Search results for: entrepreneurial risk behavior
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11854

Search results for: entrepreneurial risk behavior

124 Operational Characteristics of the Road Surface Improvement

Authors: Iuri Salukvadze

Abstract:

Construction takes importance role in the history of mankind, there is not a single thing-product in our lives in which the builder’s work was not to be materialized, because to create all of it requires setting up factories, roads, and bridges, etc. The function of the Republic of Georgia, as part of the connecting Europe-Asia transport corridor, is significantly increased. In the context of transit function a large part of the cargo traffic belongs to motor transport, hence the improvement of motor roads transport infrastructure is rather important and rise the new, increased operational demands for existing as well as new motor roads. Construction of the durable road surface is related to rather large values, but because of high transport-operational properties, such as high-speed, less fuel consumption, less depreciation of tires, etc. If the traffic intensity is high, therefore the reimbursement of expenses occurs rapidly and accordingly is increasing income. If the traffic intensity is relatively small, it is recommended to use lightened structures of road carpet in order to pay for capital investments amounted to no more than normative one. The road carpet is divided into the following basic types: asphaltic concrete and cement concrete. Asphaltic concrete is the most perfect type of road carpet. It is arranged in two or three layers on rigid foundation and will be compacted. Asphaltic concrete is artificial building material, which due stratum will be selected and measured from stone skeleton and sand, interconnected by bitumen and a mixture of mineral powder. Less strictly selected similar material is called as bitumen-mineral mixture. Asphaltic concrete is non-rigid building material and well durable on vertical loadings; it is less resistant to the impact of horizontal forces. The cement concrete is monolithic and durable material, it is well durable the horizontal loads and is less resistant related to vertical loads. The cement concrete consists from strictly selected, measured stone material and sand, the binder is cement. The cement concrete road carpet represents separate slabs of sizes from 3 ÷ 5 op to 6 ÷ 8 meters. The slabs are reinforced by a rather complex system. Between the slabs are arranged seams that are designed for avoiding of additional stresses due temperature fluctuations on the length of slabs. For the joint behavior of separate slabs, they are connected by metal rods. Rods provide the changes in the length of slabs and distribute to the slab vertical forces and bending moments. The foundation layers will be extremely durable, for that is required high-quality stone material, cement, and metal. The qualification work aims to: in order for improvement of traffic conditions on motor roads to prolong operational conditions and improving their characteristics. The work consists from three chapters, 80 pages, 5 tables and 5 figures. In the work are stated general concepts as well as carried out by various companies using modern methods tests and their results. In the chapter III are stated carried by us tests related to this issue and specific examples to improving the operational characteristics.

Keywords: asphalt, cement, cylindrikal sample of asphalt, building

Procedia PDF Downloads 195
123 A Multiple Freezing/Thawing Cycles Influence Internal Structure and Mechanical Properties of Achilles Tendon

Authors: Martyna Ekiert, Natalia Grzechnik, Joanna Karbowniczek, Urszula Stachewicz, Andrzej Mlyniec

Abstract:

Tendon grafting is a common procedure performed to treat tendon rupture. Before the surgical procedure, tissues intended for grafts (i.e., Achilles tendon) are stored in ultra-low temperatures for a long time and also may be subjected to unfavorable conditions, such as repetitive freezing (F) and thawing (T). Such storage protocols may highly influence the graft mechanical properties, decrease its functionality and thus increase the risk of complications during the transplant procedure. The literature reports on the influence of multiple F/T cycles on internal structure and mechanical properties of tendons stay inconclusive, confirming and denying the negative influence of multiple F/T at the same time. An inconsistent research methodology and lack of clear limit of F/T cycles, which disqualifies tissue for surgical graft purposes, encouraged us to investigate the issue of multiple F/T cycles by the mean of biomechanical tensile tests supported with Scanning Electron Microscope (SEM) imaging. The study was conducted on male bovine Achilles tendon-derived from the local abattoir. Fresh tendons were cleaned of excessive membranes and then sectioned to obtained fascicle bundles. Collected samples were randomly assigned to 6 groups subjected to 1, 2, 4, 6, 8 and 12 cycles of freezing-thawing (F/T), respectively. Each F/T cycle included deep freezing at -80°C temperature, followed by thawing at room temperature. After final thawing, thin slices of the side part of samples subjected to 1, 4, 8 and 12 F/T cycles were collected for SEM imaging. Then, the width and thickness of all samples were measured to calculate the cross-sectional area. Biomechanical tests were performed using the universal testing machine (model Instron 8872, INSTRON®, Norwood, Massachusetts, USA) using a load cell with a maximum capacity of 250 kN and standard atmospheric conditions. Both ends of each fascicle bundle were manually clamped in grasping clamps using abrasive paper and wet cellulose wadding swabs to prevent tissue slipping while clamping and testing. Samples were subjected to the testing procedure including pre-loading, pre-cycling, loading, holding and unloading steps to obtain stress-strain curves for representing tendon stretching and relaxation. The stiffness of AT fascicles bundle samples was evaluated in terms of modulus of elasticity (Young’s modulus), calculated from the slope of the linear region of stress-strain curves. SEM imaging was preceded by chemical sample preparation including 24hr fixation in 3% glutaraldehyde buffered with 0.1 M phosphate buffer, washing with 0.1 M phosphate buffer solution and dehydration in a graded ethanol solution. SEM images (Merlin Gemini II microscope, ZEISS®) were taken using 30 000x mag, which allowed measuring a diameter of collagen fibrils. The results confirm a decrease in fascicle bundles Young’s modulus as well as a decrease in the diameter of collagen fibrils. These results confirm the negative influence of multiple F/T cycles on the mechanical properties of tendon tissue.

Keywords: biomechanics, collagen, fascicle bundles, soft tissue

Procedia PDF Downloads 102
122 Smart and Active Package Integrating Printed Electronics

Authors: Joana Pimenta, Lorena Coelho, José Silva, Vanessa Miranda, Jorge Laranjeira, Rui Soares

Abstract:

In this paper, the results of R&D on an innovative food package for increased shelf-life are presented. SAP4MA aims at the development of a printed active device that enables smart packaging solutions for food preservation, targeting the extension of the shelf-life of the packed food through the controlled release of active natural antioxidant agents at the onset of the food degradation process. To do so, SAP4MA focuses on the development of active devices such as printed heaters and batteries/supercapacitors in a label format to be integrated on packaging lids during its injection molding process, promoting the passive release of natural antioxidants after the product is packed, during transportation and in the shelves, and actively when the end-user activates the package, just prior to consuming the product at home. When the active device present on the lid is activated, the release of the natural antioxidants embedded in the inner layer of the packaging lid in direct contact with the headspace atmosphere of the food package starts. This approach is based on the use of active functional coatings composed of nano encapsulated active agents (natural antioxidants species) in the prevention of the oxidation of lipid compounds in food by agents such as oxygen. Thus keeping the product quality during the shelf-life, not only when the user opens the packaging, but also during the period from food packaging up until the purchase by the consumer. The active systems that make up the printed smart label, heating circuit, and battery were developed using screen-printing technology. These systems must operate under the working conditions associated with this application. The printed heating circuit was studied using three different substrates and two different conductive inks. Inks were selected, taking into consideration that the printed circuits will be subjected to high pressures and temperatures during the injection molding process. The circuit must reach a homogeneous temperature of 40ºC in the entire area of the lid of the food tub, promoting a gradual and controlled release of the antioxidant agents. In addition, the circuit design involves a high level of study in order to guarantee maximum performance after the injection process and meet the specifications required by the control electronics component. Furthermore, to characterize the different heating circuits, the electrical resistance promoted by the conductive ink and the circuit design, as well as the thermal behavior of printed circuits on different substrates, were evaluated. In the injection molding process, the serpentine-shaped design developed for the heating circuit was able to resolve the issues connected to the injection point; in addition, the materials used in the support and printing had high mechanical resistance against the pressure and temperature inherent to the injection process. Acknowledgment: This research has been carried out within the Project “Smart and Active Packing for Margarine Product” (SAP4MA) running under the EURIPIDES Program being co-financed by COMPETE 2020 – the Operational Programme for Competitiveness and Internationalization and under Portugal 2020 through the European Regional Development Fund (ERDF).

