Search results for: excess%20pore%20water%20pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 509

Search results for: excess%20pore%20water%20pressure

29 Antioxidant Potency of Ethanolic Extracts from Selected Aromatic Plants by in vitro Spectrophotometric Analysis

Authors: Tatjana Kadifkova Panovska, Svetlana Kulevanova, Blagica Jovanova

Abstract:

Biological systems possess the ability to neutralize the excess of reactive oxygen species (ROS) and to protect cells from destructive alterations. However, many pathological conditions (cardiovascular diseases, autoimmune disorders, cancer) are associated with inflammatory processes that generate an excessive amount of reactive oxygen species (ROS) that shift the balance between endogenous antioxidant systems and free oxygen radicals in favor of the latter, leading to oxidative stress. Therefore, an additional source of natural compounds with antioxidant properties that will reduce the amount of ROS in cells is much needed despite their broad utilization; many plant species remain largely unexplored. Therefore, the purpose of the present study is to investigate the antioxidant activity of twenty-five selected medicinal and aromatic plant species. The antioxidant activity of the ethanol extracts was evaluated with in vitro assays: 2,2’-diphenyl-1-pycryl-hydrazyl (DPPH), ferric reducing antioxidant power (FRAP), non-site-specific- (NSSOH) and site-specific hydroxyl radical-2-deoxy-D-ribose degradation (SSOH) assays. The Folin-Ciocalteu method and AlCl3 method were performed to determine total phenolic content (TPC) and total flavonoid content (TFC). All examined plant extracts manifested antioxidant activity to a different extent. Cinnamomum verum J.Presl bark and Ocimum basilicum L. Herba demonstrated strong radical scavenging activity and reducing power with the DPPH and FRAP assay, respectively. Additionally, significant hydroxyl scavenging potential and metal chelating properties were observed using the NSSOH and SSOH assays. Furthermore, significant variations were determined in the total polyphenolic content (TPC) and total flavonoid content (TFC), with Cinnamomum verum and Ocimum basilicum showing the highest amount of total polyphenols. The considerably strong radical scavenging activity, hydroxyl scavenging potential and reducing power for the species mentioned above suggest of a presence of highly bioactive phytochemical compounds, predominantly polyphenols. Since flavonoids are the most abundant group of polyphenols that possess a large number of available reactive OH groups in their structure, it is considered that they are the main contributors to the radical scavenging properties of the examined plant extracts. This observation is supported by the positive correlation between the radical scavenging activity and the total polyphenolic and flavonoid content obtained in the current research. The observations from the current research nominate Cinnamomum verum bark and Ocimum basilicum herba as potential sources of bioactive compounds that could be utilized as antioxidative additives in the food and pharmaceutical industries. Moreover, the present study will help the researchers as basic data for future research in exploiting the hidden potential of these important plants that have not been explored so far.

Keywords: ethanol extracts, radical scavenging activity, reducing power, total polyphenols.

Procedia PDF Downloads 177
28 Estimated Heat Production, Blood Parameters and Mitochondrial DNA Copy Number of Nellore Bulls with High and Low Residual Feed Intake

Authors: Welder A. Baldassini, Jon J. Ramsey, Marcos R. Chiaratti, Amália S. Chaves, Renata H. Branco, Sarah F. M. Bonilha, Dante P. D. Lanna

Abstract:

With increased production costs there is a need for animals that are more efficient in terms of meat production. In this context, the role of mitochondrial DNA (mtDNA) on physiological processes in liver, muscle and adipose tissues may account for inter-animal variation in energy expenditures and heat production. The purpose this study was to investigate if the amounts of mtDNA in liver, muscle and adipose tissue (subcutaneous and visceral depots) of Nellore bulls are associated with residual feed intake (RFI) and estimated heat production (EHP). Eighteen animals were individually fed in a feedlot for 90 days. RFI values were obtained by regression of dry matter intake (DMI) in relation to average daily gain (ADG) and mid-test metabolic body weight (BW). The animals were classified into low (more efficient) and high (less efficient) RFI groups. The bulls were then randomly distributed in individual pens where they were given excess feed twice daily to result in 5 to 10% orts for 90 d with diet containing 15% crude protein and 2.7 Mcal ME/kg DM. The heart rate (HR) of bulls was monitored for 4 consecutive days and used for calculation of EHP. Electrodes were fitted to bulls with stretch belts (POLAR RS400; Kempele, Finland). To calculate oxygen pulse (O2P), oxygen consumption was obtained using a facemask connected to the gas analyzer (EXHALYZER, ECOMedics, Zurich, Switzerland) and HR were simultaneously measured for 15 minutes period. Daily oxygen (O2) consumption was calculated by multiplying the volume of O2 per beat by total daily beats. EHP was calculated multiplying O2P by the average HR obtained during the 4 days, assuming 4.89 kcal/L of O2 to measure daily EHP that was expressed in kilocalories/day/kilogram metabolic BW (kcal/day/kg BW0.75). Blood samples were collected between days 45 and 90th after the beginning of the trial period in order to measure the concentration of hemoglobin and hematocrit. The bulls were slaughtered in an experimental slaughter house in accordance with current guidelines. Immediately after slaughter, a section of liver, a portion of longissimus thoracis (LT) muscle, plus a portion of subcutaneous fat (surrounding LT muscle) and portions of visceral fat (kidney, pelvis and inguinal fat) were collected. Samples of liver, muscle and adipose tissues were used to quantify mtDNA copy number per cell. The number of mtDNA copies was determined by normalization of mtDNA amount against a single copy nuclear gene (B2M). Mean of EHP, hemoglobin and hematocrit of high and low RFI bulls were compared using two-sample t-tests. Additionally, the one-way ANOVA was used to compare mtDNA quantification considering the mains effects of RFI groups. We found lower EHP (83.047 vs. 97.590 kcal/day/kgBW0.75; P < 0.10), hemoglobin concentration (13.533 vs. 15.108 g/dL; P < 0.10) and hematocrit percentage (39.3 vs. 43.6 %; P < 0.05) in low compared to high RFI bulls, respectively, which may be useful traits to identify efficient animals. However, no differences were observed between the mtDNA content in liver, muscle and adipose tissue of Nellore bulls with high and low RFI.

Keywords: bioenergetics, Bos indicus, feed efficiency, mitochondria

Procedia PDF Downloads 218
27 Combustion Variability and Uniqueness in Cylinders of a Radial Aircraft Piston Engine

Authors: Michal Geca, Grzegorz Baranski, Ksenia Siadkowska

Abstract:

The work is a part of the project which aims at developing innovative power and control systems for the high power aircraft piston engine ASz62IR. Developed electronically controlled ignition system will reduce emissions of toxic compounds as a result of lowered fuel consumption, optimized combustion and engine capability of efficient combustion of ecological fuels. The tested unit is an air-cooled four-stroke gasoline engine of 9 cylinders in a radial setup, mechanically charged by a radial compressor powered by the engine crankshaft. The total engine cubic capac-ity is 29.87 dm3, and the compression ratio is 6.4:1. The maximum take-off power is 1000 HP at 2200 rpm. The maximum fuel consumption is 280 kg/h. Engine powers aircrafts: An-2, M-18 „Dromader”, DHC-3 „OTTER”, DC-3 „Dakota”, GAF-125 „HAWK” i Y5. The main problems of the engine includes the imbalanced work of cylinders. The non-uniformity value in each cylinder results in non-uniformity of their work. In radial engine cylinders arrangement causes that the mixture movement that takes place in accordance (lower cylinder) or the opposite (upper cylinders) to the direction of gravity. Preliminary tests confirmed the presence of uneven workflow of individual cylinders. The phenomenon is most intense at low speed. The non-uniformity is visible on the waveform of cylinder pressure. Therefore two studies were conducted to determine the impact of this phenomenon on the engine performance: simulation and real tests. Simplified simulation was conducted on the element of the intake system coated with fuel film. The study shows that there is an effect of gravity on the movement of the fuel film inside the radial engine intake channels. Both in the lower and the upper inlet channels the film flows downwards. It follows from the fact that gravity assists the movement of the film in the lower cylinder channels and prevents the movement in the upper cylinder channels. Real tests on aircraft engine ASz62IR was conducted in transients condition (rapid change of the excess air in each cylinder were performed. Calculations were conducted for mass of fuel reaching the cylinders theoretically and really and on this basis, the factors of fuel evaporation “x” were determined. Therefore a simplified model of the fuel supply to cylinder was adopted. Model includes time constant of the fuel film τ, the number of engine transport cycles of non-evaporating fuel along the intake pipe γ and time between next cycles Δt. The calculation results of identification of the model parameters are presented in the form of radar graphs. The figures shows the averages declines and increases of the injection time and the average values for both types of stroke. These studies shown, that the change of the position of the cylinder will cause changes in the formation of fuel-air mixture and thus changes in the combustion process. Based on the results of the work of simulation and experiments was possible to develop individual algorithms for ignition control. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: radial engine, ignition system, non-uniformity, combustion process

Procedia PDF Downloads 334
26 Environmental Effect of Empty Nest Households in Germany: An Empirical Approach

Authors: Dominik Kowitzke

Abstract:

Housing constructions have direct and indirect environmental impacts especially caused by soil sealing and gray energy consumption related to the use of construction materials. Accordingly, the German government introduced regulations limiting additional annual soil sealing. At the same time, in many regions like metropolitan areas the demand for further housing is high and of current concern in the media and politics. It is argued that meeting this demand by making better use of the existing housing supply is more sustainable than the construction of new housing units. In this context, targeting the phenomenon of so-called over the housing of empty nest households seems worthwhile to investigate for its potential to free living space and thus, reduce the need for new housing constructions and related environmental harm. Over housing occurs if no space adjustment takes place in household lifecycle stages when children move out from home and the space formerly created for the offspring is from then on under-utilized. Although in some cases the housing space consumption might actually meet households’ equilibrium preferences, frequently space-wise adjustments to the living situation doesn’t take place due to transaction or information costs, habit formation, or government intervention leading to increasing costs of relocations like real estate transfer taxes or tenant protection laws keeping tenure rents below the market price. Moreover, many detached houses are not long-term designed in a way that freed up space could be rent out. Findings of this research based on socio-economic survey data, indeed, show a significant difference between the living space of empty nest and a comparison group of households which never had children. The approach used to estimate the average difference in living space is a linear regression model regressing the response variable living space on a two-dimensional categorical variable distinguishing the two groups of household types and further controls. This difference is assumed to be the under-utilized space and is extrapolated to the total amount of empty nests in the population. Supporting this result, it is found that households that move, despite market frictions impairing the relocation, after children left their home tend to decrease the living space. In the next step, only for areas with tight housing markets in Germany and high construction activity, the total under-utilized space in empty nests is estimated. Under the assumption of full substitutability of housing space in empty nests and space in new dwellings in these locations, it is argued that in a perfect market with empty nest households consuming their equilibrium demand quantity of housing space, dwelling constructions in the amount of the excess consumption of living space could be saved. This, on the other hand, would prevent environmental harm quantified in carbon dioxide equivalence units related to average constructions of detached or multi-family houses. This study would thus provide information on the amount of under-utilized space inside dwellings which is missing in public data and further estimates the external effect of over housing in environmental terms.

