typical. There has been increased interest in using pin-on-plate machines to test more representative in-vivo conditions, due to the drive to test 'beyond compliance', as well as their testing speed and economic advantages over hip simulators. Current pin-on-plate machines do not accommodate the increased performance requirements associated with more extreme kinematic conditions, therefore a next-generation pin-on-plate tribometer has been developed to bridge the gap between current technology and future research requirements. Methodology: The design was driven by several physiologically relevant requirements. Firstly, an increased loading capacity was essential to replicate the peak pressures that occur in the natural hip joint during running and chair-rising, as well as increasing the understanding of wear rates in obese patients. Secondly, the introduction of mid-cycle load variation was of paramount importance, as this allows for an approximation of the loads present in a gait cycle to be applied and to test the fatigue properties of materials. Finally, the rig must be validated against previous-generation pin-on-plate and arthroplasty wear data. Results: The resulting machine is a twelve station device that is split into three sets of four stations, providing an increased testing capacity compared to most current pin-on-plate tribometers. The loading of the pins is generated using a pneumatic system, which can produce contact pressures of up to 201 MPa on a 3.2 mm² round pin face. This greatly exceeds currently achievable contact pressures in literature and opens new research avenues such as testing rim wear of mal-positioned hip implants. Additionally, the contact pressure of each set can be changed independently of the others, allowing multiple loading conditions to be tested simultaneously. Using pneumatics also allows the applied pressure to be switched ON/OFF mid-cycle, another feature not currently reported elsewhere, which allows for investigation into intermittent loading and material fatigue. The device is currently undergoing a series of validation tests using Ultra-High-Molecular-Weight-Polyethylene pins and 316L Stainless Steel Plates (polished to a Ra < 0.05 µm). The operating pressures will be between 2-6 MPa, operating at 1 Hz, allowing for validation of the machine against results reported previously in the literature. The successful production of this next-generation pin-on-plate tribometer will, following its validation, unlock multiple previously unavailable research avenues.

Keywords: arthroplasty, mechanical design, pin-on-plate, total joint replacement, wear testing

Procedia PDF Downloads 68
269 Comparison of Meshing Stiffness of Altered Tooth Sum Spur Gear Tooth with Different Pressure Angles

Authors: H. K. Sachidananda, K. Raghunandana, B. Shivamurthy

Abstract:

The estimation of gear tooth stiffness is important for finding the load distribution between the gear teeth when two consecutive sets of teeth are in contact. Based on dynamic model a C-program has been developed to compute mesh stiffness. By using this program position dependent mesh stiffness of spur gear tooth for various profile shifts have been computed for a fixed center distance and altering tooth-sum gearing (100 by ± 4%). It is found that the C-program using dynamic model is one of the rapid soft computing technique which helps in design of gears. The mesh tooth stiffness along the path of contact is studied for both 20° and 25° pressure angle gears at various profile shifts. Better tooth stiffness is noticed in case of negative alteration tooth-sum gears compared to standard and positive alteration tooth-sum gears. Also, in case of negative alteration tooth-sum gearing better mesh stiffness is noticed in 20° pressure angle when compared to 25°.

Keywords: altered tooth-sum gearing, bending fatigue, mesh stiffness, spur gear

Procedia PDF Downloads 296
268 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Annulus Pulley

Authors: Bijit Kalita, K. V. N. Surendra

Abstract:

The pulley works under both compressive loading due to contacting belt in tension and central torque due to cause rotation. In a power transmission system, the belt pulley assemblies offer a contact problem in the form of two mating cylindrical parts. In this work, we modeled a pulley as a heavy two-dimensional circular disk. Stress analysis due to contact loading in the pulley mechanism is performed. Finite element analysis (FEA) is conducted for a pulley to investigate the stresses experienced on its inner and outer periphery. In most of the heavy-duty applications, most frequently used mechanisms to transmit power in applications such as automotive engines, industrial machines, etc. is Belt Drive. Usually, very heavy circular disks are used as pulleys. A pulley could be entitled as a drum and may have a groove between two flanges around the circumference. A rope, belt, cable or chain can be the driving element of a pulley system that runs over the pulley inside the groove. A pulley is experienced by normal and shear tractions on its contact region in the process of motion transmission. The region may be belt-pulley contact surface or pulley-shaft contact surface. In 1895, Hertz solved the elastic contact problem for point contact and line contact of an ideal smooth object. Afterward, this hypothesis is generally utilized for computing the actual contact zone. Detailed stress analysis in such contact region of such pulleys is quite necessary to prevent early failure. In this paper, the results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. Based on the literature on contact stress problem induced in the wide field of applications, generated stress distribution on the shaft-pulley and belt-pulley interfaces due to the application of high-tension and torque was evaluated in this study using FEA concepts. Finally, the results obtained from ANSYS (APDL) were compared with the Hertzian contact theory. The study is mainly focused on the fatigue life estimation of a rotating part as a component of an engine assembly using the most famous Paris equation. Digital Image Correlation (DIC) analyses have been performed using the open-source software. From the displacement computed using the images acquired at a minimum and maximum force, displacement field amplitude is computed. From these fields, the crack path is defined and stress intensity factors and crack tip position are extracted. A non-linear least-squares projection is used for the purpose of the estimation of fatigue crack growth. Further study will be extended for the various application of rotating machinery such as rotating flywheel disk, jet engine, compressor disk, roller disk cutter etc., where Stress Intensity Factor (SIF) calculation plays a significant role on the accuracy and reliability of a safe design. Additionally, this study will be progressed to predict crack propagation in the pulley using maximum tangential stress (MTS) criteria for mixed mode fracture.

