Search results for: evolution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1790

Search results for: evolution

50 Librarian Liaisons: Facilitating Multi-Disciplinary Research for Academic Advancement

Authors: Tracey Woods

Abstract:

In the ever-evolving landscape of academia, the traditional role of the librarian has undergone a remarkable transformation. Once considered as custodians of books and gatekeepers of information, librarians have the potential to take on the vital role of facilitators of cross and inter-disciplinary projects. This shift is driven by the growing recognition of the value of interdisciplinary collaboration in addressing complex research questions in pursuit of novel solutions to real-world problems. This paper shall explore the potential of the academic librarian’s role in facilitating innovative, multi-disciplinary projects, both recognising and validating the vital role that the librarian plays in a somewhat underplayed profession. Academic libraries support teaching, the strengthening of knowledge discourse, and, potentially, the development of innovative practices. As the role of the library gradually morphs from a quiet repository of books to a community-based information hub, a potential opportunity arises. The academic librarian’s role is to build knowledge across a wide span of topics, from the advancement of AI to subject-specific information, and, whilst librarians are generally not offered the research opportunities and funding that the traditional academic disciplines enjoy, they are often invited to help build research in support of the academic. This identifies that one of the primary skills of any 21st-century librarian must be the ability to collaborate and facilitate multi-disciplinary projects. In universities seeking to develop research diversity and academic performance, there is an increasing awareness of the need for collaboration between faculties to enable novel directions and advancements. This idea has been documented and discussed by several researchers; however, there is not a great deal of literature available from recent studies. Having a team based in the library that is adept at creating effective collaborative partnerships is valuable for any academic institution. This paper outlines the development of such a project, initiated within and around an identified library-specific need: the replication of fragile special collections for object-based learning. The research was developed as a multi-disciplinary project involving the faculties of engineering (digital twins lab), architecture, design, and education. Centred around methods for developing a fragile archive into a series of tactile objects furthers knowledge and understanding in both the role of the library as a facilitator of projects, chairing and supporting, alongside contributing to the research process and innovating ideas through the bank of knowledge found amongst the staff and their liaising capabilities. This paper shall present the method of project development from the initiation of ideas to the development of prototypes and dissemination of the objects to teaching departments for analysis. The exact replication of artefacts is also balanced with the adaptation and evolutionary speculations initiated by the design team when adapted as a teaching studio method. The dynamic response required from the library to generate and facilitate these multi-disciplinary projects highlights the information expertise and liaison skills that the librarian possesses. As academia embraces this evolution, the potential for groundbreaking discoveries and innovative solutions across disciplines becomes increasingly attainable.

Keywords: Liaison librarian, multi-disciplinary collaborations, library innovations, librarian stakeholders

Procedia PDF Downloads 31
49 Absorptive Capabilities in the Development of Biopharmaceutical Industry: The Case of Bioprocess Development and Research Unit, National Polytechnic Institute

Authors: Ana L. Sánchez Regla, Igor A. Rivera González, María del Pilar Monserrat Pérez Hernández

Abstract:

The ability of an organization to identify and get useful information from external sources, assimilate it, transform and apply to generate products or services with added value is called absorptive capacity. Absorptive capabilities contribute to have market opportunities to firms and get a leader position with respect to others competitors. The Bioprocess Development and Research Unit (UDIBI) is a Research and Development (R&D) laboratory that belongs to the National Polytechnic Institute (IPN), which is a higher education institute in Mexico. The UDIBI was created with the purpose of carrying out R and D activities for the Transferon®, a biopharmaceutical product developed and patented by IPN. The evolution of competence and scientific and technological platform made UDIBI expand its scope by providing technological services (preclínical studies and bio-compatibility evaluation) to the national pharmaceutical industry and biopharmaceutical industry. The relevance of this study is that those industries are classified as high scientific and technological intensity, and yet, after a review of the state of the art, there is only one study of absorption capabilities in biopharmaceutical industry with a similar scope to this research; in the case of Mexico, there is none. In addition to this, UDIBI belongs to a public university and its operation does not depend on the federal budget, but on the income generated by its external technological services. This fact represents a highly remarkable case in Mexico's public higher education context. This current doctoral research (2015-2019) is contextualized within a case study, its main objective is to identify and analyze the absorptive capabilities that characterise the UDIBI that allows it had become in a one of two third authorized laboratory by the sanitary authority in Mexico for developed bio-comparability studies to bio-pharmaceutical products. The development of this work in the field is divided into two phases. In a first phase, 15 interviews were conducted with the UDIBI personnel, covering management levels, heads of services, project leaders and laboratory personnel. These interviews were structured under a questionnaire, which was designed to integrate open questions and to a lesser extent, others, whose answers would be answered on a Likert-type rating scale. From the information obtained in this phase, a scientific article was made (in review and a proposal of presentation was submitted in different academic forums. A second stage will be made from the conduct of an ethnographic study within this organization under study that will last about 3 months. On the other hand, it is intended to carry out interviews with external actors around the UDIBI (suppliers, advisors, IPN officials, including contact with an academic specialized in absorption capacities to express their comments on this thesis. The inicial findings had shown two lines: i) exist institutional, technological and organizational management elements that encourage and/or limit the creation of absorption capacities in this scientific and technological laboratory and, ii) UDIBI has had created a set of multiple transfer technology of knowledge mechanisms which have had permitted to build a huge base of prior knowledge.

Keywords: absorptive capabilities, biopharmaceutical industry, high research and development intensity industries, knowledge management, transfer of knowledge

Procedia PDF Downloads 189
48 Big Data Applications for the Transport Sector

Authors: Antonella Falanga, Armando Cartenì

Abstract:

Today, an unprecedented amount of data coming from several sources, including mobile devices, sensors, tracking systems, and online platforms, characterizes our lives. The term “big data” not only refers to the quantity of data but also to the variety and speed of data generation. These data hold valuable insights that, when extracted and analyzed, facilitate informed decision-making. The 4Vs of big data - velocity, volume, variety, and value - highlight essential aspects, showcasing the rapid generation, vast quantities, diverse sources, and potential value addition of these kinds of data. This surge of information has revolutionized many sectors, such as business for improving decision-making processes, healthcare for clinical record analysis and medical research, education for enhancing teaching methodologies, agriculture for optimizing crop management, finance for risk assessment and fraud detection, media and entertainment for personalized content recommendations, emergency for a real-time response during crisis/events, and also mobility for the urban planning and for the design/management of public and private transport services. Big data's pervasive impact enhances societal aspects, elevating the quality of life, service efficiency, and problem-solving capacities. However, during this transformative era, new challenges arise, including data quality, privacy, data security, cybersecurity, interoperability, the need for advanced infrastructures, and staff training. Within the transportation sector (the one investigated in this research), applications span planning, designing, and managing systems and mobility services. Among the most common big data applications within the transport sector are, for example, real-time traffic monitoring, bus/freight vehicle route optimization, vehicle maintenance, road safety and all the autonomous and connected vehicles applications. Benefits include a reduction in travel times, road accidents and pollutant emissions. Within these issues, the proper transport demand estimation is crucial for sustainable transportation planning. Evaluating the impact of sustainable mobility policies starts with a quantitative analysis of travel demand. Achieving transportation decarbonization goals hinges on precise estimations of demand for individual transport modes. Emerging technologies, offering substantial big data at lower costs than traditional methods, play a pivotal role in this context. Starting from these considerations, this study explores the usefulness impact of big data within transport demand estimation. This research focuses on leveraging (big) data collected during the COVID-19 pandemic to estimate the evolution of the mobility demand in Italy. Estimation results reveal in the post-COVID-19 era, more than 96 million national daily trips, about 2.6 trips per capita, with a mobile population of more than 37.6 million Italian travelers per day. Overall, this research allows us to conclude that big data better enhances rational decision-making for mobility demand estimation, which is imperative for adeptly planning and allocating investments in transportation infrastructures and services.

Keywords: big data, cloud computing, decision-making, mobility demand, transportation

Procedia PDF Downloads 32
47 Identification of Tangible and Intangible Heritage and Preparation of Conservation Proposal for the Historic City of Karanja Laad

Authors: Prachi Buche Marathe

Abstract:

Karanja Laad is a city located in the Vidarbha region in the state of Maharashtra, India. It has a huge amount of tangible and intangible heritage in the form of monuments, precincts, a group of structures, festivals and procession route, which is neglected and lost with time. Three different religions Hinduism, Islam and Jainism along with associations of being a birthplace of Swami Nrusinha Saraswati, an exponent of Datta Sampradaya sect and the British colonial layer have shaped the culture and society of the place over the period. The architecture of the town Karanja Laad has enhanced its unique historic and cultural value with a combination of all these historic layers. Karanja Laad is also a traditional trading historic town with unique hybrid architectural style and has a good potential for developing as a tourist place along with the present image of a pilgrim destination of Datta Sampradaya. The aim of the research is to prepare a conservation proposal for the historic town along with the management framework. Objectives of the research are to study the evolution of Karanja town, to identify the cultural resources along with issues of the historic core of the city, to understand Datta sampradaya, and contribution of Saint Nrusinha Saraswati in the religious sect and his association as an important personality with Karanja. The methodology of the research is site visits to the Karanja city, making field surveys for documentation and discussions and questionnaires with the residents to establish heritage and identify potential and issues within the historic core thereby establishing a case for conservation. Field surveys are conducted for town level study of land use, open spaces, occupancy, ownership, traditional commodity and community, infrastructure, streetscapes, and precinct activities during the festival and non-festival period. Building level study includes establishing various typologies like residential, institutional commercial, religious, and traditional infrastructure from the mythological references like waterbodies (kund), lake and wells. One of the main issues is that the loss of the traditional footprint as well as the traditional open spaces which are getting lost due to the new illegal encroachments and lack of guidelines for the new additions to conserve the original fabric of the structures. Traditional commodities are getting lost since there is no promotion of these skills like pottery and painting. Lavish bungalows like Kannava mansion, main temple Wada (birthplace of the saint) have a huge potential to be developed as a museum by adaptive re-use which will, in turn, attract many visitors during festivals which will boost the economy. Festival procession routes can be identified and a heritage walk can be developed so as to highlight the traditional features of the town. Overall study has resulted in establishing a heritage map with 137 heritage structures identified as potential. Conservation proposal is worked out on the town level, precinct level and building level with interventions such as developing construction guidelines for further development and establishing a heritage cell consisting architects and engineers for the upliftment of the existing rich heritage of the Karanja city.