Keywords: empty nests, environment, Germany, households, over housing

Procedia PDF Downloads 142
25 Maternal Obesity in Nigeria: An Exploratory Study

Authors: Ojochenemi J. Onubi, Debbi Marais, Lorna Aucott, Friday Okonofua, Amudha Poobalan

Abstract:

Background: Obesity is a worldwide epidemic with major health and economic consequences. Pregnancy is a trigger point for the development of obesity, and maternal obesity is associated with significant adverse effects in the mother and child. Nigeria is experiencing a double burden of under- and over-nutrition with rising levels of obesity particularly in women. However, there is scarcity of data on maternal obesity in Nigeria and other African countries. Aims and Objectives: This project aimed at identifying crucial components of potential interventions for maternal obesity in Nigeria. The objectives were to assess the prevalence, effects, and distribution of maternal obesity; knowledge, attitude and practice (KAP) of pregnant women and maternal healthcare providers; and identify existing interventions for maternal obesity in Nigeria. Methodology: A systematic review and meta-analysis were initially conducted to appraise the existing literature on maternal obesity in Africa. Following this, a quantitative questionnaire survey of the KAP of pregnant women and a qualitative interview study of the KAP of Health Care Workers (HCW) were conducted in seven secondary and tertiary hospitals across Nigeria. Quantitative data was analysed using SPSS statistical software, while thematic analysis was conducted for qualitative data. Results: Twenty-nine studies included in the systematic review showed significant prevalence, socio-demographic associations, and adverse effects of maternal obesity on labour, maternal, and child outcomes in Africa. The questionnaire survey of 435 mothers revealed a maternal obesity prevalence of 17.9% among mothers who registered for antenatal care in the first trimester. The mothers received nutrition information from different sources and had insufficient knowledge of their own weight category or recommended Gestational Weight Gain (GWG), causes, complications, and safe ways to manage maternal obesity. However, majority of the mothers were of the opinion that excess GWG is avoided in pregnancy and some practiced weight management (diet and exercise) during pregnancy. For the qualitative study, four main themes were identified: ‘Concerns about obesity in pregnancy’, ‘Barriers to care for obese pregnant women’, ‘Practice of care for obese pregnant women’, and ‘Improving care for obese pregnant women’. HCW expressed concerns about rising levels of maternal obesity, lack of guidelines for the management of obese pregnant women and worries about unintended consequences of antenatal interventions. ‘Barriers’ included lack of contact with obese women before pregnancy, late registration for antenatal care, and perceived maternal barriers such as socio-cultural beliefs of mothers and poverty. ‘Practice’ included anticipatory care and screening for possible complications, general nutrition education during antenatal care and interdisciplinary care for mothers with complications. HCW offered suggestions on improving care for obese women including timing, type, and settings of interventions; and the need for involvement of other stake holders in caring for obese pregnant women. Conclusions: Culturally adaptable/sensitive interventions should be developed for the management of obese pregnant women in Africa. Education and training of mothers and health care workers, and provision of guidelines are some of the components of potential interventions in Nigeria.

Keywords: Africa, maternal, obesity, pregnancy

Procedia PDF Downloads 243
24 Geochemistry and Tectonic Framework of Malani Igneous Suite and Their Effect on Groundwater Quality of Tosham, India

Authors: Naresh Kumar, Savita Kumari, Naresh Kochhar

Abstract:

The objective of the study was to assess the role of mineralogy and subsurface structure on water quality of Tosham, Malani Igneous Suite (MIS), Western Rajasthan, India. MIS is the largest (55,000 km2) A-type, anorogenic and high heat producing acid magmatism in the peninsular India and owes its origin to hot spot tectonics. Apart from agricultural and industrial wastes, geogenic activities cause fluctuations in quality parameters of water resources. Twenty water samples (20) selected from Tosham and surrounding areas were analyzed for As, Pb, B, Al, Zn, Fe, Ni using Inductive coupled plasma emission and F by Ion Chromatography. The concentration of As, Pb, B, Ni and F was above the stipulated level specified by BIS (Bureau of Indian Standards IS-10500, 2012). The concentration of As and Pb in surrounding areas of Tosham ranged from 1.2 to 4.1 mg/l and from 0.59 to 0.9 mg/l respectively which is higher than limits of 0.05mg/l (As) and 0.01 mg/l (Pb). Excess trace metal accumulation in water is toxic to humans and adversely affects the central nervous system, kidneys, gastrointestinal tract, skin and cause mental confusion. Groundwater quality is defined by nature of rock formation, mineral water reaction, physiography, soils, environment, recharge and discharge conditions of the area. Fluoride content in groundwater is due to the solubility of fluoride-bearing minerals like fluorite, cryolite, topaz, and mica, etc. Tosham is comprised of quartz mica schist, quartzite, schorl, tuff, quartz porphyry and associated granites, thus, fluoride is leached out and dissolved in groundwater. In the study area, Ni concentration ranged from 0.07 to 0.5 mg/l (permissible limit 0.02 mg/l). The primary source of nickel in drinking water is leached out nickel from ore-bearing rocks. Higher concentration of As is found in some igneous rocks specifically containing minerals as arsenopyrite (AsFeS), realgar (AsS) and orpiment (As2S3). MIS consists of granite (hypersolvus and subsolvus), rhyolite, dacite, trachyte, andesite, pyroclasts, basalt, gabbro and dolerite which increased the trace elements concentration in groundwater. Nakora, a part of MIS rocks has high concentration of trace and rare earth elements (Ni, Rb, Pb, Sr, Y, Zr, Th, U, La, Ce, Nd, Eu and Yb) which percolates the Ni and Pb to groundwater by weathering, contacts and joints/fractures in rocks. Additionally, geological setting of MIS also causes dissolution of trace elements in water resources beneath the surface. NE–SW tectonic lineament, radial pattern of dykes and volcanic vent at Nakora created a way for leaching of these elements to groundwater. Rain water quality might be altered by major minerals constituents of host Tosham rocks during its percolation through the rock fracture, joints before becoming the integral part of groundwater aquifer. The weathering process like hydration, hydrolysis and solution might be the cause of change in water chemistry of particular area. These studies suggest that geological relation of soil-water horizon with MIS rocks via mineralogical variations, structures and tectonic setting affects the water quality of the studied area.

Keywords: geochemistry, groundwater, malani igneous suite, tosham

Procedia PDF Downloads 186
23 Wind Resource Classification and Feasibility of Distributed Generation for Rural Community Utilization in North Central Nigeria

Authors: O. D. Ohijeagbon, Oluseyi O. Ajayi, M. Ogbonnaya, Ahmeh Attabo

Abstract:

This study analyzed the electricity generation potential from wind at seven sites spread across seven states of the North-Central region of Nigeria. Twenty-one years (1987 to 2007) wind speed data at a height of 10m were assessed from the Nigeria Meteorological Department, Oshodi. The data were subjected to different statistical tests and also compared with the two-parameter Weibull probability density function. The outcome shows that the monthly average wind speeds ranged between 2.2 m/s in November for Bida and 10.1 m/s in December for Jos. The yearly average ranged between 2.1m/s in 1987 for Bida and 11.8 m/s in 2002 for Jos. Also, the power density for each site was determined to range between 29.66 W/m2 for Bida and 864.96 W/m2 for Jos, Two parameters (k and c) of the Weibull distribution were found to range between 2.3 in Lokoja and 6.5 in Jos for k, while c ranged between 2.9 in Bida and 9.9m/s in Jos. These outcomes points to the fact that wind speeds at Jos, Minna, Ilorin, Makurdi and Abuja are compatible with the cut-in speeds of modern wind turbines and hence, may be economically feasible for wind-to-electricity at and above the height of 10 m. The study further assessed the potential and economic viability of standalone wind generation systems for off-grid rural communities located in each of the studied sites. A specific electric load profile was developed to suite hypothetic communities, each consisting of 200 homes, a school and a community health center. Assessment of the design that will optimally meet the daily load demand with a loss of load probability (LOLP) of 0.01 was performed, considering 2 stand-alone applications of wind and diesel. The diesel standalone system (DSS) was taken as the basis of comparison since the experimental locations have no connection to a distribution network. The HOMER® software optimizing tool was utilized to determine the optimal combination of system components that will yield the lowest life cycle cost. Sequel to the analysis for rural community utilization, a Distributed Generation (DG) analysis that considered the possibility of generating wind power in the MW range in order to take advantage of Nigeria’s tariff regime for embedded generation was carried out for each site. The DG design incorporated each community of 200 homes, freely catered for and offset from the excess electrical energy generated above the minimum requirement for sales to a nearby distribution grid. Wind DG systems were found suitable and viable in producing environmentally friendly energy in terms of life cycle cost and levelised value of producing energy at Jos ($0.14/kWh), Minna ($0.12/kWh), Ilorin ($0.09/kWh), Makurdi ($0.09/kWh), and Abuja ($0.04/kWh) at a particluar turbine hub height. These outputs reveal the value retrievable from the project after breakeven point as a function of energy consumed Based on the results, the study demonstrated that including renewable energy in the rural development plan will enhance fast upgrade of the rural communities.

