Search results for: falls detection
3729 Developing Artificial Neural Networks (ANN) for Falls Detection
Authors: Nantakrit Yodpijit, Teppakorn Sittiwanchai
Abstract:
The number of older adults is rising rapidly. The world’s population becomes aging. Falls is one of common and major health problems in the elderly. Falls may lead to acute and chronic injuries and deaths. The fall-prone individuals are at greater risk for decreased quality of life, lowered productivity and poverty, social problems, and additional health problems. A number of studies on falls prevention using fall detection system have been conducted. Many available technologies for fall detection system are laboratory-based and can incur substantial costs for falls prevention. The utilization of alternative technologies can potentially reduce costs. This paper presents the new design and development of a wearable-based fall detection system using an Accelerometer and Gyroscope as motion sensors for the detection of body orientation and movement. Algorithms are developed to differentiate between Activities of Daily Living (ADL) and falls by comparing Threshold-based values with Artificial Neural Networks (ANN). Results indicate the possibility of using the new threshold-based method with neural network algorithm to reduce the number of false positive (false alarm) and improve the accuracy of fall detection system.Keywords: aging, algorithm, artificial neural networks (ANN), fall detection system, motion sensorsthreshold
Procedia PDF Downloads 4963728 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision
Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias
Abstract:
Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.Keywords: healthcare, fall detection, transformer, transfer learning
Procedia PDF Downloads 1433727 Computed Tomography Brain and Inpatient Falls: An Audit Evaluating the Indications and Outcomes
Authors: Zain Khan, Steve Ahn, Kathy Monypenny, James Fink
Abstract:
In Australian public hospitals, there were approximately 34,000 reported inpatient falls between 2015 to 2016. The gold standard for diagnosing intracranial injury is non-contrast enhanced brain computed tomography (CTB). Over a three-month timeframe, a total of one hundred and eighty (180) falls were documented between the hours of 4pm and 8am at a large metro hospital. Only three (3) of these scans demonstrated a positive intra-cranial finding. The rationale for scanning varied. The common indications included a fall with head strike, the presence of blood thinning medication, loss of consciousness, reduced Glasgow Coma Scale (GCS), vomiting and new neurological findings. There are several validated tools to aid in decision-making around ordering CTB scans in the acute setting, but no such accepted tool exists for the inpatient space. With further data collection, spanning a greater length of time and through involving multiple centres, work can be done towards generating such a tool that can be utilized for inpatient falls.Keywords: computed tomography, falls, inpatient, intracranial hemorrhage
Procedia PDF Downloads 1703726 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: fall detection, machine learning, deep learning, pose estimation, tracking
Procedia PDF Downloads 1893725 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System
Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha
Abstract:
Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone
Procedia PDF Downloads 6923724 Orthostatic Hypotension among Patients Aged above 65 Years Admitted to Medical Wards in a Tertiary Care Hospital, Sri Lanka
Authors: G. R. Constantine, M.C.K. Thilakasiri, V.S. Mohottala, T.V. Soundaram, D.S. Rathnayake, E.G.H.E. De Silva, A.L.S. Mohamed, V.R. Weerasekara
Abstract:
Orthostatic hypotension is prevalent in the elderly population, and it is an important risk factor contributing to falls in the elderly. This study aims to evaluate the prevalence of orthostatic hypotension in hospitalized elderly patients, changes in blood pressure during the hospital stay, morbidities associated with it and its association with falls in the elderly. A cross-sectional descriptive study was conducted in the National Hospital of Sri Lanka (NHSL) in a sample of 120 patients of age 65 years or above who were admitted to the medical wards. The demographic, clinical data was obtained by an interviewer-administered questionnaire. Two validated questionnaires were used to assess symptoms and effects of orthostatic hypotension and risk factors associated with falls. Orthostatic hypotension on admission and after 3 days of hospital stay was measured by bed-side mercury sphygmomanometer. Prevalence of orthostatic hypotension among the study population was 63.3%(76 patients). But no significant change in the orthostatic hypotension noted after 3 days of hospital admission (SND 0.61, SE= 5.59, p=0.27). There was no significant association found between orthostatic hypotension and its symptoms (dizziness and vertigo, vision problems, malaise, fatigue, poor concentration, neck stiffness), impact on standing or walking and non-communicable diseases. Falls were experienced by 27.5 % (33 patients) of the study population and prevalence of patients with orthostatic hypotension who had experienced falls was 25.9% (28 patients). In conclusions, orthostatic hypotension is more prevalent among elderly patients, but It wasn’t associated with symptoms, and non-communicable diseases, or as a risk factor for falls in elderly.Keywords: orthostatic hypotension, elderly falls, emergency geriatric, Sri Lanka