Keywords: built heritage, conservation, Datta Sampradaya, Karanja Laad, Swami Nrusinha Saraswati, procession route

Procedia PDF Downloads 124
46 A Postmodern Framework for Quranic Hermeneutics

Authors: Christiane Paulus

Abstract:

Post-Islamism assumes that the Quran should not be viewed in terms of what Lyotard identifies as a ‘meta-narrative'. However, its socio-ethical content can be viewed as critical of power discourse (Foucault). Practicing religion seems to be limited to rites and individual spirituality, taqwa. Alternatively, can we build on Muhammad Abduh's classic-modern reform and develop it through a postmodernist frame? This is the main question of this study. Through his general and vague remarks on the context of the Quran, Abduh was the first to refer to the historical and cultural distance of the text as an obstacle for interpretation. His application, however, corresponded to the modern absolute idea of authentic sharia. He was followed by Amin al-Khuli, who hermeneutically linked the content of the Quran to the theory of evolution. Fazlur Rahman and Nasr Hamid abu Zeid remain reluctant to go beyond the general level in terms of context. The hermeneutic circle, therefore, persists in challenging, how to get out to overcome one’s own assumptions. The insight into and the acceptance of the lasting ambivalence of understanding can be grasped as a postmodern approach; it is documented in Derrida's discovery of the shift in text meanings, difference, also in Lyotard's theory of différend. The resulting mixture of meanings (Wolfgang Welsch) can be read together with the classic ambiguity of the premodern interpreters of the Quran (Thomas Bauer). Confronting hermeneutic difficulties in general, Niklas Luhmann proves every description an attribution, tautology, i.e., remaining in the circle. ‘De-tautologization’ is possible, namely by analyzing the distinctions in the sense of objective, temporal and social information that every text contains. This could be expanded with the Kantian aesthetic dimension of reason (critique of pure judgment) corresponding to the iʽgaz of the Coran. Luhmann asks, ‘What distinction does the observer/author make?’ Quran as a speech from God to the first listeners could be seen as a discourse responding to the problems of everyday life of that time, which can be viewed as the general goal of the entire Qoran. Through reconstructing koranic Lifeworlds (Alfred Schütz) in detail, the social structure crystallizes the socio-economic differences, the enormous poverty. The koranic instruction to provide the basic needs for the neglected groups, which often intersect (old, poor, slaves, women, children), can be seen immediately in the text. First, the references to lifeworlds/social problems and discourses in longer koranic passages should be hypothesized. Subsequently, information from the classic commentaries could be extracted, the classical Tafseer, in particular, contains rich narrative material for reconstructing. By selecting and assigning suitable, specific context information, the meaning of the description becomes condensed (Clifford Geertz). In this manner, the text gets necessarily an alienation and is newly accessible. The socio-ethical implications can thus be grasped from the difference of the original problem and the revealed/improved order/procedure; this small step can be materialized as such, not as an absolute solution but as offering plausible patterns for today’s challenges as the Agenda 2030.

Keywords: postmodern hermeneutics, condensed description, sociological approach, small steps of reform

Procedia PDF Downloads 183
45 Combination of Modelling and Environmental Life Cycle Assessment Approach for Demand Driven Biogas Production

Authors: Juan A. Arzate, Funda C. Ertem, M. Nicolas Cruz-Bournazou, Peter Neubauer, Stefan Junne

Abstract:

— One of the biggest challenges the world faces today is global warming that is caused by greenhouse gases (GHGs) coming from the combustion of fossil fuels for energy generation. In order to mitigate climate change, the European Union has committed to reducing GHG emissions to 80–95% below the level of the 1990s by the year 2050. Renewable technologies are vital to diminish energy-related GHG emissions. Since water and biomass are limited resources, the largest contributions to renewable energy (RE) systems will have to come from wind and solar power. Nevertheless, high proportions of fluctuating RE will present a number of challenges, especially regarding the need to balance the variable energy demand with the weather dependent fluctuation of energy supply. Therefore, biogas plants in this content would play an important role, since they are easily adaptable. Feedstock availability varies locally or seasonally; however there is a lack of knowledge in how biogas plants should be operated in a stable manner by local feedstock. This problem may be prevented through suitable control strategies. Such strategies require the development of convenient mathematical models, which fairly describe the main processes. Modelling allows us to predict the system behavior of biogas plants when different feedstocks are used with different loading rates. Life cycle assessment (LCA) is a technique for analyzing several sides from evolution of a product till its disposal in an environmental point of view. It is highly recommend to use as a decision making tool. In order to achieve suitable strategies, the combination of a flexible energy generation provided by biogas plants, a secure production process and the maximization of the environmental benefits can be obtained by the combination of process modelling and LCA approaches. For this reason, this study focuses on the biogas plant which flexibly generates required energy from the co-digestion of maize, grass and cattle manure, while emitting the lowest amount of GHG´s. To achieve this goal AMOCO model was combined with LCA. The program was structured in Matlab to simulate any biogas process based on the AMOCO model and combined with the equations necessary to obtain climate change, acidification and eutrophication potentials of the whole production system based on ReCiPe midpoint v.1.06 methodology. Developed simulation was optimized based on real data from operating biogas plants and existing literature research. The results prove that AMOCO model can successfully imitate the system behavior of biogas plants and the necessary time required for the process to adapt in order to generate demanded energy from available feedstock. Combination with LCA approach provided opportunity to keep the resulting emissions from operation at the lowest possible level. This would allow for a prediction of the process, when the feedstock utilization supports the establishment of closed material circles within a smart bio-production grid – under the constraint of minimal drawbacks for the environment and maximal sustainability.

Keywords: AMOCO model, GHG emissions, life cycle assessment, modelling

Procedia PDF Downloads 161
44 Bio-Inspired Information Complexity Management: From Ant Colony to Construction Firm

Authors: Hamza Saeed, Khurram Iqbal Ahmad Khan

Abstract:

Effective information management is crucial for any construction project and its success. Primary areas of information generation are either the construction site or the design office. There are different types of information required at different stages of construction involving various stakeholders creating complexity. There is a need for effective management of information flows to reduce uncertainty creating complexity. Nature provides a unique perspective in terms of dealing with complexity, in particular, information complexity. System dynamics methodology provides tools and techniques to address complexity. It involves modeling and simulation techniques that help address complexity. Nature has been dealing with complex systems since its creation 4.5 billion years ago. It has perfected its system by evolution, resilience towards sudden changes, and extinction of unadaptable and outdated species that are no longer fit for the environment. Nature has been accommodating the changing factors and handling complexity forever. Humans have started to look at their natural counterparts for inspiration and solutions for their problems. This brings forth the possibility of using a biomimetics approach to improve the management practices used in the construction sector. Ants inhabit different habitats. Cataglyphis and Pogonomyrmex live in deserts, Leafcutter ants reside in rainforests, and Pharaoh ants are native to urban developments of tropical areas. Detailed studies have been done on fifty species out of fourteen thousand discovered. They provide the opportunity to study the interactions in diverse environments to generate collective behavior. Animals evolve to better adapt to their environment. The collective behavior of ants emerges from feedback through interactions among individuals, based on a combination of three basic factors: The patchiness of resources in time and space, operating cost, environmental stability, and the threat of rupture. If resources appear in patches through time and space, the response is accelerating and non-linear, and if resources are scattered, the response follows a linear pattern. If the acquisition of energy through food is faster than energy spent to get it, the default is to continue with an activity unless it is halted for some reason. If the energy spent is rather higher than getting it, the default changes to stay put unless activated. Finally, if the environment is stable and the threat of rupture is low, the activation and amplification rate is slow but steady. Otherwise, it is fast and sporadic. To further study the effects and to eliminate the environmental bias, the behavior of four different ant species were studied, namely Red Harvester ants (Pogonomyrmex Barbatus), Argentine ants (Linepithema Humile), Turtle ants (Cephalotes Goniodontus), Leafcutter ants (Genus: Atta). This study aims to improve the information system in the construction sector by providing a guideline inspired by nature with a systems-thinking approach, using system dynamics as a tool. Identified factors and their interdependencies were analyzed in the form of a causal loop diagram (CLD), and construction industry professionals were interviewed based on the developed CLD, which was validated with significance response. These factors and interdependencies in the natural system corresponds with the man-made systems, providing a guideline for effective use and flow of information.