Keywords: crack-tip deformations, contact stress, stress concentration, stress intensity factor

Procedia PDF Downloads 95
267 Experimental and Numerical Investigation of “Machining Induced Residual Stresses” during Orthogonal Machining of Alloy Steel AISI 4340

Authors: Theena Thayalan, K. N. Ramesh Babu

Abstract:

Machining induced residual stress (RS) is one of the most important surface integrity parameters that characterize the near surface layer of a mechanical component, which plays a crucial role in controlling the performance, especially its fatigue life. Since experimental determination of RS is expensive and time consuming, it would be of great benefit if they could be predicted. In such case, it would be possible to select the cutting parameters required to produce a favorable RS profile. In the present study, an effort has been made to develop a 'two dimensional finite element model (FEM)' to simulate orthogonal cutting process and to predict surface and sub-surface RS using the commercial FEA software DEFORM-2D. The developed finite element model has been validated through experimental investigation of RS. In the experimentation, the orthogonal cutting tests were carried out on AISI 4340 by varying the cutting speed (VC) and uncut chip thickness (f) at three levels and the surface & sub-surface RS has been measured using XRD and Electro polishing techniques. The comparison showed that the RS obtained using developed numerical model is in reasonable agreement with that of experimental data.

Keywords: FEM, machining, residual stress, XRF

Procedia PDF Downloads 315
266 Kinematic Hardening Parameters Identification with Respect to Objective Function

Authors: Marina Franulovic, Robert Basan, Bozidar Krizan

Abstract:

Constitutive modelling of material behaviour is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behaviour of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behaviour modelling.

Keywords: genetic algorithm, kinematic hardening, material model, objective function

Procedia PDF Downloads 295
265 Weathering of a Calcarenite Stone in the Archaeological Site of Volubilis – Morocco

Authors: Issam Aalil, Kevin Beck, Khalid Cherkaoui, Xavier Brunetaud, Ali Chaaba, Muzahim Al-Mukhtar

Abstract:

Volubilis is the most important archaeological site in Morocco. It was founded in the 3rd century B.C about thirty kilometres north of Meknes and has been registered on the UNESCO World Heritage list since 1997. The site is located in a region where reigns the semi-arid continental climate, characterized by strong thermal amplitudes. A beige-yellowish calcarenite limestone is the most largely used on Volubilis site, representing about 60% of the total volume of building stones. This limestone is mainly affected by scaling and sanding according to field observations. In order to preserve monuments of this site, characterization of calcarenite weathering is essential. This work aims at investigating the nature of the dominant weathering. For this goal, mineralogical compositions of deteriorated and fresh samples are compared. Besides, the risk of damage by thermal stresses is estimated. The results of this study show that there is no major difference observed between the mineralogy of the fresh and weathered calcarenite samples. Otherwise, thermal stresses may have an important role in the weathering of calcarenite limestone by fatigue.