Procedia PDF Downloads 1103723 Aging and Falls Profile from Hospital Databases
Authors: Nino Chikhladze, Tamar Dochviri, Nato Pitskhelauri, Maia Bitskhinashvili
Abstract:
Population aging is a key social and demographic trend of the 21st century. Falls represent a prevalent geriatric syndrome that poses significant risks to the health and independence of older adults. The World Health Organization notes a lack of comprehensive data on falls in low- and middle-income countries, complicating the creation of effective prevention programs. To the authors’ best knowledge, no such studies have been conducted in Georgia. The aim of the study is to explore the epidemiology of falls in the elderly population. The hospitalization database of the National Center for Disease Control and Public Health of Georgia was used for the retrospective study. Falls-related injuries were identified using ICD-10 classifications using the class XIX (S and T codes) and class XX for the type of injury (V-Y codes). Statistical data analyses were done using SPSS software version 23.0. The total number of fall-related hospitalizations for individuals aged 65 and older from 2015 to 2021 was 29,697. The study revealed that falls accounted for an average of 63% (ranging from 59% to 66%) of all hospitalizations and 68% (ranging from 65% to 70%) of injury-related hospitalizations during this period. The 69% of all patients were women and 31%-men (Chi2=4482.1, p<0.001). The highest rate of hospitalization was in the age groups 80-84 and 75-79. The probability of fall-related hospitalization was significantly higher in women (p<0.001) compared to men in all age groups except 65-69 years. In the target age group of 65 years and older, the probability of hospitalization increased significantly with an increase in age (p<0.001). The study's results can be leveraged to create evidence-based awareness programs, design targeted multi-domain interventions addressing specific risk factors, and enhance the quality of geriatric healthcare services in Georgia.Keywords: elderly population, falls, geriatric patients, hospitalization, injuries
Procedia PDF Downloads 283722 Making the Right Call for Falls: Evaluating the Efficacy of a Multi-Faceted Trust Wide Approach to Improving Patient Safety Post Falls
Authors: Jawaad Saleem, Hannah Wright, Peter Sommerville, Adrian Hopper
Abstract:
Introduction: Inpatient falls are the most commonly reported patient safety incidents, and carry a significant burden on resources, morbidity, and mortality. Ensuring adequate post falls management of patients by staff is therefore paramount to maintaining patient safety especially in out of hours and resource stretched settings. Aims: This quality improvement project aims to improve the current practice of falls management at Guys St Thomas Hospital, London as compared to our 2016 Quality Improvement Project findings. Furthermore, it looks to increase current junior doctors confidence in managing falls and their use of new guidance protocols. Methods: Multifaceted Interventions implemented included: the development of new trust wide guidelines detailing management pathways for patients post falls, available for intranet access. Furthermore, the production of 2000 lanyard cards distributed amongst junior doctors and staff which summarised these guidelines. Additionally, a ‘safety signal’ email was sent from the Trust chief medical officer to all staff raising awareness of falls and the guidelines. Formal falls teaching was also implemented for new doctors at induction. Using an established incident database, 189 consecutive falls in 2017were retrospectively analysed electronically to assess and compared to the variables measured in 2016 post interventions. A separate serious incident database was used to analyse 50 falls from May 2015 to March 2018 to ascertain the statistical significance of the impact of our interventions on serious incidents. A similar questionnaire for the 2017 cohort of foundation year one (FY1) doctors was performed and compared to 2016 results. Results: Questionnaire data demonstrated improved awareness and utility of guidelines and increased confidence as well as an increase in training. 