Keywords: biomimetics, complex systems, construction management, information management, system dynamics

Procedia PDF Downloads 112
43 The Stability of Vegetable-Based Synbiotic Drink during Storage

Authors: Camelia Vizireanu, Daniela Istrati, Alina Georgiana Profir, Rodica Mihaela Dinica

Abstract:

Globally, there is a great interest in promoting the consumption of fruit and vegetables to improve health. Due to the content of essential compounds such as antioxidants, important amounts of fruits and vegetables should be included in the daily diet. Juices are good sources of vitamins and can also help increase overall fruit and vegetable consumption. Starting from this trend (introduction into the daily diet of vegetables and fruits) as well as the desire to diversify the range of functional products for both adults and children, a fermented juice was made using probiotic microorganisms based on root vegetables, with potential beneficial effects in the diet of children, vegetarians and people with lactose intolerance. The three vegetables selected for this study, red beet, carrot, and celery bring a significant contribution to functional compounds such as carotenoids, flavonoids, betalain, vitamin B and C, minerals and fiber. By fermentation, the functional value of the vegetable juice increases due to the improved stability of these compounds. The combination of probiotic microorganisms and vegetable fibers resulted in a nutrient-rich synbiotic product. The stability of the nutritional and sensory qualities of the obtained synbiotic product has been tested throughout its shelf life. The evaluation of the physico-chemical changes of the synbiotic drink during storage confirmed that: (i) vegetable juice enriched with honey and vegetable pulp is an important source of nutritional compounds, especially carbohydrates and fiber; (ii) microwave treatment used to inhibit pathogenic microflora did not significantly affect nutritional compounds in vegetable juice, vitamin C concentration remained at baseline and beta-carotene concentration increased due to increased bioavailability; (iii) fermentation has improved the nutritional quality of vegetable juice by increasing the content of B vitamins, polyphenols and flavonoids and has a good antioxidant capacity throughout the shelf life; (iv) the FTIR and Raman spectra have highlighted the results obtained using physicochemical methods. Based on the analysis of IR absorption frequencies, the most striking bands belong to the frequencies 3330 cm⁻¹, 1636 cm⁻¹ and 1050 cm⁻¹, specific for groups of compounds such as polyphenols, carbohydrates, fatty acids, and proteins. Statistical data processing revealed a good correlation between the content of flavonoids, betalain, β-carotene, ascorbic acid and polyphenols, the fermented juice having a stable antioxidant activity. Also, principal components analysis showed that there was a negative correlation between the evolution of the concentration of B vitamins and antioxidant activity. Acknowledgment: This study has been founded by the Francophone University Agency, Project Réseau régional dans le domaine de la santé, la nutrition et la sécurité alimentaire (SaIN), No. at Dunarea de Jos University of Galati 21899/ 06.09.2017 and by the Sectorial Operational Programme Human Resources Development of the Romanian Ministry of Education, Research, Youth and Sports trough the Financial Agreement POSDRU/159/1.5/S/132397 ExcelDOC.

Keywords: bioactive compounds, fermentation, synbiotic drink from vegetables, stability during storage

Procedia PDF Downloads 119
42 Use of Artificial Intelligence and Two Object-Oriented Approaches (k-NN and SVM) for the Detection and Characterization of Wetlands in the Centre-Val de Loire Region, France

Authors: Bensaid A., Mostephaoui T., Nedjai R.

Abstract:

Nowadays, wetlands are the subject of contradictory debates opposing scientific, political and administrative meanings. Indeed, given their multiple services (drinking water, irrigation, hydrological regulation, mineral, plant and animal resources...), wetlands concentrate many socio-economic and biodiversity issues. In some regions, they can cover vast areas (>100 thousand ha) of the landscape, such as the Camargue area in the south of France, inside the Rhone delta. The high biological productivity of wetlands, the strong natural selection pressures and the diversity of aquatic environments have produced many species of plants and animals that are found nowhere else. These environments are tremendous carbon sinks and biodiversity reserves depending on their age, composition and surrounding environmental conditions, wetlands play an important role in global climate projections. Covering more than 3% of the earth's surface, wetlands have experienced since the beginning of the 1990s a tremendous revival of interest, which has resulted in the multiplication of inventories, scientific studies and management experiments. The geographical and physical characteristics of the wetlands of the central region conceal a large number of natural habitats that harbour a great biological diversity. These wetlands, one of the natural habitats, are still influenced by human activities, especially agriculture, which affects its layout and functioning. In this perspective, decision-makers need to delimit spatial objects (natural habitats) in a certain way to be able to take action. Thus, wetlands are no exception to this rule even if it seems to be a difficult exercise to delimit a type of environment as whose main characteristic is often to occupy the transition between aquatic and terrestrial environment. However, it is possible to map wetlands with databases, derived from the interpretation of photos and satellite images, such as the European database Corine Land cover, which allows quantifying and characterizing for each place the characteristic wetland types. Scientific studies have shown limitations when using high spatial resolution images (SPOT, Landsat, ASTER) for the identification and characterization of small wetlands (1 hectare). To address this limitation, it is important to note that these wetlands generally represent spatially complex features. Indeed, the use of very high spatial resolution images (>3m) is necessary to map small and large areas. However, with the recent evolution of artificial intelligence (AI) and deep learning methods for satellite image processing have shown a much better performance compared to traditional processing based only on pixel structures. Our research work is also based on spectral and textural analysis on THR images (Spot and IRC orthoimage) using two object-oriented approaches, the nearest neighbour approach (k-NN) and the Super Vector Machine approach (SVM). The k-NN approach gave good results for the delineation of wetlands (wet marshes and moors, ponds, artificial wetlands water body edges, ponds, mountain wetlands, river edges and brackish marshes) with a kappa index higher than 85%.

Keywords: land development, GIS, sand dunes, segmentation, remote sensing

Procedia PDF Downloads 17
41 Overview of Research Contexts about XR Technologies in Architectural Practice

Authors: Adeline Stals

Abstract:

The transformation of architectural design practices has been underway for almost forty years due to the development and democratization of computer technology. New and more efficient tools are constantly being proposed to architects, amplifying a technological wave that sometimes stimulates them, sometimes overwhelms them, depending essentially on their digital culture and the context (socio-economic, structural, organizational) in which they work on a daily basis. Our focus is on VR, AR, and MR technologies dedicated to architecture. The commercialization of affordable headsets like the Oculus Rift, the HTC Vive or more low-tech like the Google CardBoard, makes it more accessible to benefit from these technologies. In that regard, researchers report the growing interest of these tools for architects, given the new perspectives they open up in terms of workflow, representation, collaboration, and client’s involvement. However, studies rarely mention the consequences of the sample studied on results. Our research provides an overview of VR, AR, and MR researches among a corpus of papers selected from conferences and journals. A closer look at the sample of these research projects highlights the necessity to take into consideration the context of studies in order to develop tools truly dedicated to the real practices of specific architect profiles. This literature review formalizes milestones for future challenges to address. The methodology applied is based on a systematic review of two sources of publications. The first one is the Cumincad database, which regroups publications from conferences exclusively about digital in architecture. Additionally, the second part of the corpus is based on journal publications. Journals have been selected considering their ranking on Scimago. Among the journals in the predefined category ‘architecture’ and in Quartile 1 for 2018 (last update when consulted), we have retained the ones related to the architectural design process: Design Studies, CoDesign, Architectural Science Review, Frontiers of Architectural Research and Archnet-IJAR. Beside those journals, IJAC, not classified in the ‘architecture’ category, is selected by the author for its adequacy with architecture and computing. For all requests, the search terms were ‘virtual reality’, ‘augmented reality’, and ‘mixed reality’ in title and/or keywords for papers published between 2015 and 2019 (included). This frame time is defined considering the fast evolution of these technologies in the past few years. Accordingly, the systematic review covers 202 publications. The literature review on studies about XR technologies establishes the state of the art of the current situation. It highlights that studies are mostly based on experimental contexts with controlled conditions (pedagogical, e.g.) or on practices established in large architectural offices of international renown. However, few studies focus on the strategies and practices developed by offices of smaller size, which represent the largest part of the market. Indeed, a European survey studying the architectural profession in Europe in 2018 reveals that 99% of offices are composed of less than ten people, and 71% of only one person. The study also showed that the number of medium-sized offices is continuously decreasing in favour of smaller structures. In doing so, a frontier seems to remain between the worlds of research and practice, especially for the majority of small architectural practices having a modest use of technology. This paper constitutes a reference for the next step of the research and for further worldwide researches by facilitating their contextualization.