Keywords: wind speed, wind power, distributed generation, cost per kilowatt-hour, clean energy, North-Central Nigeria

Procedia PDF Downloads 483
22 Improved Morphology in Sequential Deposition of the Inverted Type Planar Heterojunction Solar Cells Using Cheap Additive (DI-H₂O)

Authors: Asmat Nawaz, Ceylan Zafer, Ali K. Erdinc, Kaiying Wang, M. Nadeem Akram

Abstract:

Hybrid halide Perovskites with the general formula ABX₃, where X = Cl, Br or I, are considered as an ideal candidates for the preparation of photovoltaic devices. The most commonly and successfully used hybrid halide perovskite for photovoltaic applications is CH₃NH₃PbI₃ and its analogue prepared from lead chloride, commonly symbolized as CH₃NH₃PbI₃_ₓClₓ. Some researcher groups are using lead free (Sn replaces Pb) and mixed halide perovskites for the fabrication of the devices. Both mesoporous and planar structures have been developed. By Comparing mesoporous structure in which the perovskite materials infiltrate into mesoporous metal oxide scaffold, the planar architecture is much simpler and easy for device fabrication. In a typical perovskite solar cell, a perovskite absorber layer is sandwiched between the hole and electron transport. Upon the irradiation, carriers are created in the absorber layer that can travel through hole and electron transport layers and the interface in between. We fabricated inverted planar heterojunction structure ITO/PEDOT/ Perovskite/PCBM/Al, based solar cell via two-step spin coating method. This is also called Sequential deposition method. A small amount of cheap additive H₂O was added into PbI₂/DMF to make a homogeneous solution. We prepared four different solution such as (W/O H₂O, 1% H₂O, 2% H₂O, 3% H₂O). After preparing, the whole night stirring at 60℃ is essential for the homogenous precursor solutions. We observed that the solution with 1% H₂O was much more homogenous at room temperature as compared to others. The solution with 3% H₂O was precipitated at once at room temperature. The four different films of PbI₂ were formed on PEDOT substrates by spin coating and after that immediately (before drying the PbI₂) the substrates were immersed in the methyl ammonium iodide solution (prepared in isopropanol) for the completion of the desired perovskite film. After getting desired films, rinse the substrates with isopropanol to remove the excess amount of methyl ammonium iodide and finally dried it on hot plate only for 1-2 minutes. In this study, we added H₂O in the PbI₂/DMF precursor solution. The concept of additive is widely used in the bulk- heterojunction solar cells to manipulate the surface morphology, leading to the enhancement of the photovoltaic performance. There are two most important parameters for the selection of additives. (a) Higher boiling point w.r.t host material (b) good interaction with the precursor materials. We observed that the morphology of the films was improved and we achieved a denser, uniform with less cavities and almost full surface coverage films but only using precursor solution having 1% H₂O. Therefore, we fabricated the complete perovskite solar cell by sequential deposition technique with precursor solution having 1% H₂O. We concluded that with the addition of additives in the precursor solutions one can easily be manipulate the morphology of the perovskite film. In the sequential deposition method, thickness of perovskite film is in µm and the charge diffusion length of PbI₂ is in nm. Therefore, by controlling the thickness using other deposition methods for the fabrication of solar cells, we can achieve the better efficiency.

Keywords: methylammonium lead iodide, perovskite solar cell, precursor composition, sequential deposition

Procedia PDF Downloads 213
21 Chemical Synthesis and Microwave Sintering of SnO2-Based Nanoparticles for Varistor Films

Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Leinig Antônio Perazolli, Maria Aparecida Zaghete

Abstract:

SnO2 has electrical conductivity due to the excess of electrons and structural defects, being its electrical behavior highly dependent on sintering temperature and chemical composition. The addition of metals modifiers into the crystalline structure can improve and controlling the behavior of some semiconductor oxides that can therefore develop different applications such as varistors (ceramic with non-ohmic behavior between current and voltage, i.e. conductive during normal operation and resistive during overvoltage). The polymeric precursor method, based on the complexation reaction between metal ion and policarboxylic acid and then polymerized with ethylene glycol, was used to obtain nanopowders ceramic. The metal immobilization reduces its segregation during the decomposition of the polyester resulting in a crystalline oxide with high chemical homogeneity. The preparation of films from ceramics nanoparticles using electrophoretic deposition method (EPD) brings prospects for a new generation of smaller size devices with easy integration technology. EPD allows to control time and current and therefore it can have control of the thickness, surface roughness and the film density, quickly and with low production costs. The sintering process is key to control size and grain boundary density of the film. In this step, there is the diffusion of metals that promote densification and control of intrinsic defects or change these defects which will form and modify the potential barrier in the grain boundary. The use of microwave oven for sintering is an advantageous process due to the fast and homogeneous heating rate, promoting the diffusion and densification without irregular grain growth. This research was done a comparative study of sintering temperature by use of zinc as modifier agent to verify the influence on sintering step aiming to promote densification and grain growth, which influences the potential barrier formation and then changed the electrical behavior. SnO2-nanoparticles were obtained with 1 %mol of ZnO + 0.05 %mol of Nb2O5 (SZN), deposited as film through EPD (voltage 2 kV, time of 10 min) on Si/Pt substrate. Sintering was made in a microwave oven at 800, 900 and 1000 °C. For complete coverage of the substrate by nanoparticles with low surface roughness and uniform thickness was added 0.02 g of solid iodine in alcoholic suspension SnO2 to increase particle surface charge. They were also used magneto in EPD system that improved the deposition rate forming a compact film. Using a scanning electron microscope of high resolution (SEM_FEG) it was observed nanoparticles with average size between 10-20 nm, after sintering the average size was 150 to 200 nm and thickness of 5 µm. Also, it was verified that the temperature at 1000 °C was the most efficient in sintering. The best sintering time was also recorded and determined as 40 minutes. After sintering, the films were recovered with Cr3+ ions layer by EPD, then the films were again thermally treated. The electrical characterizations (nonlinear coefficient of 11.4, voltage rupture of ~60 V and leakage current = 4.8x10−6 A), allow considering the new methodology suitable for prepare SnO2-based varistor applied for development of electrical protection devices for low voltage.

Keywords: chemical synthesis, electrophoretic deposition, microwave sintering, tin dioxide

Procedia PDF Downloads 238
20 Catchment Nutrient Balancing Approach to Improve River Water Quality: A Case Study at the River Petteril, Cumbria, United Kingdom

Authors: Nalika S. Rajapaksha, James Airton, Amina Aboobakar, Nick Chappell, Andy Dyer

Abstract:

Nutrient pollution and their impact on water quality is a key concern in England. Many water quality issues originate from multiple sources of pollution spread across the catchment. The river water quality in England has improved since 1990s and wastewater effluent discharges into rivers now contain less phosphorus than in the past. However, excess phosphorus is still recognised as the prevailing issue for rivers failing Water Framework Directive (WFD) good ecological status. To achieve WFD Phosphorus objectives, Wastewater Treatment Works (WwTW) permit limits are becoming increasingly stringent. Nevertheless, in some rural catchments, the apportionment of Phosphorus pollution can be greater from agricultural runoff and other sources such as septic tanks. Therefore, the challenge of meeting the requirements of watercourses to deliver WFD objectives often goes beyond water company activities, providing significant opportunities to co-deliver activities in wider catchments to reduce nutrient load at source. The aim of this study was to apply the United Utilities' Catchment Systems Thinking (CaST) strategy and pilot an innovative permitting approach - Catchment Nutrient Balancing (CNB) in a rural catchment in Cumbria (the River Petteril) in collaboration with the regulator and others to achieve WFD objectives and multiple benefits. The study area is mainly agricultural land, predominantly livestock farms. The local ecology is impacted by significant nutrient inputs which require intervention to meet WFD obligations. There are a range of Phosphorus inputs into the river, including discharges from wastewater assets but also significantly from agricultural contributions. Solely focusing on the WwTW discharges would not have resolved the problem hence in order to address this issue effectively, a CNB trial was initiated at a small WwTW, targeting the removal of a total of 150kg of Phosphorus load, of which 13kg were to be reduced through the use of catchment interventions. Various catchment interventions were implemented across selected farms in the upstream of the catchment and also an innovative polonite reactive filter media was implemented at the WwTW as an alternative to traditional Phosphorus treatment methods. During the 3 years of this trial, the impact of the interventions in the catchment and the treatment works were monitored. In 2020 and 2022, it respectively achieved a 69% and 63% reduction in the phosphorus level in the catchment against the initial reduction target of 9%. Phosphorus treatment at the WwTW had a significant impact on overall load reduction. The wider catchment impact, however, was seven times greater than the initial target when wider catchment interventions were also established. While it is unlikely that all the Phosphorus load reduction was delivered exclusively from the interventions implemented though this project, this trial evidenced the enhanced benefits that can be achieved with an integrated approach, that engages all sources of pollution within the catchment - rather than focusing on a one-size-fits-all solution. Primarily, the CNB approach and the act of collaboratively engaging others, particularly the agriculture sector is likely to yield improved farm and land management performance and better compliance, which can lead to improved river quality as well as wider benefits.

Keywords: agriculture, catchment nutrient balancing, phosphorus pollution, water quality, wastewater

Procedia PDF Downloads 33
19 Illness-Related PTSD Among Type 1 Diabetes Patients

Authors: Omer Zvi Shaked, Amir Tirosh

Abstract:

Type 1 Diabetes (T1DM) is an incurable chronic illness with no known preventive measures. Excess to insulin therapy can lead to hypoglycemia with neuro-glycogenic symptoms such as shakiness, nausea, sweating, irritability, fatigue, excessive thirst or hunger, weakness, seizure, and coma. Severe Hypoglycemia (SH) is also considered a most aversive event since it may put patients at risk for injury and death, which matches the criteria of a traumatic event. SH has a ranging prevalence of 20%, which makes it a primary medical Issue. One of the results of SH is an intense emotional fear reaction resembling the form of post-traumatic stress symptoms (PTS), causing many patients to avoid insulin therapy and social activities in order to avoid the possibility of hypoglycemia. As a result, they are at risk for irreversible health deterioration and medical complications. Fear of Hypoglycemia (FOH) is, therefore, a major disturbance for T1DM patients. FOH differs from prevalent post-traumatic stress reactions to other forms of traumatic events since the threat to life continuously exists in the patient's body. That is, it is highly probable that orthodox interventions may not be sufficient for helping patients after SH to regain healthy social function and proper medical treatment. Accordingly, the current presentation will demonstrate the results of a study conducted among T1DM patients after SH. The study was designed in two stages. First, a preliminary qualitative phenomenological study among ten patients after SH was conducted. Analysis revealed that after SH, patients confuse between stress symptoms and Hypoglycemia symptoms, divide life before and after the event, report a constant sense of fear, a loss of freedom, a significant decrease in social functioning, a catastrophic thinking pattern, a dichotomous split between the self and the body, and internalization of illness identity, a loss of internal locus of control, a damaged self-representation, and severe loneliness for never being understood by others. The second stage was a two steps study of intervention among five patients after SH. The first part of the intervention included three months of therapeutic 3rd wave CBT therapy. The contents of the therapeutic process were: acceptance of fear and tolerance to stress; cognitive de-fusion combined with emotional self-regulation; the adoption of an active position relying on personal values; and self-compassion. Then, the intervention included a one-week practical real-time 24/7 support by trained medical personnel, alongside a gradual exposure to increased insulin therapy in a protected environment. The results of the intervention are a decrease in stress symptoms, increased social functioning, increased well-being, and decreased avoidance of medical treatment. The presentation will discuss the unique emotional state of T1DM patients after SH. Then, the presentation will discuss the effectiveness of the intervention for patients with chronic conditions after a traumatic event. The presentation will make evident the unique situation of illness-related PTSD. The presentation will also demonstrate the requirement for multi-professional collaboration between social work and medical care for populations with chronic medical conditions. Limitations of the study and recommendations for further research will be discussed.