Keywords: smart package, printed heat circuits, printed batteries, flexible and printed electronic

Procedia PDF Downloads 81
121 Meta-Analysis of Previously Unsolved Cases of Aviation Mishaps Employing Molecular Pathology

Authors: Michael Josef Schwerer

Abstract:

Background: Analyzing any aircraft accident is mandatory based on the regulations of the International Civil Aviation Organization and the respective country’s criminal prosecution authorities. Legal medicine investigations are unavoidable when fatalities involve the flight crew or when doubts arise concerning the pilot’s aeromedical health status before the event. As a result of frequently tremendous blunt and sharp force trauma along with the impact of the aircraft to the ground, consecutive blast or fire exposition of the occupants or putrefaction of the dead bodies in cases of delayed recovery, relevant findings can be masked or destroyed and therefor being inaccessible in standard pathology practice comprising just forensic autopsy and histopathology. Such cases are of considerable risk of remaining unsolved without legal consequences for those responsible. Further, no lessons can be drawn from these scenarios to improve flight safety and prevent future mishaps. Aims and Methods: To learn from previously unsolved aircraft accidents, re-evaluations of the investigation files and modern molecular pathology studies were performed. Genetic testing involved predominantly PCR-based analysis of gene regulation, studying DNA promotor methylations, RNA transcription and posttranscriptional regulation. In addition, the presence or absence of infective agents, particularly DNA- and RNA-viruses, was studied. Technical adjustments of molecular genetic procedures when working with archived sample material were necessary. Standards for the proper interpretation of the respective findings had to be settled. Results and Discussion: Additional molecular genetic testing significantly contributes to the quality of forensic pathology assessment in aviation mishaps. Previously undetected cardiotropic viruses potentially explain e.g., a pilot’s sudden incapacitation resulting from cardiac failure or myocardial arrhythmia. In contrast, negative results for infective agents participate in ruling out concerns about an accident pilot’s fitness to fly and the aeromedical examiner’s precedent decision to issue him or her an aeromedical certificate. Care must be taken in the interpretation of genetic testing for pre-existing diseases such as hypertrophic cardiomyopathy or ischemic heart disease. Molecular markers such as mRNAs or miRNAs, which can establish these diagnoses in clinical patients, might be misleading in-flight crew members because of adaptive changes in their tissues resulting from repeated mild hypoxia during flight, for instance. Military pilots especially demonstrate significant physiological adjustments to their somatic burdens in flight, such as cardiocirculatory stress and air combat maneuvers. Their non-pathogenic alterations in gene regulation and expression will likely be misinterpreted for genuine disease by inexperienced investigators. Conclusions: The growing influence of molecular pathology on legal medicine practice has found its way into aircraft accident investigation. As appropriate quality standards for laboratory work and data interpretation are provided, forensic genetic testing supports the medico-legal analysis of aviation mishaps and potentially reduces the number of unsolved events in the future.

Keywords: aviation medicine, aircraft accident investigation, forensic pathology, molecular pathology

Procedia PDF Downloads 18
120 The Future of Adventure Tourism in a Warmer World: An Exploratory Study of Mountain Guides’ Perception of Environmental Change in Canada

Authors: Brooklyn Rushton, Michelle Rutty, Natalie Knowles, Daniel Scott

Abstract:

As people are increasingly on the search for extraordinary experiences and connections with nature, adventure tourism is experiencing significant growth and providing tourists with life-changing experiences. Unlike built attraction-based tourism, adventure tourism relies entirely on natural heritage, which leaves communities dependent on adventure tourism extremely vulnerable to environmental and climatic changes. A growing body of evidence suggests that global climate change will influence the future of adventure tourism and mountain outdoor recreation opportunities on a global scale. Across Canada, more specifically, climate change is broadly anticipated to present risks for winter-snow sports, while opportunities are anticipated to arise for green season activities. These broad seasonal shifts do not account for the indirect impacts of climate change on adventure tourism, such as the cost of adaptation or the increase of natural hazards and the associated likelihood of accidents. While some research has examined the impact of climate change on natural environments that adventure tourism relies on, a very small body of research has specifically focused on guides’ perspectives or included hard adventure tourism activities. The guiding industry is unique, as guides are trained through an elegant blend of art and science to make decisions based on experience, observation, and intuition. While quantitative research can monitor change in natural environments, guides local knowledge can provide eye-witness accounts and outline what environmental changes mean for the future sustainability of adventure tourism. This research will capture the extensive knowledge of mountain guides to better understand the implications of climate change for mountain adventure and potential adaptive responses for the adventure tourism industry. This study uses a structured online survey with open and close-ended questions that will be administered using Qualtrics (an online survey platform). This survey is disseminated to current members of the Association of Canadian Mountain Guides (ACMG). Participation in this study will be exclusive to members of the ACMG operating in the outdoor guiding streams. The 25 survey questions are organized into four sections: demographic and professional operation (9 questions), physical change (4 questions), climate change perception (6 questions), and climate change adaptation (6 questions). How mountain guides perceive and respond to climate change is important knowledge for the future of the expanding adventure tourism industry. Results from this study are expected to provide important information to mountain destinations on climate change vulnerability and adaptive capacity. Expected results of this study include guides insight into: (1) experience-safety relevant observed physical changes in guided regions (i.e. glacial coverage, permafrost coverage, precipitation, temperature, and slope instability) (2) changes in hazards within the guiding environment (i.e. avalanches, rockfall, icefall, forest fires, flooding, and extreme weather events), (3) existing and potential adaptation strategies, and (4) key information and other barriers for adaptation. By gaining insight from the knowledge of mountain guides, this research can help the tourism industry at large understand climate risk and create adaptation strategies to ensure the resiliency of the adventure tourism industry.