97% of FY1 trainees felt that the interventions had increased their awareness of the impact of falls on patients in the trust. Data from the incident database demonstrated the time to review patients post fall had decreased from an average of 130 to 86 minutes. Improvement was also demonstrated in the reduced time to order and schedule X-ray and CT imaging, 3 and 5 hours respectively. Data from the serious incident database show that ‘the time from fall until harm was detected’ was statistically significantly lower (P = 0.044) post intervention. We also showed the incidence of significant delays in detecting harm ( > 10 hours) reduced post intervention. Conclusions: Our interventions have helped to significantly reduce the average time to assess, order and schedule appropriate imaging post falls. Delays of over ten hours to detect serious injuries after falls were commonplace; since the intervention, their frequency has markedly reduced. We suggest this will lead to identifying patient harm sooner, reduced clinical incidents relating to falls and thus improve overall patient safety. Our interventions have also helped increase clinical staff confidence, management, and awareness of falls in the trust. Next steps include expanding teaching sessions, improving multidisciplinary team involvement to aid this improvement.Keywords: patient safety, quality improvement, serious incidents, falls, clinical care
Procedia PDF Downloads 1243721 Risk Factors for Fall in Elderly with Diabetes Mellitus Type 2 in Jeddah Saudi Arabia 2022: A Cross-Sectional Study
Authors: Rami S. Alasmari, Abdullah Al Zahrani, Hattan A. Hassani, Hattan A. Hassani, Nawwaf A. Almalky, Abdullah F. Bokhari, Alwalied A. Hafez
Abstract:
Diabetes mellitus type 2 (DMT2) is a major chronic condition that is considered common among elderly people, with multiple potential complications that could contribute to falls. However, this concept is not well understood, thus, the aim of this study is to determine whether diabetes is an independent risk factor for falls in elderly. In this observational cross-sectional study, 309 diabetic patients aged 60 or more who visited the primary healthcare centers of the Ministry of National Guard Health Affairs in Jeddah were chosen via convenience sampling method. To collect the data, Semi-structured Fall Risk Assessment questionnaire and Fall Efficacy Score scale were used. The mean age of the participants was estimated to be 68.5 (SD:7.4) years. Among the participants, 48.2% experienced falling before, and 63.1% of them suffered falls in the past 12-months. The results showed that gait problems were independently associated with a higher likelihood of fall among the elderly patients (OR = 1.98, 95%CI, 1.08 to 3.62, p = 0.026. This paper suggests that diabetes mellitus is an independent fall risk factor among elderly. Therefore, identifying such patients as being at higher risk and prompt referral to a specialist falls clinic is recommended.Keywords: diabetes, fall, elderly, risk factors
Procedia PDF Downloads 1043720 Efficient Signal Detection Using QRD-M Based on Channel Condition in MIMO-OFDM System
Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song
Abstract:
In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better trade off between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.Keywords: MIMO-OFDM, QRD-M, channel condition, BER
Procedia PDF Downloads 3683719 Reduced Complexity of ML Detection Combined with DFE
Authors: Jae-Hyun Ro, Yong-Jun Kim, Chang-Bin Ha, Hyoung-Kyu Song
Abstract:
In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, many detection schemes have been developed to improve the error performance and to reduce the complexity. Maximum likelihood (ML) detection has optimal error performance but it has very high complexity. Thus, this paper proposes reduced complexity of ML detection combined with decision feedback equalizer (DFE). The error performance of the proposed detection scheme is higher than the conventional DFE. But the complexity of the proposed scheme is lower than the conventional ML detection.Keywords: detection, DFE, MIMO-OFDM, ML
Procedia PDF Downloads 6093718 Utilizing Experiential Teaching Strategies to Reduce the Incidence of Falls in Patients in Orthopedic Wards
Authors: Yu-Shi Ye, Jia-Min Wu, Jhih-Ci Li
Abstract:
Background: Most orthopedic inpatients and primary caregivers are elderly, and patients are at high risk of falls. We set up a quality control team to analyze the root cause and found the following issues: 1. The nursing staff did not conduct cognitive assessments of patients and their primary caregivers to ensure that health education content was understood. 2. Nurses prefer to use spoken language in health education but lack the skills to use diverse teaching materials. 3. Newly recruited nurses have insufficient awareness of fall prevention. Methods: The study subjects were 16 nurses in the orthopedic ward of a teaching hospital in central Taiwan. We implemented the following strategies: 1. Developed a fall simulation teaching plan and conducted teaching courses and assessments in the morning meeting; 2. Designed and used a "fall prevention awareness card" to improve the prevention awareness of elderly patients; 3. All staff (including new staff) received experiential education training. Results: In 2021, 40% of patients in the orthopedic wards were aged 60-79 years (792/1979) with a high risk of falls. According to data collection, the incidence of falls in hospitalized patients was 0.04% (5/12651), which exceeded the threshold of 0.02% in our ward. After completing the on-the-job education training in October, the nursing staff expressed that they were more aware of the special situation of fall prevention. Through practical sharing and drills, combined with experiential teaching strategies, nurses can reconstruct the safety awareness of fall prevention and deepen their cognitive memory. Participants scored between 30 and 80 on the pretest (16 students, mean: 72.6) and between 90 and 100 on the post-test (16 students, mean: 92.6), resulting in a 73.8% improvement in overall scores. We have a total of 4 new employees who have all completed the first 3 months of compulsory PGY courses. From January to April 2022, the incidence of falls in hospitalized patients was 0.025% (1/3969). We have made good improvements and will continue to track the outcome. Discussion: In addition to enhancing the awareness of falls among nursing staff, how-to guide patients and primary caregivers to prevent falls is also the focus of improvement. The proper way of health education can be better understood through practical exercises and case sharing.Keywords: experiential teaching strategies, fall prevention, cognitive card, elderly patients, orthopedic wards
Procedia PDF Downloads 533717 Bluetooth Piconet System for Child Care Applications
Authors: Ching-Sung Wang, Teng-Wei Wang, Zhen-Ting Zheng
Abstract:
This study mainly concerns a safety device designed for child care. When children are out of sight or the caregivers cannot always pay attention to the situation, through the functions of this device, caregivers can immediately be informed to make sure that the children do not get lost or hurt, and thus, ensure their safety. Starting from this concept, a device is produced based on the relatively low-cost Bluetooth piconet system and a three-axis gyroscope sensor. This device can transmit data to a mobile phone app through Bluetooth, in order that the user can learn the situation at any time. By simply clipping the device in a pocket or on the waist, after switching on/starting the device, it will send data to the phone to detect the child’s fall and distance. Once the child is beyond the angle or distance set by the app, it will issue a warning to inform the phone owner.Keywords: children care, piconet system, three-axis gyroscope, distance detection, falls detection
Procedia PDF Downloads 5963716 Cigarette Smoke Detection Based on YOLOV3
Abstract:
In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction
Procedia PDF Downloads 863715 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults
Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead
Abstract:
Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.Keywords: classification, falls, health risk factors, machine learning, older adults
Procedia PDF Downloads 1463714 An Architecture for New Generation of Distributed Intrusion Detection System Based on Preventive Detection
Authors: H. Benmoussa, A. A. El Kalam, A. Ait Ouahman
Abstract:
The design and implementation of intrusion detection systems (IDS) remain an important area of research in the security of information systems. Despite the importance and reputation of the current intrusion detection systems, their efficiency and effectiveness remain limited as they should include active defense approach to allow anticipating and predicting intrusions before their occurrence. Consequently, they must be readapted. For this purpose we suggest a new generation of distributed intrusion detection system based on preventive detection approach and using intelligent and mobile agents. Our architecture benefits from mobile agent features and addresses some of the issues with centralized and hierarchical models. Also, it presents advantages in terms of increasing scalability and flexibility.Keywords: Intrusion Detection System (IDS), preventive detection, mobile agents, distributed architecture
Procedia PDF Downloads 5823713 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease
Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg
Abstract:
Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.Keywords: contrast analysis, early fire detection, video smoke detection, video surveillance
Procedia PDF Downloads 4463712 Intrusion Detection Techniques in NaaS in the Cloud: A Review
Authors: Rashid Mahmood
Abstract:
The network as a service (NaaS) usage has been well-known from the last few years in the many applications, like mission critical applications. In the NaaS, prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in NaaS. The authentication and encryption are considered the first solution of the NaaS problem whereas now these are not sufficient as NaaS use is increasing. In this paper, we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in NaaS and aim to compare in some important fields.Keywords: IDS, cloud, naas, detection
Procedia PDF Downloads 3183711 Multichannel Object Detection with Event Camera
Authors: Rafael Iliasov, Alessandro Golkar
Abstract:
Object detection based on event vision has been a dynamically growing field in computer vision for the last 16 years. In this work, we create multiple channels from a single event camera and propose an event fusion method (EFM) to enhance object detection in event-based vision systems. Each channel uses a different accumulation buffer to collect events from the event camera. We implement YOLOv7 for object detection, followed by a fusion algorithm. Our multichannel approach outperforms single-channel-based object detection by 0.7% in mean Average Precision (mAP) for detection overlapping ground truth with IOU = 0.5.Keywords: event camera, object detection with multimodal inputs, multichannel fusion, computer vision
Procedia PDF Downloads 263710 Securing Web Servers by the Intrusion Detection System (IDS)
Authors: Yousef Farhaoui
Abstract:
An IDS is a tool which is used to improve the level of security. We present in this paper different architectures of IDS. We will also discuss measures that define the effectiveness of IDS and the very recent works of standardization and homogenization of IDS. At the end, we propose a new model of IDS called BiIDS (IDS Based on the two principles of detection) for securing web servers and applications by the Intrusion Detection System (IDS).Keywords: intrusion detection, architectures, characteristic, tools, security, web server
Procedia PDF Downloads 4163709 Suggestion for Malware Detection Agent Considering Network Environment
Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung
Abstract:
Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.Keywords: android malware detection, software-defined network, interaction environment, android malware detection, software-defined network, interaction environment
Procedia PDF Downloads 4323708 Improved Skin Detection Using Colour Space and Texture
Authors: Medjram Sofiane, Babahenini Mohamed Chaouki, Mohamed Benali Yamina
Abstract:
Skin detection is an important task for computer vision systems. A good method for skin detection means a good and successful result of the system. The colour is a good descriptor that allows us to detect skin colour in the images, but because of lightings effects and objects that have a similar colour skin, skin detection becomes difficult. In this paper, we proposed a method using the YCbCr colour space for skin detection and lighting effects elimination, then we use the information of texture to eliminate the false regions detected by the YCbCr colour skin model.Keywords: skin detection, YCbCr, GLCM, texture, human skin
Procedia PDF Downloads 4583707 Fall Prevention: Evidence-Based Intervention in Exercise Program Implementation for Keeping Older Adults Safe and Active
Authors: Jennifer Holbein, Maritza Wiedel
Abstract:
Background: Aging is associated with an increased risk of falls in older adults, and as a result, falls have become public health crises. However, the incidence of falls can be reduced through healthy aging and the implementation of a regular exercise and strengthening program. Public health and healthcare professionals authorize the use of evidence‐based, exercise‐focused fall interventions, but there are major obstacles to translating and disseminating research findings into healthcare practices. The purpose of this study was to assess the feasibility of an intervention, A Matter of Balance, in terms of demand, acceptability, and implementation into current exercise programs. Subjects: Seventy-five participants from rural communities, above the age of sixty, were randomized to an intervention or attention-control of the standardized senior fitness test. Methods: Subject completes the intervention, which combines two components: (1) motivation and (2) fall-reducing physical activities with protocols derived from baseline strength and balanced assessments. Participants (n=75) took part in the program after completing baseline functional assessments as well as evaluations of their personal knowledge, health outcomes, demand, and implementation interventions. After 8-weeks of the program, participants were invited to complete follow-up assessments with results that were compared to their baseline functional analyses. Out of all the participants in the study who complete the initial assessment, approximately 80% are expected to maintain enrollment in the implemented prescription. Furthermore, those who commit to the program should show mitigation of fall risk upon completion of their final assessment.Keywords: aging population, exercise, falls, functional assessment, healthy aging