Keywords: architectural design, literature review, SME, XR technologies

Procedia PDF Downloads 85
40 Memories of Lost Fathers: The Unfinished Transmission of Generational Values in Hungarian Cinema by Peter Falanga

Authors: Peter Falanga

Abstract:

During the process of de-Stalinization that began in 1956 with the Twentieth Congress of the Soviet Communist Party, many filmmakers in Hungary chose to explore their country’s political discomforts by using Socialist Realism as a negative model against which they could react to the dominating ideology. A renewed national film industry and a more permissive political regime would allow filmmakers to take to task the plight of the preceding generation who had experienced the fatal political turmoil of both World Wars and the purges of Stalin. What follows is no longer the multigenerational unity found in Socialist Realism wherein both the old and the young embrace Stalin’s revolutionary optimism; instead, the protagonists are parentless, and thus their connection to the previous generation is partially severed. In these films, violent historical forces leave one generation to search for both a connection with their family’s past, and for moral guidance to direct their future. István Szabó’s Father (1966), Márta Mészáros Diary for My Children (1984), and Pál Gábor’s Angi Vera (1978) each consider the fraught relationship between successive generations through the lens of postwar youth. A characteristic each of their protagonist’s share is that they are all missing one or both parents, and cope with familial loss either through recalling memories of their parents in dream-like sequences, or, in the case of Angi Vera, through embracing the surrogate paternalism that the Communist Party promises to provide. This paper considers the argument these films present about the progress of Hungarian history, and how this topic is explored in more recent films that similarly focus on the transmission of generational values. Scholars such as László Strausz and John Cunningham have written on the continuous concern with the transmission of generational values in more recent films such as István Szabó’s Sunshine (1999), Béla Tarr’s Werckmeister Harmonies (2000), György Pálfi’s Taxidermia (2006), Ágnes Kocsis’ Pál Adrienn (2010), and Kornél Mundruczó’s Evolution (2021). These films, they argue, make intimate portrayals of the various sweeping political changes in Hungary’s history and question how these epochs or events have impacted Hungarian identities. If these films attempt to personalize historical shifts of Hungary, then what is the significance of featuring characters who have lost one or both parents? An attempt to understand this coherent trend in Hungarian cinema will profit from examining the earlier, celebrated films of Szabó, Mészáros, and Gábor, who inaugurated this preoccupation with generational values. The pervasive interplay of dreams and memory in their films invites an additional element to their argument concerning historical progression. This paper incorporates Richard Teniman’s notion of the “dialectics of memory” in which memory is in a constant process of negation and reinvention to explain why these Directors prefer to explore Hungarian identity through the disarranged form of psychological realism over the linear causality structure of historical realism.

Keywords: film theory, Eastern European Studies, film history, Eastern European History

Procedia PDF Downloads 79
39 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints

Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi

Abstract:

This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.

Keywords: advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy

Procedia PDF Downloads 300
38 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition

Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can

Abstract:

To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.

Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning

Procedia PDF Downloads 42
37 An Analysis of Economical Drivers and Technical Challenges for Large-Scale Biohydrogen Deployment

Authors: Rouzbeh Jafari, Joe Nava

Abstract:

This study includes learnings from an engineering practice normally performed on large scale biohydrogen processes. If properly scale-up is done, biohydrogen can be a reliable pathway for biowaste valorization. Most of the studies on biohydrogen process development have used model feedstock to investigate process key performance indicators (KPIs). This study does not intend to compare different technologies with model feedstock. However, it reports economic drivers and technical challenges which help in developing a road map for expanding biohydrogen economy deployment in Canada. BBA is a consulting firm responsible for the design of hydrogen production projects. Through executing these projects, activity has been performed to identify, register and mitigate technical drawbacks of large-scale hydrogen production. Those learnings, in this study, have been applied to the biohydrogen process. Through data collected by a comprehensive literature review, a base case has been considered as a reference, and several case studies have been performed. Critical parameters of the process were identified and through common engineering practice (process design, simulation, cost estimate, and life cycle assessment) impact of these parameters on the commercialization risk matrix and class 5 cost estimations were reported. The process considered in this study is food waste and woody biomass dark fermentation. To propose a reliable road map to develop a sustainable biohydrogen production process impact of critical parameters was studied on the end-to-end process. These parameters were 1) feedstock composition, 2) feedstock pre-treatment, 3) unit operation selection, and 4) multi-product concept. A couple of emerging technologies also were assessed such as photo-fermentation, integrated dark fermentation, and using ultrasound and microwave to break-down feedstock`s complex matrix and increase overall hydrogen yield. To properly report the impact of each parameter KPIs were identified as 1) Hydrogen yield, 2) energy consumption, 3) secondary waste generated, 4) CO2 footprint, 5) Product profile, 6) $/kg-H2 and 5) environmental impact. The feedstock is the main parameter defining the economic viability of biohydrogen production. Through parametric studies, it was found that biohydrogen production favors feedstock with higher carbohydrates. The feedstock composition was varied, by increasing one critical element (such as carbohydrate) and monitoring KPIs evolution. Different cases were studied with diverse feedstock, such as energy crops, wastewater slug, and lignocellulosic waste. The base case process was applied to have reference KPIs values and modifications such as pretreatment and feedstock mix-and-match were implemented to investigate KPIs changes. The complexity of the feedstock is the main bottleneck in the successful commercial deployment of the biohydrogen process as a reliable pathway for waste valorization. Hydrogen yield, reaction kinetics, and performance of key unit operations highly impacted as feedstock composition fluctuates during the lifetime of the process or from one case to another. In this case, concept of multi-product becomes more reliable. In this concept, the process is not designed to produce only one target product such as biohydrogen but will have two or multiple products (biohydrogen and biomethane or biochemicals). This new approach is being investigated by the BBA team and the results will be shared in another scientific contribution.

Keywords: biohydrogen, process scale-up, economic evaluation, commercialization uncertainties, hydrogen economy

Procedia PDF Downloads 70
36 Diamond-Like Carbon-Based Structures as Functional Layers on Shape-Memory Alloy for Orthopedic Applications

Authors: Piotr Jablonski, Krzysztof Mars, Wiktor Niemiec, Agnieszka Kyziol, Marek Hebda, Halina Krawiec, Karol Kyziol

Abstract:

NiTi alloys, possessing unique mechanical properties such as pseudoelasticity and shape memory effect (SME), are suitable for many applications, including implanthology and biomedical devices. Additionally, these alloys have similar values of elastic modulus to those of human bones, what is very important in orthopedics. Unfortunately, the environment of physiological fluids in vivo causes unfavorable release of Ni ions, which in turn may lead to metalosis as well as allergic reactions and toxic effects in the body. For these reasons, the surface properties of NiTi alloys should be improved to increase corrosion resistance, taking into account biological properties, i.e. excellent biocompatibility. The prospective in this respect are layers based on DLC (Diamond-Like Carbon) structures, which are an attractive solution for many applications in implanthology. These coatings (DLC), usually obtained by PVD (Physical Vapour Deposition) and PA CVD (Plasma Activated Chemical Vapour Deposition) methods, can be also modified by doping with other elements like silicon, nitrogen, oxygen, fluorine, titanium and silver. These methods, in combination with a suitably designed structure of the layers, allow the possibility co-decide about physicochemical and biological properties of modified surfaces. Mentioned techniques provide specific physicochemical properties of substrates surface in a single technological process. In this work, the following types of layers based on DLC structures (incl. Si-DLC or Si/N-DLC) were proposed as prospective and attractive approach in surface functionalization of shape memory alloy. Nitinol substrates were modified in plasma conditions, using RF CVD (Radio Frequency Chemical Vapour Deposition). The influence of plasma treatment on the useful properties of modified substrates after deposition DLC layers doped with silica and/or nitrogen atoms, as well as only pre-treated in O2 NH3 plasma atmosphere in a RF reactor was determined. The microstructure and topography of the modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the atomic structure of coatings was characterized by IR and Raman spectroscopy. The research also included the evaluation of surface wettability, surface energy as well as the characteristics of selected mechanical and biological properties of the layers. In addition, the corrosion properties of alloys after and before modification in the physiological saline were also investigated. In order to determine the corrosion resistance of NiTi in the Ringer solution, the potentiodynamic polarization curves (LSV – Linear Sweep Voltamperometry) were plotted. Furthermore, the evolution of corrosion potential versus immersion time of TiNi alloy in Ringer solution was performed. Based on all carried out research, the usefullness of proposed modifications of nitinol for medical applications was assessed. It was shown, inter alia, that the obtained Si-DLC layers on the surface of NiTi alloy exhibit a characteristic complex microstructure, increased surface development, which is an important aspect in improving the osteointegration of an implant. Furthermore, the modified alloy exhibits biocompatibility, the transfer of the metal (Ni, Ti) to Ringer’s solution is clearly limited.