Keywords: adventure tourism, climate change, environmental change, mountain hazards

Procedia PDF Downloads 166
119 Identification of Failures Occurring on a System on Chip Exposed to a Neutron Beam for Safety Applications

Authors: S. Thomet, S. De-Paoli, F. Ghaffari, J. M. Daveau, P. Roche, O. Romain

Abstract:

In this paper, we present a hardware module dedicated to understanding the fail reason of a System on Chip (SoC) exposed to a particle beam. Impact of Single-Event Effects (SEE) on processor-based SoCs is a concern that has increased in the past decade, particularly for terrestrial applications with automotive safety increasing requirements, as well as consumer and industrial domains. The SEE created by the impact of a particle on an SoC may have consequences that can end to instability or crashes. Specific hardening techniques for hardware and software have been developed to make such systems more reliable. SoC is then qualified using cosmic ray Accelerated Soft-Error Rate (ASER) to ensure the Soft-Error Rate (SER) remains in mission profiles. Understanding where errors are occurring is another challenge because of the complexity of operations performed in an SoC. Common techniques to monitor an SoC running under a beam are based on non-intrusive debug, consisting of recording the program counter and doing some consistency checking on the fly. To detect and understand SEE, we have developed a module embedded within the SoC that provide support for recording probes, hardware watchpoints, and a memory mapped register bank dedicated to software usage. To identify CPU failure modes and the most important resources to probe, we have carried out a fault injection campaign on the RTL model of the SoC. Probes are placed on generic CPU registers and bus accesses. They highlight the propagation of errors and allow identifying the failure modes. Typical resulting errors are bit-flips in resources creating bad addresses, illegal instructions, longer than expected loops, or incorrect bus accesses. Although our module is processor agnostic, it has been interfaced to a RISC-V by probing some of the processor registers. Probes are then recorded in a ring buffer. Associated hardware watchpoints are allowing to do some control, such as start or stop event recording or halt the processor. Finally, the module is also providing a bank of registers where the firmware running on the SoC can log information. Typical usage is for operating system context switch recording. The module is connected to a dedicated debug bus and is interfaced to a remote controller via a debugger link. Thus, a remote controller can interact with the monitoring module without any intrusiveness on the SoC. Moreover, in case of CPU unresponsiveness, or system-bus stall, the recorded information can still be recovered, providing the fail reason. A preliminary version of the module has been integrated into a test chip currently being manufactured at ST in 28-nm FDSOI technology. The module has been triplicated to provide reliable information on the SoC behavior. As the primary application domain is automotive and safety, the efficiency of the module will be evaluated by exposing the test chip under a fast-neutron beam by the end of the year. In the meantime, it will be tested with alpha particles and electromagnetic fault injection (EMFI). We will report in the paper on fault-injection results as well as irradiation results.

Keywords: fault injection, SoC fail reason, SoC soft error rate, terrestrial application

Procedia PDF Downloads 202
118 New Territories: Materiality and Craft from Natural Systems to Digital Experiments

Authors: Carla Aramouny

Abstract:

Digital fabrication, between advancements in software and machinery, is pushing practice today towards more complexity in design, allowing for unparalleled explorations. It is giving designers the immediate capacity to apply their imagined objects into physical results. Yet at no time have questions of material knowledge become more relevant and crucial, as technological advancements approach a radical re-invention of the design process. As more and more designers look towards tactile crafts for material know-how, an interest in natural behaviors has also emerged trying to embed intelligence from nature into the designed objects. Concerned with enhancing their immediate environment, designers today are pushing the boundaries of design by bringing in natural systems, materiality, and advanced fabrication as essential processes to produce active designs. New Territories, a yearly architecture and design course on digital design and materiality, allows students to explore processes of digital fabrication in intersection with natural systems and hands-on experiments. This paper will highlight the importance of learning from nature and from physical materiality in a digital design process, and how the simultaneous move between the digital and physical realms has become an essential design method. It will detail the work done over the course of three years, on themes of natural systems, crafts, concrete plasticity, and active composite materials. The aim throughout the course is to explore the design of products and active systems, be it modular facades, intelligent cladding, or adaptable seating, by embedding current digital technologies with an understanding of natural systems and a physical know-how of material behavior. From this aim, three main themes of inquiry have emerged through the varied explorations across the three years, each one approaching materiality and digital technologies through a different lens. The first theme involves crossing the study of naturals systems as precedents for intelligent formal assemblies with traditional crafts methods. The students worked on designing performative facade systems, starting from the study of relevant natural systems and a specific craft, and then using parametric modeling to develop their modular facades. The second theme looks at the cross of craft and digital technologies through form-finding techniques and elastic material properties, bringing in flexible formwork into the digital fabrication process. Students explored concrete plasticity and behaviors with natural references, as they worked on the design of an exterior seating installation using lightweight concrete composites and complex casting methods. The third theme brings in bio-composite material properties with additive fabrication and environmental concerns to create performative cladding systems. Students experimented in concrete composites materials, biomaterials and clay 3D printing to produce different cladding and tiling prototypes that actively enhance their immediate environment. This paper thus will detail the work process done by the students under these three themes of inquiry, describing their material experimentation, digital and analog design methodologies, and their final results. It aims to shed light on the persisting importance of material knowledge as it intersects with advanced digital fabrication and the significance of learning from natural systems and biological properties to embed an active performance in today’s design process.

Keywords: digital fabrication, design and craft, materiality, natural systems

Procedia PDF Downloads 104
117 Effect of a Nutritional Supplement Containing Euterpe oleracea Mart., Inulin, Phaseolus vulgaris and Caralluma fimbriata in Persons with Metabolic Syndrome

Authors: Eduardo Cabrera-Rode, Janet Rodriguez, Aimee Alvarez, Ragmila Echevarria, Antonio D. Reyes, Ileana Cubas-Duenas, Silvia E. Turcios, Oscar Diaz-Diaz

Abstract:

Obex is a nutritional supplement to help weight loss naturally. In addition, this supplement has a satiating effect that helps control the craving to eat between meals. The purpose of this study was to evaluate the effect of Obex in the metabolic syndrome (MS). This was an open label pilot study conducted in 30 patients with MS and ages between 29 and 60 years old. Participants received Obex, at a dose of one sachet before (30 to 45 minutes) the two main meals (lunch and dinner) daily (mean two sachets per day) for 3 months. The content of the sachets was dissolved in a glass of water or fruit juice. Obex ingredients: Açai (Euterpe oleracea Mart.) berry, inulin, Phaseolus vulgaris, Caralluma fimbriata, inositol, choline, arginine, ornitine, zinc sulfate, carnitine fumarate, methionine, calcium pantothenate, pyridoxine and folic acid. In addition to anthropometric measures and blood pressure, fasting plasma glucose, total cholesterol, triglycerides and HDL-cholesterol and insulin were determined. Insulin resistance was assessed by HOMA-IR index. Three indirect indexes were used to calculate insulin sensitivity [QUICKI index (Quantitative insulin sensitivity check index), Bennett index and Raynaud index]. Metabolic syndrome was defined according to the Joint Interim Statement (JIS) criteria. The JIS criteria require at least three of the following components: (1) abdominal obesity (waist circumference major or equal major or equal 94 cm for men or 80 cm for women), (2) triglycerides major or equal 1.7 mmol/L, (3) HDL cholesterol minor 1.03 mmol/L for men or minor 1.30 mmol/L for women, (4) systolic/diastolic blood pressure major or equal 130/85mmHg or use antihypertensive drugs, and (5) fasting plasma glucose major or equal 5.6 mmol/L or known treatment for diabetes. This study was approved by the Ethical and Research Committee of the National Institute of Endocrinology, Cuba and conducted according to the Declaration of Helsinki. Obex is registered as a food supplement in the National Institute of Nutrition and Food, Havana, Cuba. Written consent was obtained from all patients before the study. The clinical trial had been registered at ClinicalTrials.gov. After three months of treatment, 43.3% (13/30) of participants decreased the frequency of MS. Compared to baseline, Obex significantly reduced body weight, BMI, waist circumference, and waist/hip ratio and improved HDL-c (p<0.0001) and in addition to lowering blood pressure (p<0.05). After Obex intake, subjects also have shown a reduction in fasting plasma glucose (p<0.0001) and insulin sensitivity was enhanced (p=0.001). No adverse effects were seen in any of the participants during the study. In this pilot study, consumption of Obex decreased the prevalence of MS due to the improved selected components of the metabolic syndrome, indicating that further studies are warranted. Obex emerges as an effective and well tolerated treatment for preventing or delaying MS and therefore potential reduction of cardiovascular risk.