Keywords: characterisation, stone, thermal stresses, Volubilis, weathering

Procedia PDF Downloads 320
264 Step into the Escalator’s Fractal Behavior by Using the Poincare Map

Authors: Ali Albadri

Abstract:

Step band in an escalator moves in a cyclic periodic pattern. Similarly, most if not all of the components and sub-assemblies in the escalator operate in the same way. If you mark up one step in the step band of an escalator and stand next to the escalator, on the incline, to watch the marked-up step when it passes by, you ask yourself, does the marked up step behaves exactly the same way during each revolution when it passes you by again and again? We can say that; there is some similarity in this example and the example when an astronomer watches planets in the sky, and he or she asks himself or herself, does each planet intersects the plan of observation in the same position for every pantry rotation? For a fact, we know for the answer to the second example is no, because scientist, astronomers, and mathematicians have proven that planets deviate from their paths to take new paths during their planetary moves, albeit with minimal change. But what about the answer to the question in the first example? considering that there is increase in the wear and tear of components with time in the step, in the step band, in the tracks and in many other places in the escalator. There is also the accumulation of fatigue in the components and sub-assemblies. This research is part of many studies which we are conducting to address the answer for the question in the first example. We have been using the fractal dimension as a quantities tool and the Poincare map as a qualitative tool. This study has shown that the fractal dimension value and the shape and distribution of the orbits in the Poincare map has significant correlation with the quality of the mechanical components and sub-assemblies in the escalator.

Keywords: fractal dimension, Poincare map, rugby ball orbit, worm orbit

Procedia PDF Downloads 31
263 An Alternative and Complementary Medicine Method in Vulnerable Pediatric Cancer Patients: Yoga

Authors: Ç. Erdoğan, T. Turan

Abstract:

Pediatric cancer patients experience multiple distressing, challenges, physical symptom such as fatigue, pain, sleep disturbance, and balance impairment that continue years after treatment completion. In recent years, yoga is often used in children with cancer to cope with these symptoms. Yoga practice is defined as a unique physical activity that combines physical practice, breath work and mindfulness/meditation. Yoga is an increasingly popular mind-body practice also characterized as a mindfulness mode of exercise. This study aimed to evaluate the impact of yoga intervention of children with cancer. This article planned searching the literature in this field. It has been determined that individualized yoga is feasible and provides benefits for inpatient children, improves health-related quality of life, physical activity levels, physical fitness. After yoga program, children anxiety score decreases significantly. Additionally, individualized yoga is feasible for inpatient children receiving intensive chemotherapy. As a result, yoga is an alternative and complementary medicine that can be safely used in children with cancer.

Keywords: cancer treatment, children, nursing, yoga

Procedia PDF Downloads 194
262 Properties Modification of Fiber Metal Laminates by Nanofillers

Authors: R. Eslami-Farsani, S. M. S. Mousavi Bafrouyi

Abstract:

During past decades, increasing demand of modified Fiber Metal Laminates (FMLs) has stimulated a strong trend towards the development of these structures. FMLs contain several thin layers of metal bonded with composite materials. Characteristics of FMLs such as low specific mass, high bearing strength, impact resistance, corrosion resistance and high fatigue life are attractive. Nowadays, increasing development can be observed to promote the properties of polymer-based composites by nanofillers. By dispersing strong, nanofillers in polymer matrix, modified composites can be developed and tailored to individual applications. On the other hand, the synergic effects of nanoparticles such as graphene and carbon nanotube can significantly improve the mechanical, electrical and thermal properties of nanocomposites. In present paper, the modifying of FMLs by nanofillers and the dispersing of nanoparticles in the polymers matrix are discussed. The evaluations have revealed that this approach is acceptable. Finally, a prospect is presented. This paper will lead to further work on these modified FML species.

Keywords: fiber metal laminate, nanofiller, polymer matrix, property modification

Procedia PDF Downloads 180
261 Investigating Changes in Hip and Knee Joints Position in Girls with Patellofemoral Syndrome

Authors: Taraneh Ashrafi Motlagh, Abdolrasoul Daneshjoo

Abstract:

Background and Aim: Increased fatigue causes injuries; the purpose of this article was to investigate the angular displacement of the hip and knee joints in girls with patellofemoral syndrome. Materials and Methods: Thirty girls with an average age (age 28.73±1.83, height 168.49±5.59, weight 63.73±12.73) participated in this study in two groups of 15, experimental and control. The jet evaluation test was taken from the subjects' knee and thigh angle, and then these tests were repeated with the application of different inclines of the treadmill; the tests were examined in a neutral position and in a positive and negative slope of 5 degrees. The mean and standard deviation were used to describe the data, and the Shapirovik test was used for the normalization of the data to compare and examine the variables in the two research groups using an independent t-test and repeated analysis of variance at a significance level of 0.05. Conclusion: In general, according to the current studies of people with patellofemoral syndrome, running on steep inclines, as well as running on a treadmill and making the incline angle of the treadmill within the limit of minus 5% to plus 5%, does not affect the improvement of this condition, and it is not recommended. And according to the research, girls with patellofemoral syndrome should be placed on the treadmill at an inclined angle to run.

Keywords: patellofemoral syndrome, angular displacement of the knee, angular displacement of the thigh

Procedia PDF Downloads 32