Keywords: bioactive coatings, corrosion resistance, doped DLC structure, NiTi alloy, RF CVD

Procedia PDF Downloads 194
35 Crisis In/Out, Emergent, and Adaptive Urban Organisms

Authors: Alessandra Swiny, Michalis Georgiou, Yiorgos Hadjichristou

Abstract:

This paper focuses on the questions raised through the work of Unit 5: ‘In/Out of crisis, emergent and adaptive’; an architectural research-based studio at the University of Nicosia. It focusses on sustainable architectural and urban explorations tackling with the ever growing crises in its various types, phases and locations. ‘Great crisis situations’ are seen as ‘great chances’ that trigger investigations for further development and evolution of the built environment in an ultimate sustainable approach. The crisis is taken as an opportunity to rethink the urban and architectural directions as new forces for inventions leading to emergent and adaptive built environments. The Unit 5’s identity and environment facilitates the students to respond optimistically, alternatively and creatively towards the global current crisis. Mark Wigley’s notion that “crises are ultimately productive” and “They force invention” intrigued and defined the premises of the Unit. ‘Weather and nature are coauthors of the built environment’ Jonathan Hill states in his ‘weather architecture’ discourse. The weather is constantly changing and new environments, the subnatures are created which derived from the human activities David Gissen explains. The above set of premises triggered innovative responses by the Unit’s students. They thoroughly investigated the various kinds of crisis and their causes in relation to their various types of Terrains. The tools used for the research and investigation were chosen in contradictive pairs to generate further crisis situations: The re-used/salvaged competed with the new, the handmade rivalling with the fabrication, the analogue juxtaposed with digital. Students were asked to delve into state of art technologies in order to propose sustainable emergent and adaptive architectures and Urbanities, having though always in mind that the human and the social aspects of the community should be the core of the investigation. The resulting unprecedented spatial conditions and atmospheres of the emergent new ways of living are deemed to be the ultimate aim of the investigation. Students explored a variety of sites and crisis conditions such as: The vague terrain of the Green Line in Nicosia, the lost footprints of the sinking Venice, the endangered Australian coral reefs, the earthquake torn town of Crevalcore, and the decaying concrete urbanscape of Athens. Among other projects, ‘the plume project’ proposes a cloud-like, floating and almost dream-like living environment with unprecedented spatial conditions to the inhabitants of the coal mine of Centralia, USA, not just to enable them to survive but even to prosper in this unbearable environment due to the process of the captured plumes of smoke and heat. Existing water wells inspire inversed vertical structures creating a new living underground network, protecting the nomads from catastrophic sand storms in the Araoune of Mali. “Inverted utopia: Lost things in the sand”, weaves a series of tea-houses and a library holding lost artifacts and transcripts into a complex underground labyrinth by the utilization of the sand solidification technology. Within this methodology, crisis is seen as a mechanism for allowing an emergence of new and fascinating ultimate sustainable future cultures and cities.

Keywords: adaptive built environments, crisis as opportunity, emergent urbanities, forces for inventions

Procedia PDF Downloads 408
34 Texture Characteristics and Depositional Environment of the Lower Mahi River Sediment, Mainland Gujarat, India

Authors: Shazi Farooqui, Anupam Sharma

Abstract:

The Mahi River (~600km long) is an important west flowing the river of Central India. It originates in Madhya Pradesh and starts flowing in NW direction and enters into the state of Rajasthan. It flows across southern Rajasthan and then enters into Gujarat and finally debouches in the Gulf of Cambay. In Gujarat state, it flows through all four geomorphic zones i.e. eastern upland zone, shallow buried piedmont zone, alluvial zone and coastal zone. In lower reaches and particularly when it is flowing under the coastal regime, it provides an opportunity to study – 1. Land–Sea interaction and role of relative sea level changes, 2. Coastal/estuarine geological process, 3. Landscape evolution in marginal areas and so on. The Late Quaternary deposits of Mainland Gujarat is appreciably studied by Chamyal and his group of MS University of Baroda, and they have established that the 30-35m thick sediment package of the Mainland Gujarat is comprised of marine, fluvial and aeolian sediments. It is also established that in the estuarine zone, the upper few meter thick sediments package is of marine nature. However, its thickness, characters and the depositional environment including the role of climate and tectonics is still not clearly defined. To understand few aspects of the above mentioned, in the present study, a 17m subsurface sediment core has been retrieved from the estuarine zone of Mahi river basin. The Multiproxy studies which include the textural analysis (grain size), Loss on ignition (LOI), Bulk and clay mineralogy and geochemical studies have been carried out. In the entire sedimentary sequence, the grain size largely varies from coarse sand to clay; however, a solitary gravel bed is also noticed. The lower part (depth 9-17m), is mainly comprised of sub equal proportion of sand and silt. The sediments mainly have bimodal and leptokurtic distribution and deposited in alternate sand-silt package, probably indicating flood deposits. Relatively low moisture (1.8%) and organic carbon (2.4%) with increased carbonate values (12%) indicate that conditions must have to remain oxidizing. The middle part (depth 9–6m) has a 1m thick gravel bed at the bottom and overlain by coarse sand to very fine sand showing fining upward sequence. The presence of gravel bed suggests some kind of tectonic activity resulting into change in base level or enhanced precipitation in the catchment region. The upper part (depth 6–0m; top part of sequence) mainly comprised of fine sand to silt size grains (with appreciable clay content). The sediment of this part is Unimodal and very leptokurtic in nature suggesting wave and winnowing process and deposited in low energy suspension environment. This part has relatively high moisture (2.1%) and organic carbon (2.7%) with decreased carbonate content (4.2%) indicating change in the depositional environment probably under estuarine conditions. The presence of chlorite along with smectite clay mineral further supports the significant marine contribution in the formation of upper part of the sequence.

Keywords: grain size, statistical analysis, clay minerals, late quaternary, LOI

Procedia PDF Downloads 153
33 Particle Size Characteristics of Aerosol Jets Produced by A Low Powered E-Cigarette

Authors: Mohammad Shajid Rahman, Tarik Kaya, Edgar Matida

Abstract:

Electronic cigarettes, also known as e-cigarettes, may have become a tool to improve smoking cessation due to their ability to provide nicotine at a selected rate. Unlike traditional cigarettes, which produce toxic elements from tobacco combustion, e-cigarettes generate aerosols by heating a liquid solution (commonly a mixture of propylene glycol, vegetable glycerin, nicotine and some flavoring agents). However, caution still needs to be taken when using e-cigarettes due to the presence of addictive nicotine and some harmful substances produced from the heating process. Particle size distribution (PSD) and associated velocities generated by e-cigarettes have significant influence on aerosol deposition in different regions of human respiratory tracts. On another note, low actuation power is beneficial in aerosol generating devices since it exhibits a reduced emission of toxic chemicals. In case of e-cigarettes, lower heating powers can be considered as powers lower than 10 W compared to a wide range of powers (0.6 to 70.0 W) studied in literature. Due to the importance regarding inhalation risk reduction, deeper understanding of particle size characteristics of e-cigarettes demands thorough investigation. However, comprehensive study on PSD and velocities of e-cigarettes with a standard testing condition at relatively low heating powers is still lacking. The present study aims to measure particle number count and size distribution of undiluted aerosols of a latest fourth-generation e-cigarette at low powers, within 6.5 W using real-time particle counter (time-of-flight method). Also, temporal and spatial evolution of particle size and velocity distribution of aerosol jets are examined using phase Doppler anemometry (PDA) technique. To the authors’ best knowledge, application of PDA in e-cigarette aerosol measurement is rarely reported. In the present study, preliminary results about particle number count of undiluted aerosols measured by time-of-flight method depicted that an increase of heating power from 3.5 W to 6.5 W resulted in an enhanced asymmetricity in PSD, deviating from log-normal distribution. This can be considered as an artifact of rapid vaporization, condensation and coagulation processes on aerosols caused by higher heating power. A novel mathematical expression, combining exponential, Gaussian and polynomial (EGP) distributions, was proposed to describe asymmetric PSD successfully. The value of count median aerodynamic diameter and geometric standard deviation laid within a range of about 0.67 μm to 0.73 μm, and 1.32 to 1.43, respectively while the power varied from 3.5 W to 6.5 W. Laser Doppler velocimetry (LDV) and PDA measurement suggested a typical centerline streamwise mean velocity decay of aerosol jet along with a reduction of particle sizes. In the final submission, a thorough literature review, detailed description of experimental procedure and discussion of the results will be provided. Particle size and turbulent characteristics of aerosol jets will be further examined, analyzing arithmetic mean diameter, volumetric mean diameter, volume-based mean diameter, streamwise mean velocity and turbulence intensity. The present study has potential implications in PSD simulation and validation of aerosol dosimetry model, leading to improving related aerosol generating devices.

Keywords: E-cigarette aerosol, laser doppler velocimetry, particle size distribution, particle velocity, phase Doppler anemometry

Procedia PDF Downloads 9
32 High Pressure Thermophysical Properties of Complex Mixtures Relevant to Liquefied Natural Gas (LNG) Processing

Authors: Saif Al Ghafri, Thomas Hughes, Armand Karimi, Kumarini Seneviratne, Jordan Oakley, Michael Johns, Eric F. May

Abstract:

Knowledge of the thermophysical properties of complex mixtures at extreme conditions of pressure and temperature have always been essential to the Liquefied Natural Gas (LNG) industry’s evolution because of the tremendous technical challenges present at all stages in the supply chain from production to liquefaction to transport. Each stage is designed using predictions of the mixture’s properties, such as density, viscosity, surface tension, heat capacity and phase behaviour as a function of temperature, pressure, and composition. Unfortunately, currently available models lead to equipment over-designs of 15% or more. To achieve better designs that work more effectively and/or over a wider range of conditions, new fundamental property data are essential, both to resolve discrepancies in our current predictive capabilities and to extend them to the higher-pressure conditions characteristic of many new gas fields. Furthermore, innovative experimental techniques are required to measure different thermophysical properties at high pressures and over a wide range of temperatures, including near the mixture’s critical points where gas and liquid become indistinguishable and most existing predictive fluid property models used breakdown. In this work, we present a wide range of experimental measurements made for different binary and ternary mixtures relevant to LNG processing, with a particular focus on viscosity, surface tension, heat capacity, bubble-points and density. For this purpose, customized and specialized apparatus were designed and validated over the temperature range (200 to 423) K at pressures to 35 MPa. The mixtures studied were (CH4 + C3H8), (CH4 + C3H8 + CO2) and (CH4 + C3H8 + C7H16); in the last of these the heptane contents was up to 10 mol %. Viscosity was measured using a vibrating wire apparatus, while mixture densities were obtained by means of a high-pressure magnetic-suspension densimeter and an isochoric cell apparatus; the latter was also used to determine bubble-points. Surface tensions were measured using the capillary rise method in a visual cell, which also enabled the location of the mixture critical point to be determined from observations of critical opalescence. Mixture heat capacities were measured using a customised high-pressure differential scanning calorimeter (DSC). The combined standard relative uncertainties were less than 0.3% for density, 2% for viscosity, 3% for heat capacity and 3 % for surface tension. The extensive experimental data gathered in this work were compared with a variety of different advanced engineering models frequently used for predicting thermophysical properties of mixtures relevant to LNG processing. In many cases the discrepancies between the predictions of different engineering models for these mixtures was large, and the high quality data allowed erroneous but often widely-used models to be identified. The data enable the development of new or improved models, to be implemented in process simulation software, so that the fluid properties needed for equipment and process design can be predicted reliably. This in turn will enable reduced capital and operational expenditure by the LNG industry. The current work also aided the community of scientists working to advance theoretical descriptions of fluid properties by allowing to identify deficiencies in theoretical descriptions and calculations.