Keywords: nutritional supplement, metabolic syndrome, weight loss, insulin resistance

Procedia PDF Downloads 275
116 Culture and Health Equity: Unpacking the Sociocultural Determinants of Eye Health for Indigenous Australian Diabetics

Authors: Aryati Yashadhana, Ted Fields Jnr., Wendy Fernando, Kelvin Brown, Godfrey Blitner, Francis Hayes, Ruby Stanley, Brian Donnelly, Bridgette Jerrard, Anthea Burnett, Anthony B. Zwi

Abstract:

Indigenous Australians experience some of the worst health outcomes globally, with life expectancy being significantly poorer than those of non-Indigenous Australians. This is largely attributed to preventable diseases such as diabetes (prevalence 39% in Indigenous Australian adults > 55 years), which is attributed to a raised risk of diabetic visual impairment and cataract among Indigenous adults. Our study aims to explore the interface between structural and sociocultural determinants and human agency, in order to understand how they impact (1) accessibility of eye health and chronic disease services and (2) the potential for Indigenous patients to achieve positive clinical eye health outcomes. We used Participatory Action Research methods, and aimed to privilege the voices of Indigenous people through community collaboration. Semi-structured interviews (n=82) and patient focus groups (n=8) were conducted by Indigenous Community-Based Researchers (CBRs) with diabetic Indigenous adults (> 40 years) in four remote communities in Australia. Interviews (n=25) and focus groups (n=4) with primary health care clinicians in each community were also conducted. Data were audio recorded, transcribed verbatim, and analysed thematically using grounded theory, comparative analysis and Nvivo 10. Preliminary analysis occurred in tandem with data collection to determine theoretical saturation. The principal investigator (AY) led analysis sessions with CBRs, fostering cultural and contextual appropriateness to interpreting responses, knowledge exchange and capacity building. Identified themes were conceptualised into three spheres of influence: structural (health services, government), sociocultural (Indigenous cultural values, distrust of the health system, ongoing effects of colonialism and dispossession) and individual (health beliefs/perceptions, patient phenomenology). Permeating these spheres of influence were three core determinants: economic disadvantage, health literacy/education, and cultural marginalisation. These core determinants affected accessibility of services, and the potential for patients to achieve positive clinical outcomes at every level of care (primary, secondary, tertiary). Our findings highlight the clinical realities of institutionalised and structural inequities, illustrated through the lived experiences of Indigenous patients and primary care clinicians in the four sampled communities. The complex determinants surrounding inequity in health for Indigenous Australians, are entrenched through a longstanding experience of cultural discrimination and ostracism. Secure and long term funding of Aboriginal Community Controlled Health Services will be valuable, but are insufficient to address issues of inequity. Rather, working collaboratively with communities to build trust, and identify needs and solutions at the grassroots level, while leveraging community voices to drive change at the systemic/policy level are recommended.

Keywords: indigenous, Australia, culture, public health, eye health, diabetes, social determinants of health, sociology, anthropology, health equity, aboriginal and Torres strait islander, primary care

Procedia PDF Downloads 276
115 Application of Alumina-Aerogel in Post-Combustion CO₂ Capture: Optimization by Response Surface Methodology

Authors: S. Toufigh Bararpour, Davood Karami, Nader Mahinpey

Abstract:

Dependence of global economics on fossil fuels has led to a large growth in the emission of greenhouse gases (GHGs). Among the various GHGs, carbon dioxide is the main contributor to the greenhouse effect due to its huge emission amount. To mitigate the threatening effect of CO₂, carbon capture and sequestration (CCS) technologies have been studied widely in recent years. For the combustion processes, three main CO₂ capture techniques have been proposed such as post-combustion, pre-combustion and oxyfuel combustion. Post-combustion is the most commonly used CO₂ capture process as it can be readily retrofit into the existing power plants. Multiple advantages have been reported for the post-combustion by solid sorbents such as high CO₂ selectivity, high adsorption capacity, and low required regeneration energy. Chemical adsorption of CO₂ over alkali-metal-based solid sorbents such as K₂CO₃ is a promising method for the selective capture of diluted CO₂ from the huge amount of nitrogen existing in the flue gas. To improve the CO₂ capture performance, K₂CO₃ is supported by a stable and porous material. Al₂O₃ has been employed commonly as the support and enhanced the cyclic CO₂ capture efficiency of K₂CO₃. Different phases of alumina can be obtained by setting the calcination temperature of boehmite at 300, 600 (γ-alumina), 950 (δ-alumina) and 1200 °C (α-alumina). By increasing the calcination temperature, the regeneration capacity of alumina increases, while the surface area reduces. However, sorbents with lower surface areas have lower CO₂ capture capacity as well (except for the sorbents prepared by hydrophilic support materials). To resolve this issue, a highly efficient alumina-aerogel support was synthesized with a BET surface area of over 2000 m²/g and then calcined at a high temperature. The synthesized alumina-aerogel was impregnated on K₂CO₃ based on 50 wt% support/K₂CO₃, which resulted in the preparation of a sorbent with remarkable CO₂ capture performance. The effect of synthesis conditions such as types of alcohols, solvent-to-co-solvent ratios, and aging times was investigated on the performance of the support. The best support was synthesized using methanol as the solvent, after five days of aging time, and at a solvent-to-co-solvent (methanol-to-toluene) ratio (v/v) of 1/5. Response surface methodology was used to investigate the effect of operating parameters such as carbonation temperature and H₂O-to-CO₂ flowrate ratio on the CO₂ capture capacity. The maximum CO₂ capture capacity, at the optimum amounts of operating parameters, was 7.2 mmol CO₂ per gram K₂CO₃. Cyclic behavior of the sorbent was examined over 20 carbonation and regenerations cycles. The alumina-aerogel-supported K₂CO₃ showed a great performance compared to unsupported K₂CO₃ and γ-alumina-supported K₂CO₃. Fundamental performance analyses and long-term thermal and chemical stability test will be performed on the sorbent in the future. The applicability of the sorbent for a bench-scale process will be evaluated, and a corresponding process model will be established. The fundamental material knowledge and respective process development will be delivered to industrial partners for the design of a pilot-scale testing unit, thereby facilitating the industrial application of alumina-aerogel.