Keywords: type 1 diabetes, chronic illness, post-traumatic stress, illness-related PTSD

Procedia PDF Downloads 143
18 Enhanced Dielectric and Ferroelectric Properties in Holmium Substituted Stoichiometric and Non-Stoichiometric SBT Ferroelectric Ceramics

Authors: Sugandha Gupta, Arun Kumar Jha

Abstract:

A large number of ferroelectric materials have been intensely investigated for applications in non-volatile ferroelectric random access memories (FeRAMs), piezoelectric transducers, actuators, pyroelectric sensors, high dielectric constant capacitors, etc. Bismuth layered ferroelectric materials such as Strontium Bismuth Tantalate (SBT) has attracted a lot of attention due to low leakage current, high remnant polarization and high fatigue endurance up to 1012 switching cycles. However, pure SBT suffers from various major limitations such as high dielectric loss, low remnant polarization values, high processing temperature, bismuth volatilization, etc. Significant efforts have been made to improve the dielectric and ferroelectric properties of this compound. Firstly, it has been reported that electrical properties vary with the Sr/ Bi content ratio in the SrBi2Ta2O9 compsition i.e. non-stoichiometric compositions with Sr-deficient / Bi excess content have higher remnant polarization values than stoichiometic SBT compositions. With the objective to improve structural, dielectric, ferroelectric and piezoelectric properties of SBT compound, rare earth holmium (Ho3+) was chosen as a donor cation for substitution onto the Bi2O2 layer. Moreover, hardly any report on holmium substitution in stoichiometric SrBi2Ta2O9 and non-stoichiometric Sr0.8Bi2.2Ta2O9 compositions were available in the literature. The holmium substituted SrBi2-xHoxTa2O9 (x= 0.00-2.0) and Sr0.8Bi2.2Ta2O9 (x=0.0 and 0.01) compositions were synthesized by the solid state reaction method. The synthesized specimens were characterized for their structural and electrical properties. X-ray diffractograms reveal single phase layered perovskite structure formation for holmium content in stoichiometric SBT samples up to x ≤ 0.1. The granular morphology of the samples was investigated using scanning electron microscope (Hitachi, S-3700 N). The dielectric measurements were carried out using a precision LCR meter (Agilent 4284A) operating at oscillation amplitude of 1V. The variation of dielectric constant with temperature shows that the Curie temperature (Tc) decreases on increasing the holmium content. The specimen with x=2.0 i.e. the bismuth free specimen, has very low dielectric constant and does not show any appreciable variation with temperature. The dielectric loss reduces significantly with holmium substitution. The polarization–electric field (P–E) hysteresis loops were recorded using a P–E loop tracer based on Sawyer–Tower circuit. It is observed that the ferroelectric property improve with Ho substitution. Holmium substituted specimen exhibits enhanced value of remnant polarization (Pr= 9.22 μC/cm²) as compared to holmium free specimen (Pr= 2.55 μC/cm²). Piezoelectric co-efficient (d33 values) was measured using a piezo meter system (Piezo Test PM300). It is observed that holmium substitution enhances piezoelectric coefficient. Further, the optimized holmium content (x=0.01) in stoichiometric SrBi2-xHoxTa2O9 composition has been substituted in non-stoichiometric Sr0.8Bi2.2Ta2O9 composition to obtain further enhanced structural and electrical characteristics. It is expected that a new class of ferroelectric materials i.e. Rare Earth Layered Structured Ferroelectrics (RLSF) derived from Bismuth Layered Structured Ferroelectrics (BLSF) will generate which can be used to replace static (SRAM) and dynamic (DRAM) random access memories with ferroelectric random access memories (FeRAMS).

Keywords: dielectrics, ferroelectrics, piezoelectrics, strontium bismuth tantalate

Procedia PDF Downloads 176
17 Pre-Cancerigene Injuries Related to Human Papillomavirus: Importance of Cervicography as a Complementary Diagnosis Method

Authors: Denise De Fátima Fernandes Barbosa, Tyane Mayara Ferreira Oliveira, Diego Jorge Maia Lima, Paula Renata Amorim Lessa, Ana Karina Bezerra Pinheiro, Cintia Gondim Pereira Calou, Glauberto Da Silva Quirino, Hellen Lívia Oliveira Catunda, Tatiana Gomes Guedes, Nicolau Da Costa

Abstract:

The aim of this study is to evaluate the use of Digital Cervicography (DC) in the diagnosis of precancerous lesions related to Human Papillomavirus (HPV). Cross-sectional study with a quantitative approach, of evaluative type, held in a health unit linked to the Pro Dean of Extension of the Federal University of Ceará, in the period of July to August 2015 with a sample of 33 women. Data collecting was conducted through interviews with enforcement tool. Franco (2005) standardized the technique used for DC. Polymerase Chain Reaction (PCR) was performed to identify high-risk HPV genotypes. DC were evaluated and classified by 3 judges. The results of DC and PCR were classified as positive, negative or inconclusive. The data of the collecting instruments were compiled and analyzed by the software Statistical Package for Social Sciences (SPSS) with descriptive statistics and cross-references. Sociodemographic, sexual and reproductive variables were analyzed through absolute frequencies (N) and their respective percentage (%). Kappa coefficient (κ) was applied to determine the existence of agreement between the DC of reports among evaluators with PCR and also among the judges about the DC results. The Pearson's chi-square test was used for analysis of sociodemographic, sexual and reproductive variables with the PCR reports. It was considered statistically significant (p<0.05). Ethical aspects of research involving human beings were respected, according to 466/2012 Resolution. Regarding the socio-demographic profile, the most prevalent ages and equally were those belonging to the groups 21-30 and 41-50 years old (24.2%). The brown color was reported in excess (84.8%) and 96.9% out of them had completed primary and secondary school or studying. 51.5% were married, 72.7% Catholic, 54.5% employed and 48.5% with income between one and two minimum wages. As for the sexual and reproductive characteristics, prevailed heterosexual (93.9%) who did not use condoms during sexual intercourse (72.7%). 51.5% had a previous history of Sexually Transmitted Infection (STI), and HPV the most prevalent STI (76.5%). 57.6% did not use contraception, 78.8% underwent examination Cancer Prevention Uterus (PCCU) with shorter time interval or equal to one year, 72.7% had no cases of Cervical Cancer in the family, 63.6% were multiparous and 97% were not vaccinated against HPV. DC identified good level of agreement between raters (κ=0.542), had a specificity of 77.8% and sensitivity of 25% when compared their results with PCR. Only the variable race showed a statistically significant association with CRP (p=0.042). DC had 100% acceptance amongst women in the sample, revealing the possibility of other experiments in using this method so that it proves as a viable technique. The DC positivity criteria were developed by nurses and these professionals also perform PCCU in Brazil, which means that DC can be an important complementary diagnostic method for the appreciation of these professional’s quality of examinations.

Keywords: gynecological examination, human papillomavirus, nursing, papillomavirus infections, uterine lasmsneop

Procedia PDF Downloads 268
16 Assessment of Surface Water Quality in Belarus

Authors: Anastasiya Vouchak, Aliaksandr Volchak

Abstract:

Belarus is not short of water. However, there is a problem of water quality. Its pollution has both natural and man-made origin. This research is based on data from State Water Cadastre of the Republic of Belarus registered from 1994 to 2014. We analyzed changes in such hydro-chemical criteria as concentration of ammonium ions, suspended matter, dissolved oxygen, oil-products, nitrites, phosphates in water, dichromate value, water impurity index, 5-day biochemical oxygen demand (BOD). Pollution of water with ammonium ions was observed in Belarus rivers of the Western Dvina, Polota, Schara, Usha, Muhavets, Berzina, Plissa, Svisloch, Pripiat, Yaselda in 2006-2014. The threshold limit value (TLV) was 1.5-3 times as much. Concentration of ammonia in the Berezina exceeded 3 – 5 times the TLVs in 2006-2010. Maximum excess of TLV was registered in the Svisloch (10 km downstream of Minsk) in 2006-2007. It was over 4 mg/dm³ whereas the norm is 0.39 mg/dm³. In 1997 there were ammonia pollution spots in the Dnieper, the Berezina, and the Svisloch Rivers. Since 2006 we have observed pollution spots in the Neman, Ross, Vilia, Sozh, Gorin Rivers, the Osipovichi and Soligorsk reservoirs. Dichromate value exceeds the TLVs in 40% cases. The most polluted waters are the Muhavets, Berezina, Pripiat, Yaselda, Gorin Rivers, the Vileyka and Soligorsk reservoirs. The Western Dvina, Neman, Viliya, Schara, Svisloch, and Plissa Rivers are less polluted. The Dnieper is the cleanest in this respect. In terms of BOD, water is polluted in the Neman, Muhavets, Svisloch, Yaselda, Gorin Rivers, the Osipovichi, Zaslavl, and Soligorsk reservoirs. The Western Dvina, Polota, Sozh, Iputs Rivers and Lake Naroch are not polluted in this respect. This criterion has been decreasing in 33 out of 42 cases. The least suspended matter is in the Berezina, Sozh, Iputs Rivers and Lake Naroch. The muddiest water is in the Neman, Usha, Svisloch, Pripyat, Yaselda Rivers, the Osipovichi and Soligorsk reservoirs. Water impurity index shows reduction of this criterion at all gauge stations. Multi-year average values predominantly (66.6%) correspond to the third class of water quality, i.e. moderately polluted. They include the Western Dvina, Ross, Usha, Muhavets, Dnieper, Berezina, Plissa, Iputs, Pripyat, Yaselda, Gorin Rivers, the Osipovichi and Soligorsk reservoirs. Water in the Svisloch River downstream of Minsk is of the forth quality class, i.e. most polluted. In the rest cases (33.3%) water is relatively clean. They include the Lidea, Schara, Viliya, Sozh Rivers, Lake Lukoml, Lake Naroch, Vileyka and Zaslavl reservoirs. Multi-year average values range from 7.0 to 9.5 mg О₂/dm³. The Yaselda has the least value - 6.7 mg О₂/dm³. A shortage of dissolved oxygen was found in the Berezina (2010), the Yaselda (2007), the Plissa (2011-2014), the Soligorsk reservoir (1996). Contamination of water with oil-products was observed everywhere in 1994-1999. Some spots were found in the Western Dvina, Vilia, Usha, Dnieper in 2003-2006, in the Svisloch in 2002-2012. We are observing gradual decrease of oil pollutants in surface water. The quality of 67 % surface water is referred to as moderately polluted.