Keywords: LNG, thermophysical, viscosity, density, surface tension, heat capacity, bubble points, models

Procedia PDF Downloads 246
31 Fine Characterization of Glucose Modified Human Serum Albumin by Different Biophysical and Biochemical Techniques at a Range

Authors: Neelofar, Khursheed Alam, Jamal Ahmad

Abstract:

Protein modification in diabetes mellitus may lead to early glycation products (EGPs) or amadori product as well as advanced glycation end products (AGEs). Early glycation involves the reaction of glucose with N-terminal and lysyl side chain amino groups to form Schiff’s base which undergoes rearrangements to form more stable early glycation product known as Amadori product. After Amadori, the reactions become more complicated leading to the formation of advanced glycation end products (AGEs) that interact with various AGE receptors, thereby playing an important role in the long-term complications of diabetes. Millard reaction or nonenzymatic glycation reaction accelerate in diabetes due to hyperglycation and alter serum protein’s structure, their normal functions that lead micro and macro vascular complications in diabetic patients. In this study, Human Serum Albumin (HSA) with a constant concentration was incubated with different concentrations of glucose at 370C for a week. At 4th day, Amadori product was formed that was confirmed by colorimetric method NBT assay and TBA assay which both are authenticate early glycation product. Conformational changes in native as well as all samples of Amadori albumin with different concentrations of glucose were investigated by various biophysical and biochemical techniques. Main biophysical techniques hyperchromacity, quenching of fluorescence intensity, FTIR, CD and SDS-PAGE were used. Further conformational changes were observed by biochemical assays mainly HMF formation, fructoseamine, reduction of fructoseamine with NaBH4, carbonyl content estimation, lysine and arginine residues estimation, ANS binding property and thiol group estimation. This study find structural and biochemical changes in Amadori modified HSA with normal to hyperchronic range of glucose with respect to native HSA. When glucose concentration was increased from normal to chronic range biochemical and structural changes also increased. Highest alteration in secondary and tertiary structure and conformation in glycated HSA was observed at the hyperchronic concentration (75mM) of glucose. Although it has been found that Amadori modified proteins is also involved in secondary complications of diabetes as AGEs but very few studies have been done to analyze the conformational changes in Amadori modified proteins due to early glycation. Most of the studies were found on the structural changes in Amadori protein at a particular glucose concentration but no study was found to compare the biophysical and biochemical changes in HSA due to early glycation with a range of glucose concentration at a constant incubation time. So this study provide the information about the biochemical and biophysical changes occur in Amadori modified albumin at a range of glucose normal to chronic in diabetes. Although many implicates currently in use i.e. glycaemic control, insulin treatment and other chemical therapies that can control many aspects of diabetes. However, even with intensive use of current antidiabetic agents more than 50 % of diabetic patient’s type 2 suffers poor glycaemic control and 18 % develop serious complications within six years of diagnosis. Experimental evidence related to diabetes suggests that preventing the nonenzymatic glycation of relevant proteins or blocking their biological effects might beneficially influence the evolution of vascular complications in diabetic patients or quantization of amadori adduct of HSA by authentic antibodies against HSA-EGPs can be used as marker for early detection of the initiation/progression of secondary complications of diabetes. So this research work may be helpful for the same.

Keywords: diabetes mellitus, glycation, albumin, amadori, biophysical and biochemical techniques

Procedia PDF Downloads 237
30 Future Research on the Resilience of Tehran’s Urban Areas Against Pandemic Crises Horizon 2050

Authors: Farzaneh Sasanpour, Saeed Amini Varaki

Abstract:

Resilience is an important goal for cities as urban areas face an increasing range of challenges in the 21st century; therefore, according to the characteristics of risks, adopting an approach that responds to sensitive conditions in the risk management process is the resilience of cities. In the meantime, most of the resilience assessments have dealt with natural hazards and less attention has been paid to pandemics.In the covid-19 pandemic, the country of Iran and especially the metropolis of Tehran, was not immune from the crisis caused by its effects and consequences and faced many challenges. One of the methods that can increase the resilience of Tehran's metropolis against possible crises in the future is future studies. This research is practical in terms of type. The general pattern of the research will be descriptive-analytical and from the point of view that it is trying to communicate between the components and provide urban resilience indicators with pandemic crises and explain the scenarios, its future studies method is exploratory. In order to extract and determine the key factors and driving forces effective on the resilience of Tehran's urban areas against pandemic crises (Covid-19), the method of structural analysis of mutual effects and Micmac software was used. Therefore, the primary factors and variables affecting the resilience of Tehran's urban areas were set in 5 main factors, including physical-infrastructural (transportation, spatial and physical organization, streets and roads, multi-purpose development) with 39 variables based on mutual effects analysis. Finally, key factors and variables in five main areas, including managerial-institutional with five variables; Technology (intelligence) with 3 variables; economic with 2 variables; socio-cultural with 3 variables; and physical infrastructure, were categorized with 7 variables. These factors and variables have been used as key factors and effective driving forces on the resilience of Tehran's urban areas against pandemic crises (Covid-19), in explaining and developing scenarios. In order to develop the scenarios for the resilience of Tehran's urban areas against pandemic crises (Covid-19), intuitive logic, scenario planning as one of the future research methods and the Global Business Network (GBN) model were used. Finally, four scenarios have been drawn and selected with a creative method using the metaphor of weather conditions, which is indicative of the general outline of the conditions of the metropolis of Tehran in that situation. Therefore, the scenarios of Tehran metropolis were obtained in the form of four scenarios: 1- solar scenario (optimal governance and management leading in smart technology) 2- cloud scenario (optimal governance and management following in intelligent technology) 3- dark scenario (optimal governance and management Unfavorable leader in intelligence technology) 4- Storm scenario (unfavorable governance and management of follower in intelligence technology). The solar scenario shows the best situation and the stormy scenario shows the worst situation for the Tehran metropolis. According to the findings obtained in this research, city managers can, in order to achieve a better tomorrow for the metropolis of Tehran, in all the factors and components of urban resilience against pandemic crises by using future research methods, a coherent picture with the long-term horizon of 2050, from the path Provide urban resilience movement and platforms for upgrading and increasing the capacity to deal with the crisis. To create the necessary platforms for the realization, development and evolution of the urban areas of Tehran in a way that guarantees long-term balance and stability in all dimensions and levels.

Keywords: future research, resilience, crisis, pandemic, covid-19, Tehran

Procedia PDF Downloads 39
29 The Dynamic Nexus of Public Health and Journalism in Informed Societies

Authors: Ali Raza

Abstract:

The dynamic landscape of communication has brought about significant advancements that intersect with the realms of public health and journalism. This abstract explores the evolving synergy between these fields, highlighting how their intersection has contributed to informed societies and improved public health outcomes. In the digital age, communication plays a pivotal role in shaping public perception, policy formulation, and collective action. Public health, concerned with safeguarding and improving community well-being, relies on effective communication to disseminate information, encourage healthy behaviors, and mitigate health risks. Simultaneously, journalism, with its commitment to accurate and timely reporting, serves as the conduit through which health information reaches the masses. Advancements in communication technologies have revolutionized the ways in which public health information is both generated and shared. The advent of social media platforms, mobile applications, and online forums has democratized the dissemination of health-related news and insights. This democratization, however, brings challenges, such as the rapid spread of misinformation and the need for nuanced strategies to engage diverse audiences. Effective collaboration between public health professionals and journalists is pivotal in countering these challenges, ensuring that accurate information prevails. The synergy between public health and journalism is most evident during public health crises. The COVID-19 pandemic underscored the pivotal role of journalism in providing accurate and up-to-date information to the public. However, it also highlighted the importance of responsible reporting, as sensationalism and misinformation could exacerbate the crisis. Collaborative efforts between public health experts and journalists led to the amplification of preventive measures, the debunking of myths, and the promotion of evidence-based interventions. Moreover, the accessibility of information in the digital era necessitates a strategic approach to health communication. Behavioral economics and data analytics offer insights into human decision-making and allow tailored health messages to resonate more effectively with specific audiences. This approach, when integrated into journalism, enables the crafting of narratives that not only inform but also influence positive health behaviors. Ethical considerations emerge prominently in this alliance. The responsibility to balance the public's right to know with the potential consequences of sensational reporting underscores the significance of ethical journalism. Health journalists must meticulously source information from reputable experts and institutions to maintain credibility, thus fortifying the bridge between public health and the public. As both public health and journalism undergo transformative shifts, fostering collaboration between these domains becomes essential. Training programs that familiarize journalists with public health concepts and practices can enhance their capacity to report accurately and comprehensively on health issues. Likewise, public health professionals can gain insights into effective communication strategies from seasoned journalists, ensuring that health information reaches a wider audience. In conclusion, the convergence of public health and journalism, facilitated by communication advancements, is a cornerstone of informed societies. Effective communication strategies, driven by collaboration, ensure the accurate dissemination of health information and foster positive behavior change. As the world navigates complex health challenges, the continued evolution of this synergy holds the promise of healthier communities and a more engaged and educated public.