Keywords: alumina-aerogel, CO₂ capture, K₂CO₃, optimization

Procedia PDF Downloads 88
114 Surveying Adolescent Males in India Regarding Mobile Phone Use and Sexual and Reproductive Health Education

Authors: Rohan M. Dalal, Elena Pirondini, Shanu Somvanshi

Abstract:

Introduction: The current state of reproductive health outcomes in lower-income countries is poor, with inadequate knowledge and culture among adolescent boys. Moreover, boys have traditionally not been a priority target. To explore the opportunity to educate adolescent boys in the developing world regarding accurate reproductive health information, the purpose of this study is to investigate how adolescent boys in the developing world engage and use technology, utilizing cell phones. This electronic survey and video interview study were conducted to determine the feasibility of a mobile phone platform for an educational video game specifically designed for boys that will improve health knowledge, influence behavior, and change health outcomes, namely teen pregnancies. Methods: With the assistance of Plan India, a subsidiary of Plan International, informed consent was obtained from parents of adolescent males who participated in an electronic survey and video interviews via Microsoft Teams. An electronic survey was created with 27 questions, including topics of mobile phone usage, gaming preferences, and sexual and reproductive health, with a sample size of 181 adolescents, ages 11-25, near New Delhi, India. The interview questions were written to explore more in-depth topics after the completion of the electronic survey. Eight boys, aged 15, were interviewed for 40 minutes about gaming and usage of mobile phones as well as sexual and reproductive health. Data/Results. 154 boys and 27 girls completed the survey. They rated their English fluency as relatively high. 97% of boys (149/154) had access to mobile phones. The majority of phones were smartphones (97%, 143/148). 48% (71/149) of boys borrowed cell phones. The most popular phone platform was Samsung (22%, 33/148). 36% (54/148) of adolescent males looked at their phones 1-10 times per day for 1-2 hours. 55% (81/149) of the boys had parental restrictions. 51% (76/148) had 32 GB of storage on their phone. 78% (117/150) of the boys had wifi access. 80% (120/150) of respondents reported ease in downloading apps. 97% (145/150) of male adolescents had social media, including WhatsApp, Facebook, and YouTube. 58% (87/150) played video games. Favorite video games included Free Fire, PubG, and other shooting games. In the video interviews, the boys revealed what made games fun and engaging, including customized avatars, progression to higher levels, realistic interactive platforms, shooting/guns, the ability to perform multiple actions, and a variety of worlds/settings/adventures. Ideas to improve engagement in sexual and reproductive health classes included open discussions in the community, enhanced access to information, and posting on social media. Conclusion: This study involving an electronic survey and video interviews provides an initial foray into understanding mobile phone usage among adolescent males and understanding sexual and reproductive health education in New Delhi, India. The data gathered from this study support using mobile phone platforms, and this will be used to create a serious video game to educate adolescent males about sexual and reproductive health in an attempt to lower the rate of unwanted pregnancies in the world.

Keywords: adolescent males, India, mobile phone, sexual and reproductive health

Procedia PDF Downloads 103
113 Moodle-Based E-Learning Course Development for Medical Interpreters

Authors: Naoko Ono, Junko Kato

Abstract:

According to the Ministry of Justice, 9,044,000 foreigners visited Japan in 2010. The number of foreign residents in Japan was over 2,134,000 at the end of 2010. Further, medical tourism has emerged as a new area of business. Against this background, language barriers put the health of foreigners in Japan at risk, because they have difficulty in accessing health care and communicating with medical professionals. Medical interpreting training is urgently needed in response to language problems resulting from the rapid increase in the number of foreign workers in Japan over recent decades. Especially, there is a growing need in medical settings in Japan to speak international languages for communication, with Tokyo selected as the host city of the 2020 Summer Olympics. Due to the limited number of practical activities on medical interpreting, it is difficult for learners to acquire the interpreting skills. In order to eliminate the shortcoming, a web-based English-Japanese medical interpreting training system was developed. We conducted a literature review to identify learning contents, core competencies for medical interpreters by using Pubmed, PsycINFO, Cochrane Library, and Google Scholar. Selected papers were investigated to find core competencies in medical interpreting. Eleven papers were selected through literature review indicating core competencies for medical interpreters. Core competencies in medical interpreting abstracted from the literature review, showed consistency in previous research whilst the content of the programs varied in domestic and international training programs for medical interpreters. Results of the systematic review indicated five core competencies: (a) maintaining accuracy and completeness; (b) medical terminology and understanding the human body; (c) behaving ethically and making ethical decisions; (d) nonverbal communication skills; and (e) cross-cultural communication skills. We developed an e-leaning program for training medical interpreters. A Web-based Medical Interpreter Training Program which cover these competencies was developed. The program included the following : online word list (Quizlet), allowing student to study online and on their smartphones; self-study tool (Quizlet) for help with dictation and spelling; word quiz (Quizlet); test-generating system (Quizlet); Interactive body game (BBC);Online resource for understanding code of ethics in medical interpreting; Webinar about non-verbal communication; and Webinar about incompetent vs. competent cultural care. The design of a virtual environment allows the execution of complementary experimental exercises for learners of medical interpreting and introduction to theoretical background of medical interpreting. Since this system adopts a self-learning style, it might improve the time and lack of teaching material restrictions of the classroom method. In addition, as a teaching aid, virtual medical interpreting is a powerful resource for the understanding how actual medical interpreting can be carried out. The developed e-learning system allows remote access, enabling students to perform experiments at their own place, without being physically in the actual laboratory. The web-based virtual environment empowers students by granting them access to laboratories during their free time. A practical example will be presented in order to show capabilities of the system. The developed web-based training program for medical interpreters could bridge the gap between medical professionals and patients with limited English proficiency.

Keywords: e-learning, language education, moodle, medical interpreting

Procedia PDF Downloads 336
112 Temporal and Spacial Adaptation Strategies in Aerodynamic Simulation of Bluff Bodies Using Vortex Particle Methods

Authors: Dario Milani, Guido Morgenthal

Abstract:

Fluid dynamic computation of wind caused forces on bluff bodies e.g light flexible civil structures or high incidence of ground approaching airplane wings, is one of the major criteria governing their design. For such structures a significant dynamic response may result, requiring the usage of small scale devices as guide-vanes in bridge design to control these effects. The focus of this paper is on the numerical simulation of the bluff body problem involving multiscale phenomena induced by small scale devices. One of the solution methods for the CFD simulation that is relatively successful in this class of applications is the Vortex Particle Method (VPM). The method is based on a grid free Lagrangian formulation of the Navier-Stokes equations, where the velocity field is modeled by particles representing local vorticity. These vortices are being convected due to the free stream velocity as well as diffused. This representation yields the main advantages of low numerical diffusion, compact discretization as the vorticity is strongly localized, implicitly accounting for the free-space boundary conditions typical for this class of FSI problems, and a natural representation of the vortex creation process inherent in bluff body flows. When the particle resolution reaches the Kolmogorov dissipation length, the method becomes a Direct Numerical Simulation (DNS). However, it is crucial to note that any solution method aims at balancing the computational cost against the accuracy achievable. In the classical VPM method, if the fluid domain is discretized by Np particles, the computational cost is O(Np2). For the coupled FSI problem of interest, for example large structures such as long-span bridges, the aerodynamic behavior may be influenced or even dominated by small structural details such as barriers, handrails or fairings. For such geometrically complex and dimensionally large structures, resolving the complete domain with the conventional VPM particle discretization might become prohibitively expensive to compute even for moderate numbers of particles. It is possible to reduce this cost either by reducing the number of particles or by controlling its local distribution. It is also possible to increase the accuracy of the solution without increasing substantially the global computational cost by computing a correction of the particle-particle interaction in some regions of interest. In this paper different strategies are presented in order to extend the conventional VPM method to reduce the computational cost whilst resolving the required details of the flow. The methods include temporal sub stepping to increase the accuracy of the particles convection in certain regions as well as dynamically re-discretizing the particle map to locally control the global and the local amount of particles. Finally, these methods will be applied on a test case and the improvements in the efficiency as well as the accuracy of the proposed extension to the method are presented. The important benefits in terms of accuracy and computational cost of the combination of these methods will be thus presented as long as their relevant applications.

Keywords: adaptation, fluid dynamic, remeshing, substepping, vortex particle method

Procedia PDF Downloads 239
111 A Modular Solution for Large-Scale Critical Industrial Scheduling Problems with Coupling of Other Optimization Problems

Authors: Ajit Rai, Hamza Deroui, Blandine Vacher, Khwansiri Ninpan, Arthur Aumont, Francesco Vitillo, Robert Plana

Abstract:

Large-scale critical industrial scheduling problems are based on Resource-Constrained Project Scheduling Problems (RCPSP), that necessitate integration with other optimization problems (e.g., vehicle routing, supply chain, or unique industrial ones), thus requiring practical solutions (i.e., modular, computationally efficient with feasible solutions). To the best of our knowledge, the current industrial state of the art is not addressing this holistic problem. We propose an original modular solution that answers the issues exhibited by the delivery of complex projects. With three interlinked entities (project, task, resources) having their constraints, it uses a greedy heuristic with a dynamic cost function for each task with a situational assessment at each time step. It handles large-scale data and can be easily integrated with other optimization problems, already existing industrial tools and unique constraints as required by the use case. The solution has been tested and validated by domain experts on three use cases: outage management in Nuclear Power Plants (NPPs), planning of future NPP maintenance operation, and application in the defense industry on supply chain and factory relocation. In the first use case, the solution, in addition to the resources’ availability and tasks’ logical relationships, also integrates several project-specific constraints for outage management, like, handling of resource incompatibility, updating of tasks priorities, pausing tasks in a specific circumstance, and adjusting dynamic unit of resources. With more than 20,000 tasks and multiple constraints, the solution provides a feasible schedule within 10-15 minutes on a standard computer device. This time-effective simulation corresponds with the nature of the problem and requirements of several scenarios (30-40 simulations) before finalizing the schedules. The second use case is a factory relocation project where production lines must be moved to a new site while ensuring the continuity of their production. This generates the challenge of merging job shop scheduling and the RCPSP with location constraints. Our solution allows the automation of the production tasks while considering the rate expectation. The simulation algorithm manages the use and movement of resources and products to respect a given relocation scenario. The last use case establishes a future maintenance operation in an NPP. The project contains complex and hard constraints, like on Finish-Start precedence relationship (i.e., successor tasks have to start immediately after predecessors while respecting all constraints), shareable coactivity for managing workspaces, and requirements of a specific state of "cyclic" resources (they can have multiple states possible with only one at a time) to perform tasks (can require unique combinations of several cyclic resources). Our solution satisfies the requirement of minimization of the state changes of cyclic resources coupled with the makespan minimization. It offers a solution of 80 cyclic resources with 50 incompatibilities between levels in less than a minute. Conclusively, we propose a fast and feasible modular approach to various industrial scheduling problems that were validated by domain experts and compatible with existing industrial tools. This approach can be further enhanced by the use of machine learning techniques on historically repeated tasks to gain further insights for delay risk mitigation measures.

Keywords: deterministic scheduling, optimization coupling, modular scheduling, RCPSP

Procedia PDF Downloads 157
110 Decision Making on Smart Energy Grid Development for Availability and Security of Supply Achievement Using Reliability Merits

Authors: F. Iberraken, R. Medjoudj, D. Aissani

Abstract:

The development of the smart grids concept is built around two separate definitions, namely: The European one oriented towards sustainable development and the American one oriented towards reliability and security of supply. In this paper, we have investigated reliability merits enabling decision-makers to provide a high quality of service. It is based on system behavior using interruptions and failures modeling and forecasting from one hand and on the contribution of information and communication technologies (ICT) to mitigate catastrophic ones such as blackouts from the other hand. It was found that this concept has been adopted by developing and emerging countries in short and medium terms followed by sustainability concept at long term planning. This work has highlighted the reliability merits such as: Benefits, opportunities, costs and risks considered as consistent units of measuring power customer satisfaction. From the decision making point of view, we have used the analytic hierarchy process (AHP) to achieve customer satisfaction, based on the reliability merits and the contribution of such energy resources. Certainly nowadays, fossil and nuclear ones are dominating energy production but great advances are already made to jump into cleaner ones. It was demonstrated that theses resources are not only environmentally but also economically and socially sustainable. The paper is organized as follows: Section one is devoted to the introduction, where an implicit review of smart grids development is given for the two main concepts (for USA and Europeans countries). The AHP method and the BOCR developments of reliability merits against power customer satisfaction are developed in section two. The benefits where expressed by the high level of availability, maintenance actions applicability and power quality. Opportunities were highlighted by the implementation of ICT in data transfer and processing, the mastering of peak demand control, the decentralization of the production and the power system management in default conditions. Costs were evaluated using cost-benefit analysis, including the investment expenditures in network security, becoming a target to hackers and terrorists, and the profits of operating as decentralized systems, with a reduced energy not supplied, thanks to the availability of storage units issued from renewable resources and to the current power lines (CPL) enabling the power dispatcher to manage optimally the load shedding. For risks, we have razed the adhesion of citizens to contribute financially to the system and to the utility restructuring. What is the degree of their agreement compared to the guarantees proposed by the managers about the information integrity? From technical point of view, have they sufficient information and knowledge to meet a smart home and a smart system? In section three, an application of AHP method is made to achieve power customer satisfaction based on the main energy resources as alternatives, using knowledge issued from a country that has a great advance in energy mutation. Results and discussions are given in section four. It was given us to conclude that the option to a given resource depends on the attitude of the decision maker (prudent, optimistic or pessimistic), and that status quo is neither sustainable nor satisfactory.