Keywords: belarus, hydro-chemical criteria, water pollution, water quality

Procedia PDF Downloads 125
15 Mitigating Urban Flooding through Spatial Planning Interventions: A Case of Bhopal City

Authors: Rama Umesh Pandey, Jyoti Yadav

Abstract:

Flooding is one of the waterborne disasters that causes extensive destruction in urban areas. Developing countries are at a higher risk of such damage and more than half of the global flooding events take place in Asian countries including India. Urban flooding is more of a human-induced disaster rather than natural. This is highly influenced by the anthropogenic factors, besides metrological and hydrological causes. Unplanned urbanization and poor management of cities enhance the impact manifold and cause huge loss of life and property in urban areas. It is an irony that urban areas have been facing water scarcity in summers and flooding during monsoon. This paper is an attempt to highlight the factors responsible for flooding in a city especially from an urban planning perspective and to suggest mitigating measures through spatial planning interventions. Analysis has been done in two stages; first is to assess the impacts of previous flooding events and second to analyze the factors responsible for flooding at macro and micro level in cities. Bhopal, a city in Central India having nearly two million population, has been selected for the study. The city has been experiencing flooding during heavy rains in monsoon. The factors responsible for urban flooding were identified through literature review as well as various case studies from different cities across the world and India. The factors thus identified were analyzed for both macro and micro level influences. For macro level, the previous flooding events that have caused huge destructions were analyzed and the most affected areas in Bhopal city were identified. Since the identified area was falling within the catchment of a drain so the catchment area was delineated for the study. The factors analyzed were: rainfall pattern to calculate the return period using Weibull’s formula; imperviousness through mapping in ArcGIS; runoff discharge by using Rational method. The catchment was divided into micro watersheds and the micro watershed having maximum impervious surfaces was selected to analyze the coverage and effect of physical infrastructure such as: storm water management; sewerage system; solid waste management practices. The area was further analyzed to assess the extent of violation of ‘building byelaws’ and ‘development control regulations’ and encroachment over the natural water streams. Through analysis, the study has revealed that the main issues have been: lack of sewerage system; inadequate storm water drains; inefficient solid waste management in the study area; violation of building byelaws through extending building structures ether on to the drain or on the road; encroachments by slum dwellers along or on to the drain reducing the width and capacity of the drain. Other factors include faulty culvert’s design resulting in back water effect. Roads are at higher level than the plinth of houses which creates submersion of their ground floors. The study recommends spatial planning interventions for mitigating urban flooding and strategies for management of excess rain water during monsoon season. Recommendations have also been made for efficient land use management to mitigate water logging in areas vulnerable to flooding.

Keywords: mitigating strategies, spatial planning interventions, urban flooding, violation of development control regulations

Procedia PDF Downloads 299
14 Blood Lipid Management: Combined Treatment with Hydrotherapy and Ozone Bubbles Bursting in Water

Authors: M. M. Wickramasinghe

Abstract:

Cholesterol and triglycerides are lipids, mainly essential to maintain the cellular structure of the human body. Cholesterol is also important for hormone production, vitamin D production, proper digestion functions, and strengthening the immune system. Excess fats in the blood circulation, known as hyperlipidemia, become harmful leading to arterial clogging and causing atherosclerosis. Aim of this research is to develop a treatment protocol to efficiently break down and maintain circulatory lipids by improving blood circulation without strenuous physical exercises while immersed in a tub of water. To achieve the target of strong exercise effect, this method involves generating powerful ozone bubbles to spin, collide, and burst in the water. Powerful emission of air into water is capable of transferring locked energy of the water molecules and releasing energy. This method involves water and air-based impact generated by pumping ozone at the speed of 46 lts/sec with a concentration of 0.03-0.05 ppt according to safety standards of The Federal Institute for Drugs and Medical Devices, BfArM, Germany. The direct impact of ozone bubbles on the muscular system and skin becomes the main target and is capable of increasing the heart rate while immersed in water. A total time duration of 20 minutes is adequate to exert a strong exercise effect, improve blood circulation, and stimulate the nervous and endocrine systems. Unstable ozone breakdown into oxygen release onto the surface of the water giving additional benefits and supplying high-quality air rich in oxygen required to maintain efficient metabolic functions. The breathing technique was introduced to improve the efficiency of lung functions and benefit the air exchange mechanism. The temperature of the water is maintained at 39c to 40c to support arterial dilation and enzyme functions and efficiently improve blood circulation to the vital organs. The buoyancy of water and natural hydrostatic pressure release the tension of the body weight and relax the mind and body. Sufficient hydration (3lts of water per day) is an essential requirement to transport nutrients and remove waste byproducts to process through the liver, kidney, and skin. Proper nutritional intake is an added advantage to optimize the efficiency of this method which aids in a fast recovery process. Within 20-30 days of daily treatment, triglycerides, low-density lipoproteins (LDL), and total cholesterol reduction were observed in patients with abnormal levels of lipid profile. Borderline patients were cleared within 10–15 days of treatment. This is a highly efficient system that provides many benefits and is able to achieve a successful reduction of triglycerides, LDL, and total cholesterol within a short period of time. Supported by proper hydration and nutritional balance, this system of natural treatment maintains healthy levels of lipids in the blood and avoids the risk of cerebral stroke, high blood pressure, and heart attacks.

Keywords: atherosclerosis, cholesterol, hydrotherapy, hyperlipidemia, lipid management, ozone therapy, triglycerides

Procedia PDF Downloads 63
13 Intensification of Wet Air Oxidation of Landfill Leachate Reverse Osmosis Concentrates

Authors: Emilie Gout, Mathias Monnot, Olivier Boutin, Pierre Vanloot, Philippe Moulin

Abstract:

Water is a precious resource. Treating industrial wastewater remains a considerable technical challenge of our century. The effluent considered for this study is landfill leachate treated by reverse osmosis (RO). Nowadays, in most developed countries, sanitary landfilling is the main method to deal with municipal solid waste. Rainwater percolates through solid waste, generating leachates mostly comprised of organic and inorganic matter. Whilst leachate ages, its composition varies, becoming more and more bio-refractory. RO is already used for landfill leachates as it generates good quality permeate. However, its mains drawback is the production of highly polluted concentrates that cannot be discharged in the environment or reused, which is an important industrial issue. It is against this background that the study of coupling RO with wet air oxidation (WAO) was set to intensify and optimize processes to meet current regulations for water discharge in the environment. WAO is widely studied for effluents containing bio-refractory compounds. Oxidation consists of a destruction reaction capable of mineralizing the recalcitrant organic fraction of pollution into carbon dioxide and water when complete. WAO process in subcritical conditions requires a high-energy consumption, but it can be autothermic in a certain range of chemical oxygen demand (COD) concentrations (10-100 g.L⁻¹). Appropriate COD concentrations are reached in landfill leachate RO concentrates. Therefore, the purpose of this work is to report the performances of mineralization during WAO on RO concentrates. The coupling of RO/WAO has shown promising results in previous works on both synthetic and real effluents in terms of organic carbon (TOC) reduction by WAO and retention by RO. Non-catalytic WAO with air as oxidizer was performed in a lab-scale stirred autoclave (1 L) on landfill leachates RO concentrates collected in different seasons in a sanitary landfill in southern France. The yield of WAO depends on operating parameters such as total pressure, temperature, and time. Compositions of the effluent are also important aspects for process intensification. An experimental design methodology was used to minimize the number of experiments whilst finding the operating conditions achieving the best pollution reduction. The simulation led to a set of 18 experiments, and the responses to highlight process efficiency are pH, conductivity, turbidity, COD, TOC, and inorganic carbon. A 70% oxygen excess was chosen for all the experiments. First experiments showed that COD and TOC abatements of at least 70% were obtained after 90 min at 300°C and 20 MPa, which attested the possibility to treat RO leachate concentrates with WAO. In order to meet French regulations and validate process intensification with industrial effluents, some continuous experiments in a bubble column are foreseen, and some further analyses will be performed, such as biological oxygen demand and study of gas composition. Meanwhile, other industrial effluents are treated to compare RO-WAO performances. These effluents, coming from pharmaceutical, petrochemical, and tertiary wastewater industries, present different specific pollutants that will provide a better comprehension of the hybrid process and prove the intensification and feasibility of the process at an industrial scale. Acknowledgments: This work has been supported by the French National Research Agency (ANR) for the Project TEMPO under the reference number ANR-19-CE04-0002-01.

Keywords: hybrid process, landfill leachates, process intensification, reverse osmosis, wet air oxidation

Procedia PDF Downloads 111
12 Geotechnical Challenges for the Use of Sand-sludge Mixtures in Covers for the Rehabilitation of Acid-Generating Mine Sites

Authors: Mamert Mbonimpa, Ousseynou Kanteye, Élysée Tshibangu Ngabu, Rachid Amrou, Abdelkabir Maqsoud, Tikou Belem

Abstract:

The management of mine wastes (waste rocks and tailings) containing sulphide minerals such as pyrite and pyrrhotite represents the main environmental challenge for the mining industry. Indeed, acid mine drainage (AMD) can be generated when these wastes are exposed to water and air. AMD is characterized by low pH and high concentrations of heavy metals, which are toxic to plants, animals, and humans. It affects the quality of the ecosystem through water and soil pollution. Different techniques involving soil materials can be used to control AMD generation, including impermeable covers (compacted clays) and oxygen barriers. The latter group includes covers with capillary barrier effects (CCBE), a multilayered cover that include the moisture retention layer playing the role of an oxygen barrier. Once AMD is produced at a mine site, it must be treated so that the final effluent at the mine site complies with regulations and can be discharged into the environment. Active neutralization with lime is one of the treatment methods used. This treatment produces sludge that is usually stored in sedimentation ponds. Other sludge management alternatives have been examined in recent years, including sludge co-disposal with tailings or waste rocks, disposal in underground mine excavations, and storage in technical landfill sites. Considering the ability of AMD neutralization sludge to maintain an alkaline to neutral pH for decades or even centuries, due to the excess alkalinity induced by residual lime within the sludge, valorization of sludge in specific applications could be an interesting management option. If done efficiently, the reuse of sludge could free up storage ponds and thus reduce the environmental impact. It should be noted that mixtures of sludge and soils could potentially constitute usable materials in CCBE for the rehabilitation of acid-generating mine sites, while sludge alone is not suitable for this purpose. The high sludge water content (up to 300%), even after sedimentation, can, however, constitute a geotechnical challenge. Adding lime to the mixtures can reduce the water content and improve the geotechnical properties. The objective of this paper is to investigate the impact of the sludge content (30, 40 and 50%) in sand-sludge mixtures (SSM) on their hydrogeotechnical properties (compaction, shrinkage behaviour, saturated hydraulic conductivity, and water retention curve). The impact of lime addition (dosages from 2% to 6%) on the moisture content, dry density after compaction and saturated hydraulic conductivity of SSM was also investigated. Results showed that sludge adding to sand significantly improves the saturated hydraulic conductivity and water retention capacity, but the shrinkage increased with sludge content. The dry density after compaction of lime-treated SSM increases with the lime dosage but remains lower than the optimal dry density of the untreated mixtures. The saturated hydraulic conductivity of lime-treated SSM after 24 hours of cure decreases by 3 orders of magnitude. Considering the hydrogeotechnical properties obtained with these mixtures, it would be possible to design CCBE whose moisture retention layer is made of SSM. Physical laboratory models confirmed the performance of such CCBE.