Keywords: public awareness, journalism ethics, health promotion, media influence, health literacy

Procedia PDF Downloads 38
28 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.

Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys

Procedia PDF Downloads 201
27 Multilocus Phylogenetic Approach Reveals Informative DNA Barcodes for Studying Evolution and Taxonomy of Fusarium Fungi

Authors: Alexander A. Stakheev, Larisa V. Samokhvalova, Sergey K. Zavriev

Abstract:

Fusarium fungi are among the most devastating plant pathogens distributed all over the world. Significant reduction of grain yield and quality caused by Fusarium leads to multi-billion dollar annual losses to the world agricultural production. These organisms can also cause infections in immunocompromised persons and produce the wide range of mycotoxins, such as trichothecenes, fumonisins, and zearalenone, which are hazardous to human and animal health. Identification of Fusarium fungi based on the morphology of spores and spore-forming structures, colony color and appearance on specific culture media is often very complicated due to the high similarity of these features for closely related species. Modern Fusarium taxonomy increasingly uses data of crossing experiments (biological species concept) and genetic polymorphism analysis (phylogenetic species concept). A number of novel Fusarium sibling species has been established using DNA barcoding techniques. Species recognition is best made with the combined phylogeny of intron-rich protein coding genes and ribosomal DNA sequences. However, the internal transcribed spacer of (ITS), which is considered to be universal DNA barcode for Fungi, is not suitable for genus Fusarium, because of its insufficient variability between closely related species and the presence of non-orthologous copies in the genome. Nowadays, the translation elongation factor 1 alpha (TEF1α) gene is the “gold standard” of Fusarium taxonomy, but the search for novel informative markers is still needed. In this study, we used two novel DNA markers, frataxin (FXN) and heat shock protein 90 (HSP90) to discover phylogenetic relationships between Fusarium species. Multilocus phylogenetic analysis based on partial sequences of TEF1α, FXN, HSP90, as well as intergenic spacer of ribosomal DNA (IGS), beta-tubulin (β-TUB) and phosphate permease (PHO) genes has been conducted for 120 isolates of 19 Fusarium species from different climatic zones of Russia and neighboring countries using maximum likelihood (ML) and maximum parsimony (MP) algorithms. Our analyses revealed that FXN and HSP90 genes could be considered as informative phylogenetic markers, suitable for evolutionary and taxonomic studies of Fusarium genus. It has been shown that PHO gene possesses more variable (22 %) and parsimony informative (19 %) characters than other markers, including TEF1α (12 % and 9 %, correspondingly) when used for elucidating phylogenetic relationships between F. avenaceum and its closest relatives – F. tricinctum, F. acuminatum, F. torulosum. Application of novel DNA barcodes confirmed the fact that F. arthrosporioides do not represent a separate species but only a subspecies of F. avenaceum. Phylogeny based on partial PHO and FXN sequences revealed the presence of separate cluster of four F. avenaceum strains which were closer to F. torulosum than to major F. avenaceum clade. The strain F-846 from Moldova, morphologically identified as F. poae, formed a separate lineage in all the constructed dendrograms, and could potentially be considered as a separate species, but more information is needed to confirm this conclusion. Variable sites in PHO sequences were used for the first-time development of specific qPCR-based diagnostic assays for F. acuminatum and F. torulosum. This work was supported by Russian Foundation for Basic Research (grant № 15-29-02527).

Keywords: DNA barcode, fusarium, identification, phylogenetics, taxonomy

Procedia PDF Downloads 292
26 Development and Experimental Validation of Coupled Flow-Aerosol Microphysics Model for Hot Wire Generator

Authors: K. Ghosh, S. N. Tripathi, Manish Joshi, Y. S. Mayya, Arshad Khan, B. K. Sapra

Abstract:

We have developed a CFD coupled aerosol microphysics model in the context of aerosol generation from a glowing wire. The governing equations can be solved implicitly for mass, momentum, energy transfer along with aerosol dynamics. The computationally efficient framework can simulate temporal behavior of total number concentration and number size distribution. This formulation uniquely couples standard K-Epsilon scheme with boundary layer model with detailed aerosol dynamics through residence time. This model uses measured temperatures (wire surface and axial/radial surroundings) and wire compositional data apart from other usual inputs for simulations. The model predictions show that bulk fluid motion and local heat distribution can significantly affect the aerosol behavior when the buoyancy effect in momentum transfer is considered. Buoyancy generated turbulence was found to be affecting parameters related to aerosol dynamics and transport as well. The model was validated by comparing simulated predictions with results obtained from six controlled experiments performed with a laboratory-made hot wire nanoparticle generator. Condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) were used for measurement of total number concentration and number size distribution at the outlet of reactor cell during these experiments. Our model-predicted results were found to be in reasonable agreement with observed values. The developed model is fast (fully implicit) and numerically stable. It can be used specifically for applications in the context of the behavior of aerosol particles generated from glowing wire technique and in general for other similar large scale domains. Incorporation of CFD in aerosol microphysics framework provides a realistic platform to study natural convection driven systems/ applications. Aerosol dynamics sub-modules (nucleation, coagulation, wall deposition) have been coupled with Navier Stokes equations modified to include buoyancy coupled K-Epsilon turbulence model. Coupled flow-aerosol dynamics equation was solved numerically and in the implicit scheme. Wire composition and temperature (wire surface and cell domain) were obtained/measured, to be used as input for the model simulations. Model simulations showed a significant effect of fluid properties on the dynamics of aerosol particles. The role of buoyancy was highlighted by observation and interpretation of nucleation zones in the planes above the wire axis. The model was validated against measured temporal evolution, total number concentration and size distribution at the outlet of hot wire generator cell. Experimentally averaged and simulated total number concentrations were found to match closely, barring values at initial times. Steady-state number size distribution matched very well for sub 10 nm particle diameters while reasonable differences were noticed for higher size ranges. Although tuned specifically for the present context (i.e., aerosol generation from hotwire generator), the model can also be used for diverse applications, e.g., emission of particles from hot zones (chimneys, exhaust), fires and atmospheric cloud dynamics.

Keywords: nanoparticles, k-epsilon model, buoyancy, CFD, hot wire generator, aerosol dynamics

Procedia PDF Downloads 108
25 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials

Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte

Abstract:

Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.

Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance

Procedia PDF Downloads 38
24 The Ductile Fracture of Armor Steel Targets Subjected to Ballistic Impact and Perforation: Calibration of Four Damage Criteria

Authors: Imen Asma Mbarek, Alexis Rusinek, Etienne Petit, Guy Sutter, Gautier List

Abstract:

Over the past two decades, the automotive, aerospace and army industries have been paying an increasing attention to Finite Elements (FE) numerical simulations of the fracture process of their structures. Thanks to the numerical simulations, it is nowadays possible to analyze several problems involving costly and dangerous extreme loadings safely and at a reduced cost such as blast or ballistic impact problems. The present paper is concerned with ballistic impact and perforation problems involving ductile fracture of thin armor steel targets. The target fracture process depends usually on various parameters: the projectile nose shape, the target thickness and its mechanical properties as well as the impact conditions (friction, oblique/normal impact...). In this work, the investigations are concerned with the normal impact of a conical head-shaped projectile on thin armor steel targets. The main aim is to establish a comparative study of four fracture criteria that are commonly used in the fracture process simulations of structures subjected to extreme loadings such as ballistic impact and perforation. Usually, the damage initiation results from a complex physical process that occurs at the micromechanical scale. On a macro scale and according to the following fracture models, the variables on which the fracture depends are mainly the stress triaxiality ƞ, the strain rate, temperature T, and eventually the Lode angle parameter Ɵ. The four failure criteria are: the critical strain to failure model, the Johnson-Cook model, the Wierzbicki model and the Modified Hosford-Coulomb model MHC. Using the SEM, the observations of the fracture facies of tension specimen and of armor steel targets impacted at low and high incident velocities show that the fracture of the specimens is a ductile fracture. The failure mode of the targets is petalling with crack propagation and the fracture facies are covered with micro-cavities. The parameters of each ductile fracture model have been identified for three armor steels and the applicability of each criterion was evaluated using experimental investigations coupled to numerical simulations. Two loading paths were investigated in this study, under a wide range of strain rates. Namely, quasi-static and intermediate uniaxial tension and quasi-static and dynamic double shear testing allow covering various values of stress triaxiality ƞ and of the Lode angle parameter Ɵ. All experiments were conducted on three different armor steel specimen under quasi-static strain rates ranging from 10-4 to 10-1 1/s and at three different temperatures ranging from 297K to 500K, allowing drawing the influence of temperature on the fracture process. Intermediate tension testing was coupled to dynamic double shear experiments conducted on the Hopkinson tube device, allowing to spot the effect of high strain rate on the damage evolution and the crack propagation. The aforementioned fracture criteria are implemented into the FE code ABAQUS via VUMAT subroutine and they were coupled to suitable constitutive relations allow having reliable results of ballistic impact problems simulation. The calibration of the four damage criteria as well as a concise evaluation of the applicability of each criterion are detailed in this work.