Procedia PDF Downloads 1003706 Real-Time Detection of Space Manipulator Self-Collision
Authors: Zhang Xiaodong, Tang Zixin, Liu Xin
Abstract:
In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder enveloping surface, and then the detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.Keywords: space manipulator, collision detection, self-collision, the real-time collision detection
Procedia PDF Downloads 4683705 Iris Detection on RGB Image for Controlling Side Mirror
Authors: Norzalina Othman, Nurul Na’imy Wan, Azliza Mohd Rusli, Wan Noor Syahirah Meor Idris
Abstract:
Iris detection is a process where the position of the eyes is extracted from the face images. It is a current method used for many applications such as for security purpose and drowsiness detection. This paper proposes the use of eyes detection in controlling side mirror of motor vehicles. The eyes detection method aims to make driver easy to adjust the side mirrors automatically. The system will determine the midpoint coordinate of eyes detection on RGB (color) image and the input signal from y-coordinate will send it to controller in order to rotate the angle of side mirror on vehicle. The eye position was cropped and the coordinate of midpoint was successfully detected from the circle of iris detection using Viola Jones detection and circular Hough transform methods on RGB image. The coordinate of midpoint from the experiment are tested using controller to determine the angle of rotation on the side mirrors.Keywords: iris detection, midpoint coordinates, RGB images, side mirror
Procedia PDF Downloads 4223704 Reducing Falls in Memory Care through Implementation of the Stopping Elderly Accidents, Deaths, and Injuries Program
Authors: Cory B. Lord
Abstract:
Falls among the elderly population has become an area of concern in healthcare today. The negative impacts of falls lead to increased morbidity, mortality, and financial burdens for both patients and healthcare systems. Falls in the United States is reported at an annual rate of 36 million in those aged 65 and older. Each year, one out of four people in this age group will suffer a fall, with 20% of these falls causing injury. The setting for this Doctor of Nursing Practice (DNP) project was a memory care unit in an assisted living community, as these facilities house cognitively impaired older adults. These communities lack fall prevention programs; therefore, the need exists to add to the body of knowledge to positively impact this population. The objective of this project was to reduce fall rates through the implementation of the Center for Disease Control and Prevention (CDC) STEADI (stopping elderly accidents, deaths, and injuries) program. The DNP project performed was a quality improvement pilot study with a pre and post-test design. This program was implemented in the memory care setting over 12 weeks. The project included an educational session for staff and a fall risk assessment with appropriate resident referrals. The three aims of the DNP project were to reduce fall rates among the elderly aged 65 and older who reside in the memory care unit, increase staff knowledge of STEADI fall prevention measures after an educational session, and assess the willingness of memory care unit staff to adopt an evidence-based a fall prevention program. The Donabedian model was used as a guiding conceptual framework for this quality improvement pilot study. The fall rate data for 12 months before the intervention was evaluated and compared to post-intervention fall rates. The educational session comprised of a pre and post-test to assess staff knowledge of the fall prevention program and the willingness of staff to adopt the fall prevention program. The overarching goal was to reduce falls in the elderly population who live in memory care units. The results of the study showed, on average that the fall rate during the implementation period of STEADI (μ=6.79) was significantly lower when compared to the prior 12 months (μ= 9.50) (p=0.02, α = 0.05). The mean staff knowledge scores improved from pretest (μ=77.74%) to post-test (μ=87.42%) (p=0.00, α= 0.05) after the education session. The results of the willingness to adopt a fall prevention program were scored at 100%. In summation, implementing the STEADI fall prevention program can assist in reducing fall rates for residents aged 65 and older who reside in a memory care setting.Keywords: dementia, elderly, falls, STEADI
Procedia PDF Downloads 1293703 Automatic Vehicle Detection Using Circular Synthetic Aperture Radar Image
Authors: Leping Chen, Daoxiang An, Xiaotao Huang
Abstract:
Automatic vehicle detection using synthetic aperture radar (SAR) image has been widely researched, as well as using optical remote sensing images. However, most researches treat the detection as an independent problem, failing to make full use of SAR data information. In circular SAR (CSAR), the two long borders of vehicle will shrink if the imaging surface is set higher than the reference one. Based on above variance, an automatic vehicle detection using CSAR image is proposed to enhance detection ability under complex environment, such as vehicles’ closely packing, which confuses the detector. The detection method uses the multiple images generated by different height plane to obtain an energy-concentrated image for detecting and then uses the maximally stable extremal regions method (MSER) to detect vehicles. A result of vehicles’ detection is given to verify the effectiveness and correctness of proposed method.Keywords: circular SAR, vehicle detection, automatic, imaging
Procedia PDF Downloads 3663702 Classification of Digital Chest Radiographs Using Image Processing Techniques to Aid in Diagnosis of Pulmonary Tuberculosis
Authors: A. J. S. P. Nileema, S. Kulatunga , S. H. Palihawadana
Abstract:
Computer aided detection (CAD) system was developed for the diagnosis of pulmonary tuberculosis using digital chest X-rays with MATLAB image processing techniques using a statistical approach. The study comprised of 200 digital chest radiographs collected from the National Hospital for Respiratory Diseases - Welisara, Sri Lanka. Pre-processing was done to remove identification details. Lung fields were segmented and then divided into four quadrants; right upper quadrant, left upper quadrant, right lower quadrant, and left lower quadrant using the image processing techniques in MATLAB. Contrast, correlation, homogeneity, energy, entropy, and maximum probability texture features were extracted using the gray level co-occurrence matrix method. Descriptive statistics and normal distribution analysis were performed using SPSS. Depending on the radiologists’ interpretation, chest radiographs were classified manually into PTB - positive (PTBP) and PTB - negative (PTBN) classes. Features with standard normal distribution were analyzed using an independent sample T-test for PTBP and PTBN chest radiographs. Among the six features tested, contrast, correlation, energy, entropy, and maximum probability features showed a statistically significant difference between the two classes at 95% confidence interval; therefore, could be used in the classification of chest radiograph for PTB diagnosis. With the resulting value ranges of the five texture features with normal distribution, a classification algorithm was then defined to recognize and classify the quadrant images; if the texture feature values of the quadrant image being tested falls within the defined region, it will be identified as a PTBP – abnormal quadrant and will be labeled as ‘Abnormal’ in red color with its border being highlighted in red color whereas if the texture feature values of the quadrant image being tested falls outside of the defined value range, it will be identified as PTBN–normal and labeled as ‘Normal’ in blue color but there will be no changes to the image outline. The developed classification algorithm has shown a high sensitivity of 92% which makes it an efficient CAD system and with a modest specificity of 70%.Keywords: chest radiographs, computer aided detection, image processing, pulmonary tuberculosis
Procedia PDF Downloads 1263701 Adaptive CFAR Analysis for Non-Gaussian Distribution
Authors: Bouchemha Amel, Chachoui Takieddine, H. Maalem
Abstract:
Automatic detection of targets in a modern communication system RADAR is based primarily on the concept of adaptive CFAR detector. To have an effective detection, we must minimize the influence of disturbances due to the clutter. The detection algorithm adapts the CFAR detection threshold which is proportional to the average power of the clutter, maintaining a constant probability of false alarm. In this article, we analyze the performance of two variants of adaptive algorithms CA-CFAR and OS-CFAR and we compare the thresholds of these detectors in the marine environment (no-Gaussian) with a Weibull distribution.Keywords: CFAR, threshold, clutter, distribution, Weibull, detection
Procedia PDF Downloads 5863700 Intrusion Detection Techniques in Mobile Adhoc Networks: A Review
Authors: Rashid Mahmood, Muhammad Junaid Sarwar
Abstract:
Mobile ad hoc networks (MANETs) use has been well-known from the last few years in the many applications, like mission critical applications. In the (MANETS) prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in (MANETs). The authentication and encryption is considered the first solution of the MANETs problem where as now these are not sufficient as MANET use is increasing. In this paper we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in MANET and aim to comparing in some important fields.Keywords: MANET, IDS, intrusions, signature, detection, prevention
Procedia PDF Downloads 377