Keywords: mine waste, AMD neutralization sludge, sand-sludge mixture, hydrogeotechnical properties, mine site reclamation, CCBE

Procedia PDF Downloads 13
11 Introducing Transport Engineering through Blended Learning Initiatives

Authors: Kasun P. Wijayaratna, Lauren Gardner, Taha Hossein Rashidi

Abstract:

Undergraduate students entering university across the last 2 to 3 years tend to be born during the middle years of the 1990s. This generation of students has been exposed to the internet and the desire and dependency on technology since childhood. Brains develop based on environmental influences and technology has wired this generation of student to be attuned to sophisticated complex visual imagery, indicating visual forms of learning may be more effective than the traditional lecture or discussion formats. Furthermore, post-millennials perspectives on career are not focused solely on stability and income but are strongly driven by interest, entrepreneurship and innovation. Accordingly, it is important for educators to acknowledge the generational shift and tailor the delivery of learning material to meet the expectations of the students and the needs of industry. In the context of transport engineering, effectively teaching undergraduate students the basic principles of transport planning, traffic engineering and highway design is fundamental to the progression of the profession from a practice and research perspective. Recent developments in technology have transformed the discipline as practitioners and researchers move away from the traditional “pen and paper” approach to methods involving the use of computer programs and simulation. Further, enhanced accessibility of technology for students has changed the way they understand and learn material being delivered at tertiary education institutions. As a consequence, blended learning approaches, which aim to integrate face to face teaching with flexible self-paced learning resources, have become prevalent to provide scalable education that satisfies the expectations of students. This research study involved the development of a series of ‘Blended Learning’ initiatives implemented within an introductory transport planning and geometric design course, CVEN2401: Sustainable Transport and Highway Engineering, taught at the University of New South Wales, Australia. CVEN2401 was modified by conducting interactive polling exercises during lectures, including weekly online quizzes, offering a series of supplementary learning videos, and implementing a realistic design project that students needed to complete using modelling software that is widely used in practice. These activities and resources were aimed to improve the learning environment for a large class size in excess of 450 students and to ensure that practical industry valued skills were introduced. The case study compared the 2016 and 2017 student cohorts based on their performance across assessment tasks as well as their reception to the material revealed through student feedback surveys. The initiatives were well received with a number of students commenting on the ability to complete self-paced learning and an appreciation of the exposure to a realistic design project. From an educator’s perspective, blending the course made it feasible to interact and engage with students. Personalised learning opportunities were made available whilst delivering a considerable volume of complex content essential for all undergraduate Civil and Environmental Engineering students. Overall, this case study highlights the value of blended learning initiatives, especially in the context of large class size university courses.

Keywords: blended learning, highway design, teaching, transport planning

Procedia PDF Downloads 123
10 Gis Based Flash Flood Runoff Simulation Model of Upper Teesta River Besin - Using Aster Dem and Meteorological Data

Authors: Abhisek Chakrabarty, Subhraprakash Mandal

Abstract:

Flash flood is one of the catastrophic natural hazards in the mountainous region of India. The recent flood in the Mandakini River in Kedarnath (14-17th June, 2013) is a classic example of flash floods that devastated Uttarakhand by killing thousands of people.The disaster was an integrated effect of high intensityrainfall, sudden breach of Chorabari Lake and very steep topography. Every year in Himalayan Region flash flood occur due to intense rainfall over a short period of time, cloud burst, glacial lake outburst and collapse of artificial check dam that cause high flow of river water. In Sikkim-Derjeeling Himalaya one of the probable flash flood occurrence zone is Teesta Watershed. The Teesta River is a right tributary of the Brahmaputra with draining mountain area of approximately 8600 Sq. km. It originates in the Pauhunri massif (7127 m). The total length of the mountain section of the river amounts to 182 km. The Teesta is characterized by a complex hydrological regime. The river is fed not only by precipitation, but also by melting glaciers and snow as well as groundwater. The present study describes an attempt to model surface runoff in upper Teesta basin, which is directly related to catastrophic flood events, by creating a system based on GIS technology. The main object was to construct a direct unit hydrograph for an excess rainfall by estimating the stream flow response at the outlet of a watershed. Specifically, the methodology was based on the creation of a spatial database in GIS environment and on data editing. Moreover, rainfall time-series data collected from Indian Meteorological Department and they were processed in order to calculate flow time and the runoff volume. Apart from the meteorological data, background data such as topography, drainage network, land cover and geological data were also collected. Clipping the watershed from the entire area and the streamline generation for Teesta watershed were done and cross-sectional profiles plotted across the river at various locations from Aster DEM data using the ERDAS IMAGINE 9.0 and Arc GIS 10.0 software. The analysis of different hydraulic model to detect flash flood probability ware done using HEC-RAS, Flow-2D, HEC-HMS Software, which were of great importance in order to achieve the final result. With an input rainfall intensity above 400 mm per day for three days the flood runoff simulation models shows outbursts of lakes and check dam individually or in combination with run-off causing severe damage to the downstream settlements. Model output shows that 313 Sq. km area were found to be most vulnerable to flash flood includes Melli, Jourthang, Chungthang, and Lachung and 655sq. km. as moderately vulnerable includes Rangpo,Yathang, Dambung,Bardang, Singtam, Teesta Bazarand Thangu Valley. The model was validated by inserting the rain fall data of a flood event took place in August 1968, and 78% of the actual area flooded reflected in the output of the model. Lastly preventive and curative measures were suggested to reduce the losses by probable flash flood event.

Keywords: flash flood, GIS, runoff, simulation model, Teesta river basin

Procedia PDF Downloads 272
9 A Computational Investigation of Potential Drugs for Cholesterol Regulation to Treat Alzheimer’s Disease

Authors: Marina Passero, Tianhua Zhai, Zuyi (Jacky) Huang

Abstract:

Alzheimer’s disease has become a major public health issue, as indicated by the increasing populations of Americans living with Alzheimer’s disease. After decades of extensive research in Alzheimer’s disease, only seven drugs have been approved by Food and Drug Administration (FDA) to treat Alzheimer’s disease. Five of these drugs were designed to treat the dementia symptoms, and only two drugs (i.e., Aducanumab and Lecanemab) target the progression of Alzheimer’s disease, especially the accumulation of amyloid-b plaques. However, controversial comments were raised for the accelerated approvals of either Aducanumab or Lecanemab, especially with concerns on safety and side effects of these two drugs. There is still an urgent need for further drug discovery to target the biological processes involved in the progression of Alzheimer’s disease. Excessive cholesterol has been found to accumulate in the brain of those with Alzheimer’s disease. Cholesterol can be synthesized in both the blood and the brain, but the majority of biosynthesis in the adult brain takes place in astrocytes and is then transported to the neurons via ApoE. The blood brain barrier separates cholesterol metabolism in the brain from the rest of the body. Various proteins contribute to the metabolism of cholesterol in the brain, which offer potential targets for Alzheimer’s treatment. In the astrocytes, SREBP cleavage-activating protein (SCAP) binds to Sterol Regulatory Element-binding Protein 2 (SREBP2) in order to transport the complex from the endoplasmic reticulum to the Golgi apparatus. Cholesterol is secreted out of the astrocytes by ATP-Binding Cassette A1 (ABCA1) transporter. Lipoprotein receptors such as triggering receptor expressed on myeloid cells 2 (TREM2) internalize cholesterol into the microglia, while lipoprotein receptors such as Low-density lipoprotein receptor-related protein 1 (LRP1) internalize cholesterol into the neuron. Cytochrome P450 Family 46 Subfamily A Member 1 (CYP46A1) converts excess cholesterol to 24S-hydroxycholesterol (24S-OHC). Cholesterol has been approved for its direct effect on the production of amyloid-beta and tau proteins. The addition of cholesterol to the brain promotes the activity of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), secretase, and amyloid precursor protein (APP), which all aid in amyloid-beta production. The reduction of cholesterol esters in the brain have been found to reduce phosphorylated tau levels in mice. In this work, a computational pipeline was developed to identify the protein targets involved in cholesterol regulation in brain and further to identify chemical compounds as the inhibitors of a selected protein target. Since extensive evidence shows the strong correlation between brain cholesterol regulation and Alzheimer’s disease, a detailed literature review on genes or pathways related to the brain cholesterol synthesis and regulation was first conducted in this work. An interaction network was then built for those genes so that the top gene targets were identified. The involvement of these genes in Alzheimer’s disease progression was discussed, which was followed by the investigation of existing clinical trials for those targets. A ligand-protein docking program was finally developed to screen 1.5 million chemical compounds for the selected protein target. A machine learning program was developed to evaluate and predict the binding interaction between chemical compounds and the protein target. The results from this work pave the way for further drug discovery to regulate brain cholesterol to combat Alzheimer’s disease.