Keywords: armor steels, ballistic impact, damage criteria, ductile fracture, SEM

Procedia PDF Downloads 285
23 Problem, Policy and Polity in Agenda Setting: Analyzing Safe Motherhood Program in India

Authors: Vanita Singh

Abstract:

In developing countries, there are conflicting political agendas; policy makers have to prioritize issues from a list of issues competing for the limited resources. Thus, it is imperative to understand how some issues gain attention, and others lose in the policy circles. Multiple-Streams Theory of Kingdon (1984) is among the influential theories that help to understand the public policy process and is utilitarian for health policy makers to understand how certain health issues emerge on the policy agendas. The issue of maternal mortality was long standing in India and was linked with high birth rate thus the focus of maternal health policy was on family planning since India’s independence. However, a paradigm shift was noted in the maternal health policy in the year 1992 with the launch of Safe Motherhood Programme and then in the year 2005, when the agenda of maternal health policy became universalizing institutional deliveries and phasing-out of Traditional Birth Attendants (TBAs) from the health system. There were many solutions proposed by policy communities other than universalizing of institutional deliveries, including training of TBAs and improving socio-economic conditions of pregnant women. However, Government of India favored medical community, which was advocating for the policy of universalizing institutional delivery, and neglected the solutions proposed by other policy communities. It took almost 15 years for the advocates of institutional delivery to transform their proposed solution into a program - the Janani Suraksha Yojana (JSY), a safe-motherhood program promoting institutional delivery through cash incentives to pregnant women. Thus, the case of safe motherhood policy in India is worth studying to understand how certain issues/problems gain political attention and how advocacy work in policy circles. This paper attempts to understand the factors that favored the agenda of safe-motherhood in the policy circle in India, using John Kingdon’s Multiple-Stream model of agenda-setting. Through document analysis and literature review, the paper traces the evolution of safe motherhood program and maternal health policy. The study has used open source documents available on the website of Ministry of Health and Family Welfare, media reports (Times of India Archive) and related research papers. The documents analyzed include National health policy-1983, National Health Policy-2002, written reports of Ministry of Health and Family Welfare Department, National Rural Health Mission (NRHM) document, documents related to Janani Suraksha Yojana and research articles related to maternal health programme in India. The study finds that focusing events and credible indicators coupled with media attention has the potential to recognize a problem. The political elites favor clearly defined and well-accepted solutions. The trans-national organizations affect the agenda-setting process in a country through conditional resource provision. The closely-knit policy communities and political entrepreneurship are required for advocating solutions high on agendas. The study has implications for health policy makers in identifying factors that have the potential to affect the agenda-setting process for a desired policy agenda and identify the challenges in generating political priorities.

Keywords: agenda-setting, focusing events, Kingdon’s model, safe motherhood program India

Procedia PDF Downloads 110
22 Fe Modified Tin Oxide Thin Film Based Matrix for Reagentless Uric Acid Biosensing

Authors: Kashima Arora, Monika Tomar, Vinay Gupta

Abstract:

Biosensors have found potential applications ranging from environmental testing and biowarfare agent detection to clinical testing, health care, and cell analysis. This is driven in part by the desire to decrease the cost of health care and to obtain precise information more quickly about the health status of patient by the development of various biosensors, which has become increasingly prevalent in clinical testing and point of care testing for a wide range of biological elements. Uric acid is an important byproduct in human body and a number of pathological disorders are related to its high concentration in human body. In past few years, rapid growth in the development of new materials and improvements in sensing techniques have led to the evolution of advanced biosensors. In this context, metal oxide thin film based matrices due to their bio compatible nature, strong adsorption ability, high isoelectric point (IEP) and abundance in nature have become the materials of choice for recent technological advances in biotechnology. In the past few years, wide band-gap metal oxide semiconductors including ZnO, SnO₂ and CeO₂ have gained much attention as a matrix for immobilization of various biomolecules. Tin oxide (SnO₂), wide band gap semiconductor (Eg =3.87 eV), despite having multifunctional properties for broad range of applications including transparent electronics, gas sensors, acoustic devices, UV photodetectors, etc., it has not been explored much for biosensing purpose. To realize a high performance miniaturized biomolecular electronic device, rf sputtering technique is considered to be the most promising for the reproducible growth of good quality thin films, controlled surface morphology and desired film crystallization with improved electron transfer property. Recently, iron oxide and its composites have been widely used as matrix for biosensing application which exploits the electron communication feature of Fe, for the detection of various analytes using urea, hemoglobin, glucose, phenol, L-lactate, H₂O₂, etc. However, to the authors’ knowledge, no work is being reported on modifying the electronic properties of SnO₂ by implanting with suitable metal (Fe) to induce the redox couple in it and utilizing it for reagentless detection of uric acid. In present study, Fe implanted SnO₂ based matrix has been utilized for reagentless uric acid biosensor. Implantation of Fe into SnO₂ matrix is confirmed by energy-dispersive X-Ray spectroscopy (EDX) analysis. Electrochemical techniques have been used to study the response characteristics of Fe modified SnO₂ matrix before and after uricase immobilization. The developed uric acid biosensor exhibits a high sensitivity to about 0.21 mA/mM and a linear variation in current response over concentration range from 0.05 to 1.0 mM of uric acid besides high shelf life (~20 weeks). The Michaelis-Menten kinetic parameter (Km) is found to be relatively very low (0.23 mM), which indicates high affinity of the fabricated bioelectrode towards uric acid (analyte). Also, the presence of other interferents present in human serum has negligible effect on the performance of biosensor. Hence, obtained results highlight the importance of implanted Fe:SnO₂ thin film as an attractive matrix for realization of reagentless biosensors towards uric acid.

Keywords: Fe implanted tin oxide, reagentless uric acid biosensor, rf sputtering, thin film

Procedia PDF Downloads 145
21 Neoliberal Settler City: Socio-Spatial Segregation, Livelihood of Artists/Craftsmen in Delhi

Authors: Sophy Joseph

Abstract:

The study uses the concept of ‘Settler city’ to understand the nature of peripheralization that a neoliberal city initiates. The settler city designs powerless communities without inherent rights, title and sovereignty. Kathputli Colony, home to generations of artists/craftsmen, who have kept heritage of arts/crafts alive, has undergone eviction of its population from urban space. The proposed study, ‘Neoliberal Settler City: Socio-spatial segregation and livelihood of artists/craftsmen in Delhi’ would problematize the settler city as a colonial technology. The colonial regime has ‘erased’ the ‘unwanted’ as primitive and swept them to peripheries in the city. This study would also highlight how structural change in political economy has undermined their crafts/arts by depriving them from practicing/performing it with dignity in urban space. The interconnections between citizenship and In-Situ Private Public Partnership in Kathputli rehabilitation has become part of academic exercise. However, a comprehensive study connecting inherent characteristics of neoliberal settler city, trajectory of political economy of unorganized workers - artists/craftsmen and legal containment and exclusion leading to dispossession and marginalization of communities from the city site, is relevant to contextualize the trauma of spatial segregation. This study would deal with political, cultural, social and economic dominant behavior of the structure in the state formation, accumulation of property and design of urban space, fueled by segregation of marginalized/unorganized communities and disowning the ‘footloose proletariat’, the migrant workforce. The methodology of study involves qualitative research amongst communities and the field work-oral testimonies and personal accounts- becomes the primary material to theorize the realities. The secondary materials in the forms of archival materials about historical evolution of Delhi as a planned city from various archives, would be used. As the study also adopt ‘narrative approach’ in qualitative study, the life experiences of craftsmen/artists as performers and emotional trauma of losing their livelihood and space forms an important record to understand the instability and insecurity that marginalization and development attributes on urban poor. The study attempts to prove that though there was a change in political tradition from colonialism to constitutional democracy, new state still follows the policy of segregation and dispossession of the communities. It is this dispossession from the space, deprivation of livelihood and non-consultative process in rehabilitation that reflects the neoliberal approach of the state and also critical findings in the study. This study would entail critical spatial lens analyzing ethnographic and sociological data, representational practices and development debates to understand ‘urban otherization’ against craftsmen/artists. This seeks to develop a conceptual framework for understanding the resistance of communities against primitivity attached with them and to decolonize the city. This would help to contextualize the demand for declaring Kathputli Colony as ‘heritage artists village’. The conceptualization and contextualization would help to argue for right to city of the communities, collective rights to property, services and self-determination. The aspirations of the communities also help to draw normative orientation towards decolonization. It is important to study this site as part of the framework, ‘inclusive cities’ because cities are rarely noted as important sites of ‘community struggles’.

Keywords: neoliberal settler city, socio-spatial segregation, the livelihood of artists/craftsmen, dispossession of indigenous communities, urban planning and cultural uprooting

Procedia PDF Downloads 101