Keywords: Alzheimer’s disease, drug discovery, ligand-protein docking, gene-network analysis, cholesterol regulation

Procedia PDF Downloads 42
8 Production of Bioethanol from Oil PalmTrunk by Cocktail Carbohydrases Enzyme Produced by Thermophilic Bacteria Isolated from Hot spring in West Sumatera, Indonesia

Authors: Yetti Marlida, Syukri Arif, Nadirman Haska

Abstract:

Recently, alcohol fuels have been produced on industrial scales by fermentation of sugars derived from wheat, corn, sugar beets, sugar cane etc. The enzymatic hydrolysis of cellulosic materials to produce fermentable sugars has an enormous potential in meeting global bioenergy demand through the biorefinery concept, since agri-food processes generate millions of tones of waste each year (Xeros and Christakopoulos 2009) such as sugar cane baggase , wheat straw, rice straw, corn cob, and oil palm trunk. In fact oil palm trunk is one of the most abundant lignocellulosic wastes by-products worldwide especially come from Malaysia, Indonesia and Nigeria and provides an alternative substrate to produce useful chemicals such as bioethanol. Usually, from the ages 3 years to 25 years, is the economical life of oil palm and after that, it is cut for replantation. The size of trunk usually is 15-18 meters in length and 46-60 centimeters in diameter. The trunk after cutting is agricultural waste causing problem in elimination but due to the trunk contains about 42% cellulose, 34.4%hemicellulose, 17.1% lignin and 7.3% other compounds,these agricultural wastes could make value added products (Pumiput, 2006).This research was production of bioethanol from oil palm trunk via saccharafication by cocktail carbohydrases enzymes. Enzymatic saccharification of acid treated oil palm trunk was carried out in reaction mixture containing 40 g treated oil palm trunk in 200 ml 0.1 M citrate buffer pH 4.8 with 500 unit/kg amylase for treatment A: Treatment B: Treatment A + 500 unit/kg cellulose; C: treatment B + 500 unit/kgg xylanase: D: treatment D + 500 unit/kg ligninase and E: OPT without treated + 500 unit/kg amylase + 500 unit/kg cellulose + 500 unit/kg xylanase + 500 unit/kg ligninase. The reaction mixture was incubated on a water bath rotary shaker adjusted to 600C and 75 rpm. The samples were withdraw at intervals 12 and 24, 36, 48,60, and 72 hr. For bioethanol production in biofermentor of 5L the hydrolysis product were inoculated a loop of Saccharomyces cerevisiae and then incubated at 34 0C under static conditions. Samples are withdraw after 12, 24, 36, 48 and 72 hr for bioethanol and residual glucose. The results of the enzymatic hidrolysis (Figure1) showed that the treatment B (OPT hydrolyzed with amylase and cellulase) have optimum condition for glucose production, where was both of enzymes can be degraded OPT perfectly. The same results also reported by Primarini et al., (2012) reported the optimum conditions the hydrolysis of OPT was at concentration of 25% (w /v) with 0.3% (w/v) amylase, 0.6% (w /v) glucoamylase and 4% (w/v) cellulase. In the Figure 2 showed that optimum bioethanol produced at 48 hr after incubation,if time increased the biothanol decreased. According Roukas (1996), a decrease in the concentration of ethanol occur at excess glucose as substrate and product inhibition effects. Substrate concentration is too high reduces the amount of dissolved oxygen, although in very small amounts, oxygen is still needed in the fermentation by Saccaromyces cerevisiae to keep life in high cell concentrations (Nowak 2000, Tao et al. 2005). The results of the research can be conluded that the optimum enzymatic hydrolysis occured when the OPT added with amylase and cellulase and optimum bioethanol produced at 48 hr incubation using Saccharomyses cerevicea whereas 18.08 % bioethanol produced from glucose conversion. This work was funded by Directorate General of Higher Education (DGHE), Ministry of Education and Culture, contract no.245/SP2H/DIT.LimtabMas/II/2013

Keywords: oil palm trunk, enzymatic hydrolysis, saccharification

Procedia PDF Downloads 488
7 Cultivation of Halophytes: Effect of Salinity on Nutritional and Functional Properties

Authors: Luisa Barreira, Viana Castaneda, Maria J. Rodrigues, Florinda Gama, Tamara Santos, Marta Oliveira, Catarina Pereira, Maribela Pestana, Pedro Correia, Miguel Salazar, Carla Nunes, Luisa Custodio, Joao Varela

Abstract:

In the last century, the world witnessed an exponential demographic increase that has put an enormous pressure on agriculture and food production. Associated also with climate changes, there has been a decrease in the amount of available freshwater and an increased salinization of soils which can affect the production of most food crops. Halophytes, however, are plants able to withstand high salinities while maintaining a good growth productivity. To cope with the excess salt, they produce secondary metabolites (e.g. vitamins and phenolic compounds) which, along with the natural presence of some minerals, makes them not only nutritionally rich but also functional foods. Some halophytes, as quinoa or salicornia, are already used in some countries, mostly as gourmet food. Hydroponic cultivation of halophytes using seawater or diluted seawater for watering can decrease the pressure on freshwater resources while producing a nutritional and functional food. The XtremeGourmet project funded by the EU aims to develop and optimize the production of different halophytes by hydroponics. One of the more specific objectives of this project is the study of halophytes’ productivity and chemical composition under different abiotic conditions, e.g. salt and nutrient concentration and light intensity. Three species of halophytes commonly occurring in saltmarshes of the South of Portugal (Inula chrithmoides, Salicornia ramosissima and Mesembryanthemum nodiflorum) were cultivated using hydroponics under different salinities, ranging from 5 to 45 dS/m. For each condition, several parameters were assessed namely: total and commercial productivity, electrical conductivity, total soluble solids, proximal composition, mineral profile, total phenolics, flavonoids and condensed tannins content and antioxidant activity. Results show that productivity was significantly reduced for all plants with increasing salinity up to salinity 29 dS/m and remained low onwards. Oppositely, the electrical conductivity and the total soluble solids content of the produced plants increased with salinity, reaching a plateau at 29 dS/m. It seems that plants reflect the salt concentration of the water up to some point, being able to regulate their salt content for higher salinities. The same tendency was observed for the ash content of these plants, which is related to the mineral uptake from the cultivating media and the plants’ capacity to both accumulate and regulate ions’ concentration in their tissues. Nonetheless, this comes with a metabolic cost which is observed by a decrease in productivity. The mineral profile of these plants shows high concentrations of sodium but also high amounts of potassium. In what concerns the microelements, these plants appear to be a good source of manganese and iron and the low amounts of toxic metals account for their safe consumption in moderate amounts. Concerning the phenolics composition, plants presented moderate concentrations of phenolics but high amounts of condensed tannins, particularly I. crithmoides which accounts for its characteristic sour and spicy taste. Contrary to some studies in which higher amounts of phenolics were found in plants cultivated under higher salinities, in this study, the highest amount of phenolic compounds were found in plants grown at the lowest or intermediate salinities. Nonetheless, there was a positive correlation between the concentration of these compounds and the antioxidant capacity of the plants’ extracts.

Keywords: functional properties, halophytes, hydroponics, nutritional composition, salinity effect

Procedia PDF Downloads 237
6 Effects of Delphinidin on Lipid Metabolism in HepG2 Cells and Diet-Induced Obese Mice

Authors: Marcela Parra-Vargas, Ana Sandoval-Rodriguez, Roberto Rodriguez-Echevarria, Jose Dominguez-Rosales, Juan Armendariz-Borunda

Abstract:

Non-alcoholic fatty liver disease (NAFLD) is characterized by an excess of hepatic lipids, and it is to author’s best knowledge, the most prevalent chronic liver disorder. Anthocyanin-rich food consumption is linked to health benefits in metabolic disorders associated with obesity and NAFLD, although the precise functional role of anthocyanidin delphinidin (Dp) has yet to be established. The aim of this study was to investigate the effect of the Dp in NAFLD metabolic alterations by evaluating prevention or amelioration of hepatic lipid accumulation, as well as molecular mechanisms in two experimental obesity-related models of NALFD. In vitro: HepG2 cells were incubated with sodium palmitate (PA, 1 mM) to induce lipotoxic damage, and concomitantly treated with Dp (180 uM) for 24 h. Subsequently, total lipid accumulation was measured by colorimetric staining with Oil Red O, and total intrahepatic triglycerides were determined by an enzymatic assay. To assess molecular mechanisms, cells were pre-treated with PA for 24 h and then exposed to Dp for 1 h. In vivo: four-week-old male C57BL/6Nhsd mice were allocated in two main groups. Mice were fed with standard diet (control) or high-fat and high-carbohydrate diet (45% fat, HFD) for 16 wk to induce NAFLD. Then HFD was divided into subgroups: one treated orally with Dp (15 mg/kg bw, HFD-Dp) every day for 4 wk, while HFD group treated with vehicle (DMSO). Weight and fasting glucose were recorded weekly, while dietary ingestion was measured daily. Insulin tolerance test was performed at the end of treatment. Liver histology was evaluated with H&E and Masson’s trichrome stain. RT-PCR was used to evaluate gene expression and Western Blot to determine levels of protein in both experimental models. Parametric data were analyzed with one-way ANOVA and Tukey’s post-hoc test. Kruskal-Wallis and Mann-Whitney U test for non-parametric data, and P < 0.5 were considered significant. Dp prevented hepatic lipid accumulation by PA in HepG2 hepatocytes. Furthermore, Dp down-regulated gene expression of SREBP1c, FAS, and CPT1a without modifying AMPK phosphorylation levels. In vivo, Dp oral administration did not ameliorate lipid metabolic alterations raised by HFD. Adiposity, dietary ingestion, fasting glucose, and insulin sensitivity after Dp treatment remained similar to HFD group. Histological analysis showed hepatic damage in HFD groups and no differences between HFD and HFD-Dp groups were found. Hepatic gene expression of ACC and FAS were not altered by HFD. SREBP1c was similar in both HFD and HFD-Dp groups. No significant changes were observed in SREBP1c, ACC, and FAS adipose tissue gene expression by HFD or Dp treatment. Additionally, immunoblotting analysis revealed no changes in pathway SIRT1-LKB-AMPK and PPAR alpha by both HFD groups compared to control. In conclusion, the antioxidant Dp may provoke beneficial effects in the prevention of hepatic lipid accumulation. Nevertheless, the oral dose administrated in mice that simulated the total intake of anthocyanins consumed daily by humans has no effect as a treatment on hepatic lipid metabolic alterations and histological abnormalities associated with exposure to chronic HFD. A healthy lifestyle with regular intake of antioxidants such as anthocyanins may prevent metabolic alterations in NAFLD.

Keywords: anthocyanins, antioxidants, delphinidin, non-alcoholic fatty liver disease, obesity

Procedia PDF Downloads 177
5 Simulation, Design, and 3D Print of Novel Highly Integrated TEG Device with Improved Thermal Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 35
4 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 35
3 Pulmonary Complication of Chronic Liver Disease and the Challenges Identifying and Managing Three Patients

Authors: Aidan Ryan, Nahima Miah, Sahaj Kaur, Imogen Sutherland, Mohamed Saleh

Abstract:

Pulmonary symptoms are a common presentation to the emergency department. Due to a lack of understanding of the underlying pathophysiology, chronic liver disease is not often considered a cause of dyspnea. We present three patients who were admitted with significant respiratory distress secondary to hepatopulmonary syndrome, portopulmonary hypertension, and hepatic hydrothorax. The first is a 27-year-old male with a 6-month history of progressive dyspnea. The patient developed a severe type 1 respiratory failure with a PaO₂ of 6.3kPa and was escalated to critical care, where he was managed with non-invasive ventilation to maintain oxygen saturation. He had an agitated saline contrast echocardiogram, which showed the presence of a possible shunt. A CT angiogram revealed significant liver cirrhosis, portal hypertension, and large para esophageal varices. Ultrasound of the abdomen showed coarse liver echo patter and enlarged spleen. Along with these imaging findings, his biochemistry demonstrated impaired synthetic liver function with an elevated international normalized ratio (INR) of 1.4 and hypoalbuminaemia of 28g/L. The patient was then transferred to a tertiary center for further management. Further investigations confirmed a shunt of 56%, and liver biopsy confirmed cirrhosis suggestive of alpha-1-antitripsyin deficiency. The findings were consistent with a diagnosis of hepatopulmonary syndrome, and the patient is awaiting a liver transplant. The second patient is a 56-year-old male with a 12-month history of worsening dyspnoea, jaundice, confusion. His medical history included liver cirrhosis, portal hypertension, and grade 1 oesophageal varices secondary to significant alcohol excess. On admission, he developed a type 1 respiratory failure with PaO₂ of 6.8kPa requiring 10L of oxygen. CT pulmonary angiogram was negative for pulmonary embolism but showed evidence of chronic pulmonary hypertension, liver cirrhosis, and portal hypertension. An echocardiogram revealed a grossly dilated right heart with reduced function, pulmonary and tricuspid regurgitation, and pulmonary artery pressures estimated at 78mmHg. His biochemical markers showed impaired synthetic liver function with an INR of 3.2, albumin of 29g/L, along with raised bilirubin of 148mg/dL. During his long admission, he was managed with diuretics with little improvement. After three weeks, he was diagnosed with portopulmonary hypertension and was commenced on terlipressin. This resulted in successfully weaning off oxygen, and he was discharged home. The third patient is a 61-year-old male who presented to the local ambulatory care unit for therapeutic paracentesis on a background of decompensated liver cirrhosis. On presenting, he complained of a 2-day history of worsening dyspnoea and a productive cough. Chest x-ray showed a large pleural effusion, increasing in size over the previous eight months, and his abdomen was visibly distended with ascitic fluid. Unfortunately, the patient deteriorated, developing a larger effusion along with an increase in oxygen demand, and passed away. Without underlying cardiorespiratory disease, in the presence of a persistent pleural effusion with underlying decompensated cirrhosis, he was diagnosed with hepatic hydrothorax. While each presented with dyspnoea, the cause and underlying pathophysiology differ significantly from case to case. By describing these complications, we hope to improve awareness and aid prompt and accurate diagnosis, vital for improving outcomes.

Keywords: dyspnea, hepatic hydrothorax, hepatopulmonary syndrome, portopulmonary syndrome

Procedia PDF Downloads 95
2 Addressing Primary Care Clinician Burnout in a Value Based Care Setting During the COVID-19 Pandemic

Authors: Robert E. Kenney, Efrain Antunez, Samuel Nodal, Ameer Malik, Richard B. Aguilar

Abstract:

Physician burnout has gained much attention during the COVID pandemic. After-hours workload, HCC coding, HEDIS metrics, and clinical documentation negatively impact career satisfaction. These and other influences have increased the rate of physicians leaving the workforce. In addition, roughly 1% of the entire physician workforce will be retiring earlier than expected based on pre-pandemic trends. The two Medical Specialties with the highest rates of burnout are Family Medicine and Primary Care. With a predicted shortage of primary care physicians looming, the need to address physician burnout is crucial. Commonly reported issues leading to clinician burnout are clerical documentation requirements, increased time working on Electronic Health Records (EHR) after hours, and a decrease in work-life balance. Clinicians experiencing burnout with physical and emotional exhaustion are at an increased likelihood of providing lower quality and less efficient patient care. This may include a lack of suitable clinical documentation, medication reconciliation, clinical assessment, and treatment plans. While the annual baseline turnover rates of physicians hover around 6-7%, the COVID pandemic profoundly disrupted the delivery of healthcare. A report found that 43% of physicians switched jobs during the initial two years of the COVID pandemic (2020 and 2021), tripling the expected average annual rate to 21.5 %/yr. During this same time, an average of 4% and 1.5% of physicians retired or left the workforce for a non-clinical career, respectively. The report notes that 35.2% made career changes for a better work-life balance and another 35% reported the reason as being unhappy with their administration’s response to the pandemic. A physician-led primary care-focused health organization, Cano Health (CH), based out of Florida, sought to preemptively address this problem by implementing several supportive measures. Working with >120 clinics and >280 PCPs from Miami to Tampa and Orlando, managing nearly 120,000 Medicare Advantage lives, CH implemented a number of changes to assist with the clinician’s workload. Supportive services such as after hour and home visits by APRNs, in-clinic care managers, and patient educators were implemented. In 2021, assistive Artificial Intelligence Software (AIS) was integrated into the EHR platform. This AIS converts free text within PDF files into a usable (copy-paste) format facilitating documentation. The software also systematically and chronologically organizes clinical data, including labs, medical records, consultations, diagnostic images, medications, etc., into an easy-to-use organ system or chronic disease state format. This reduced the excess time and documentation burden required to meet payor and CMS guidelines. A clinician Documentation Support team was employed to improve the billing/coding performance. The effects of these newly designed workflow interventions were measured via analysis of clinician turnover from CH’s hiring and termination reporting software. CH’s annualized average clinician turnover rate in 2020 and 2021 were 17.7% and 12.6%, respectively. This represents a 30% relative reduction in turnover rate compared to the reported national average of 21.5%. Retirement rates during both years were 0.1%, demonstrating a relative reduction of >95% compared to the national average (4%). This model successfully promoted the retention of clinicians in a Value-Based Care setting.

Keywords: clinician burnout, COVID-19, value-based care, burnout, clinician retirement

Procedia PDF Downloads 57
1 Extracellular Polymeric Substances Study in an MBR System for Fouling Control

Authors: Dimitra C. Banti, Gesthimani Liona, Petros Samaras, Manasis Mitrakas

Abstract:

Municipal and industrial wastewaters are often treated biologically, by the activated sludge process (ASP). The ASP not only requires large aeration and sedimentation tanks, but also generates large quantities of excess sludge. An alternative technology is the membrane bioreactor (MBR), which replaces two stages of the conventional ASP—clarification and settlement—with a single, integrated biotreatment and clarification step. The advantages offered by the MBR over conventional treatment include reduced footprint and sludge production through maintaining a high biomass concentration in the bioreactor. Notwithstanding these advantages, the widespread application of the MBR process is constrained by membrane fouling. Fouling leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary and resulting to increased operating costs. In general, membrane fouling results from the interaction between the membrane material and the components in the activated sludge liquor. The latter includes substrate components, cells, cell debris and microbial metabolites, such as Extracellular Polymeric Substances (EPS) and Sludge Microbial Products (SMPs). The challenge for effective MBR operation is to minimize the rate of Transmembrane Pressure (TMP) increase. This can be achieved by several ways, one of which is the addition of specific additives, that enhance the coagulation and flocculation of compounds, which are responsible for fouling, hence reducing biofilm formation on the membrane surface and limiting the fouling rate. In this project the effectiveness of a non-commercial composite coagulant was studied as an agent for fouling control in a lab scale MBR system consisting in two aerated tanks. A flat sheet membrane module with 0.40 um pore size was submerged into the second tank. The system was fed by50 L/d of municipal wastewater collected from the effluent of the primary sedimentation basin. The TMP increase rate, which is directly related to fouling growth, was monitored by a PLC system. EPS, MLSS and MLVSS measurements were performed in samples of mixed liquor; in addition, influent and effluent samples were collected for the determination of physicochemical characteristics (COD, BOD5, NO3-N, NH4-N, Total N and PO4-P). The coagulant was added in concentrations 2, 5 and 10mg/L during a period of 2 weeks and the results were compared with the control system (without coagulant addition). EPS fractions were extracted by a three stages physical-thermal treatment allowing the identification of Soluble EPS (SEPS) or SMP, Loosely Bound EPS (LBEPS) and Tightly Bound EPS (TBEPS). Proteins and carbohydrates concentrations were measured in EPS fractions by the modified Lowry method and Dubois method, respectively. Addition of 2 mg/L coagulant concentration did not affect SEPS proteins in comparison with control process and their values varied between 32 to 38mg/g VSS. However a coagulant dosage of 5mg/L resulted in a slight increase of SEPS proteins at 35-40 mg/g VSS while 10mg/L coagulant further increased SEPS to 44-48mg/g VSS. Similar results were obtained for SEPS carbohydrates. Carbohydrates values without coagulant addition were similar to the corresponding values measured for 2mg/L coagulant; the addition of mg/L coagulant resulted to a slight increase of carbohydrates SEPS to 6-7mg/g VSS while a dose of 10 mg/L further increased carbohydrates content to 9-10mg/g VSS. Total LBEPS and TBEPS, consisted of proteins and carbohydrates of LBEPS and TBEPS respectively, presented similar variations by the addition of the coagulant. Total LBEPS at 2mg/L dose were almost equal to 17mg/g VSS, and their values increased to 22 and 29 mg/g VSS during the addition of 5 mg/L and 10 mg/L of coagulant respectively. Total TBEPS were almost 37 mg/g VSS at a coagulant dose of 2 mg/L and increased to 42 and 51 mg/g VSS at 5 mg/L and 10 mg/L doses, respectively. Therefore, it can be concluded that coagulant addition could potentially affect microorganisms activities, excreting EPS in greater amounts. Nevertheless, EPS increase, mainly SEPS increase, resulted to a higher membrane fouling rate, as justified by the corresponding TMP increase rate. However, the addition of the coagulant, although affected the EPS content in the reactor mixed liquor, did not change the filtration process: an effluent of high quality was produced, with COD values as low as 20-30 mg/L.

Keywords: extracellular polymeric substances, MBR, membrane fouling, EPS

Procedia PDF Downloads 230