Keywords: reliability, AHP, renewable energy resources, smart grids

Procedia PDF Downloads 424
109 Exploring the Neural Mechanisms of Communication and Cooperation in Children and Adults

Authors: Sara Mosteller, Larissa K. Samuelson, Sobanawartiny Wijeakumar, John P. Spencer

Abstract:

This study was designed to examine how humans are able to teach and learn semantic information as well as cooperate in order to jointly achieve sophisticated goals. Specifically, we are measuring individual differences in how these abilities develop from foundational building blocks in early childhood. The current study adopts a paradigm for novel noun learning developed by Samuelson, Smith, Perry, and Spencer (2011) to a hyperscanning paradigm [Cui, Bryant and Reiss, 2012]. This project measures coordinated brain activity between a parent and child using simultaneous functional near infrared spectroscopy (fNIRS) in pairs of 2.5, 3.5 and 4.5-year-old children and their parents. We are also separately testing pairs of adult friends. Children and parents, or adult friends, are seated across from one another at a table. The parent (in the developmental study) then teaches their child the names of novel toys. An experimenter then tests the child by presenting the objects in pairs and asking the child to retrieve one object by name. Children are asked to choose from both pairs of familiar objects and pairs of novel objects. In order to explore individual differences in cooperation with the same participants, each dyad plays a cooperative game of Jenga, in which their joint score is based on how many blocks they can remove from the tower as a team. A preliminary analysis of the noun-learning task showed that, when presented with 6 word-object mappings, children learned an average of 3 new words (50%) and that the number of objects learned by each child ranged from 2-4. Adults initially learned all of the new words but were variable in their later retention of the mappings, which ranged from 50-100%. We are currently examining differences in cooperative behavior during the Jenga playing game, including time spent discussing each move before it is made. Ongoing analyses are examining the social dynamics that might underlie the differences between words that were successfully learned and unlearned words for each dyad, as well as the developmental differences observed in the study. Additionally, the Jenga game is being used to better understand individual and developmental differences in social coordination during a cooperative task. At a behavioral level, the analysis maps periods of joint visual attention between participants during the word learning and the Jenga game, using head-mounted eye trackers to assess each participant’s first-person viewpoint during the session. We are also analyzing the coherence in brain activity between participants during novel word-learning and Jenga playing. The first hypothesis is that visual joint attention during the session will be positively correlated with both the number of words learned and with the number of blocks moved during Jenga before the tower falls. The next hypothesis is that successful communication of new words and success in the game will each be positively correlated with synchronized brain activity between the parent and child/the adult friends in cortical regions underlying social cognition, semantic processing, and visual processing. This study probes both the neural and behavioral mechanisms of learning and cooperation in a naturalistic, interactive and developmental context.

Keywords: communication, cooperation, development, interaction, neuroscience

Procedia PDF Downloads 228
108 Mineralized Nanoparticles as a Contrast Agent for Ultrasound and Magnetic Resonance Imaging

Authors: Jae Won Lee, Kyung Hyun Min, Hong Jae Lee, Sang Cheon Lee

Abstract:

To date, imaging techniques have attracted much attention in medicine because the detection of diseases at an early stage provides greater opportunities for successful treatment. Consequently, over the past few decades, diverse imaging modalities including magnetic resonance (MR), positron emission tomography, computed tomography, and ultrasound (US) have been developed and applied widely in the field of clinical diagnosis. However, each of the above-mentioned imaging modalities possesses unique strengths and intrinsic weaknesses, which limit their abilities to provide accurate information. Therefore, multimodal imaging systems may be a solution that can provide improved diagnostic performance. Among the current medical imaging modalities, US is a widely available real-time imaging modality. It has many advantages including safety, low cost and easy access for patients. However, its low spatial resolution precludes accurate discrimination of diseased region such as cancer sites. In contrast, MR has no tissue-penetrating limit and can provide images possessing exquisite soft tissue contrast and high spatial resolution. However, it cannot offer real-time images and needs a comparatively long imaging time. The characteristics of these imaging modalities may be considered complementary, and the modalities have been frequently combined for the clinical diagnostic process. Biominerals such as calcium carbonate (CaCO3) and calcium phosphate (CaP) exhibit pH-dependent dissolution behavior. They demonstrate pH-controlled drug release due to the dissolution of minerals in acidic pH conditions. In particular, the application of this mineralization technique to a US contrast agent has been reported recently. The CaCO3 mineral reacts with acids and decomposes to generate calcium dioxide (CO2) gas in an acidic environment. These gas-generating mineralized nanoparticles generated CO2 bubbles in the acidic environment of the tumor, thereby allowing for strong echogenic US imaging of tumor tissues. On the basis of this previous work, it was hypothesized that the loading of MR contrast agents into the CaCO3 mineralized nanoparticles may be a novel strategy in designing a contrast agent for dual imaging. Herein, CaCO3 mineralized nanoparticles that were capable of generating CO2 bubbles to trigger the release of entrapped MR contrast agents in response to tumoral acidic pH were developed for the purposes of US and MR dual-modality imaging of tumors. Gd2O3 nanoparticles were selected as an MR contrast agent. A key strategy employed in this study was to prepare Gd2O3 nanoparticle-loaded mineralized nanoparticles (Gd2O3-MNPs) using block copolymer-templated CaCO3 mineralization in the presence of calcium cations (Ca2+), carbonate anions (CO32-) and positively charged Gd2O3 nanoparticles. The CaCO3 core was considered suitable because it may effectively shield Gd2O3 nanoparticles from water molecules in the blood (pH 7.4) before decomposing to generate CO2 gas, triggering the release of Gd2O3 nanoparticles in tumor tissues (pH 6.4~7.4). The kinetics of CaCO3 dissolution and CO2 generation from the Gd2O3-MNPs were examined as a function of pH and pH-dependent in vitro magnetic relaxation; additionally, the echogenic properties were estimated to demonstrate the potential of the particles for the tumor-specific US and MR imaging.

Keywords: calcium carbonate, mineralization, ultrasound imaging, magnetic resonance imaging

Procedia PDF Downloads 206
107 Upflow Anaerobic Sludge Blanket Reactor Followed by Dissolved Air Flotation Treating Municipal Sewage

Authors: Priscila Ribeiro dos Santos, Luiz Antonio Daniel

Abstract:

Inadequate access to clean water and sanitation has become one of the most widespread problems affecting people throughout the developing world, leading to an unceasing need for low-cost and sustainable wastewater treatment systems. The UASB technology has been widely employed as a suitable and economical option for the treatment of sewage in developing countries, which involves low initial investment, low energy requirements, low operation and maintenance costs, high loading capacity, short hydraulic retention times, long solids retention times and low sludge production. Whereas dissolved air flotation process is a good option for the post-treatment of anaerobic effluents, being capable of producing high quality effluents in terms of total suspended solids, chemical oxygen demand, phosphorus, and even pathogens. This work presents an evaluation and monitoring, over a period of 6 months, of one compact full-scale system with this configuration, UASB reactors followed by dissolved air flotation units (DAF), operating in Brazil. It was verified as a successful treatment system, and an issue of relevance since dissolved air flotation process treating UASB reactor effluents is not widely encompassed in the literature. The study covered the removal and behavior of several variables, such as turbidity, total suspend solids (TSS), chemical oxygen demand (COD), Escherichia coli, total coliforms and Clostridium perfringens. The physicochemical variables were analyzed according to the protocols established by the Standard Methods for Examination of Water and Wastewater. For microbiological variables, such as Escherichia coli and total coliforms, it was used the “pour plate” technique with Chromocult Coliform Agar (Merk Cat. No.1.10426) serving as the culture medium, while the microorganism Clostridium perfringens was analyzed through the filtering membrane technique, with the Ágar m-CP (Oxoid Ltda, England) serving as the culture medium. Approximately 74% of total COD was removed in the UASB reactor, and the complementary removal done during the flotation process resulted in 88% of COD removal from the raw sewage, thus the initial concentration of COD of 729 mg.L-1 decreased to 87 mg.L-1. Whereas, in terms of particulate COD, the overall removal efficiency for the whole system was about 94%, decreasing from 375 mg.L-1 in raw sewage to 29 mg.L-1 in final effluent. The UASB reactor removed on average 77% of the TSS from raw sewage. While the dissolved air flotation process did not work as expected, removing only 30% of TSS from the anaerobic effluent. The final effluent presented an average concentration of 38 mg.L-1 of TSS. The turbidity was significantly reduced, leading to an overall efficiency removal of 80% and a final turbidity of 28 NTU.The treated effluent still presented a high concentration of fecal pollution indicators (E. coli, total coliforms, and Clostridium perfringens), showing that the system did not present a good performance in removing pathogens. Clostridium perfringens was the organism which suffered the higher removal by the treatment system. The results can be considered satisfactory for the physicochemical variables, taking into account the simplicity of the system, besides that, it is necessary a post-treatment to improve the microbiological quality of the final effluent.

Keywords: dissolved air flotation, municipal sewage, UASB reactor, treatment

Procedia PDF Downloads 304
106 A Report on the Elearning Programme of the Irish College of General Practitioners Which Can Address Continuing Education Needs of Primary Care Physicians

Authors: Nicholas P. Fenlon, Aisling Lavelle, David Mclean, Margaret O'riordan

Abstract:

Background: The case for continuing professional development has been well made, and was formalized in Ireland in recent years through the enactment of the Medical Practitioner’s Act, which requires registered medical practitioners to complete a minimum of 50 hours CPD each year. The ICGP, who have been providing CPD opportunities to its members for many years, have responded to this need by developing a series of evidence-based, high-quality, multimedia modules across a range of clinical and non-clinical areas. (More traditional education opportunities are still being provided by the college also). Overview of Programme: The first module was released in September 2011, since when the eLearning program has grown steadily, and there are currently almost 20 modules available, with a further 5 in production. Each module contains three to six 10-minute video lessons, which use a combination of graphics, images, text, voice-over and clinical clips. These are supported by supplementary videos of expert pieces-to-camera, Q&As with content experts, clinical scenarios, external links and relevant documentation and other resources. Successful completion of MCQs will result in a Certificate of Completion, which can be printed or stored in Professional Competence portfolio. The Medical Practitioner’s Act requires doctors to gather CPD credits across 8 domains of practice, and various eLearning modules have been developed to address each. For instance, modules with a strong clinical content would include Management of Hypertension, Management of COPD, and Management of Asthma. Other modules focus on health promotion such as Promoting Smoking Cessation, Promoting Physical Activity, and Addressing Childhood Obesity. Modules where communication skills are keys include modules on Suicide Prevention and Management of Depression. Other modules, currently in development include non-clinical topics around risk management, including Confidentiality, Consent etc. Each module is developed by a core group, which includes where possible, a GP with a special interest in the area, and a content expert(s). The college works closely with a medical education consultant and a production company in developing and producing the modules. Modules can be accessed (with password) through the ICGP website and are available free to all ICGP members. Summary of Evaluation: There are over 1700 registered users to date (over 55% of College membership). The program was evaluated using an online survey in 2013 (N = 144/950 – 12%) and results were very positive overall but provided material for the further improvement of the program also. Future Plans: While knowledge can be imparted well through eLearning, skills and attitudes are more difficult to influence through an online environment. The college is now developing a series of linked workshops, which will lead to ICGP Professional Competence Awards. The first pilot workshop is scheduled for February 2015 and is Cardiology-themed. Participants will be required to complete the following 4 modules in advance of attending – Management of Hypertension, Management of Heart Failure, Promoting Smoking Cessation, and Promoting Physical Activity. The workshop will be case-based and interactive, addressing ECG Interpretation in General Practice. Conclusions: The ICGP have responded to members needs for high-quality evidence-based education delivered in a way that suits GPs.

Keywords: CPD opportunities, evidence-based, high quality, multimedia modules across a range of clinical and non-clinical areas, medical practitioner’s act

Procedia PDF Downloads 575
105 Human Identification and Detection of Suspicious Incidents Based on Outfit Colors: Image Processing Approach in CCTV Videos

Authors: Thilini M. Yatanwala

Abstract:

CCTV (Closed-Circuit-Television) Surveillance System is being used in public places over decades and a large variety of data is being produced every moment. However, most of the CCTV data is stored in isolation without having integrity. As a result, identification of the behavior of suspicious people along with their location has become strenuous. This research was conducted to acquire more accurate and reliable timely information from the CCTV video records. The implemented system can identify human objects in public places based on outfit colors. Inter-process communication technologies were used to implement the CCTV camera network to track people in the premises. The research was conducted in three stages and in the first stage human objects were filtered from other movable objects available in public places. In the second stage people were uniquely identified based on their outfit colors and in the third stage an individual was continuously tracked in the CCTV network. A face detection algorithm was implemented using cascade classifier based on the training model to detect human objects. HAAR feature based two-dimensional convolution operator was introduced to identify features of the human face such as region of eyes, region of nose and bridge of the nose based on darkness and lightness of facial area. In the second stage outfit colors of human objects were analyzed by dividing the area into upper left, upper right, lower left, lower right of the body. Mean color, mod color and standard deviation of each area were extracted as crucial factors to uniquely identify human object using histogram based approach. Color based measurements were written in to XML files and separate directories were maintained to store XML files related to each camera according to time stamp. As the third stage of the approach, inter-process communication techniques were used to implement an acknowledgement based CCTV camera network to continuously track individuals in a network of cameras. Real time analysis of XML files generated in each camera can determine the path of individual to monitor full activity sequence. Higher efficiency was achieved by sending and receiving acknowledgments only among adjacent cameras. Suspicious incidents such as a person staying in a sensitive area for a longer period or a person disappeared from the camera coverage can be detected in this approach. The system was tested for 150 people with the accuracy level of 82%. However, this approach was unable to produce expected results in the presence of group of people wearing similar type of outfits. This approach can be applied to any existing camera network without changing the physical arrangement of CCTV cameras. The study of human identification and suspicious incident detection using outfit color analysis can achieve higher level of accuracy and the project will be continued by integrating motion and gait feature analysis techniques to derive more information from CCTV videos.

Keywords: CCTV surveillance, human detection and identification, image processing, inter-process communication, security, suspicious detection

Procedia PDF Downloads 153
104 Well Inventory Data Entry: Utilization of Developed Technologies to Progress the Integrated Asset Plan

Authors: Danah Al-Selahi, Sulaiman Al-Ghunaim, Bashayer Sadiq, Fatma Al-Otaibi, Ali Ameen

Abstract:

In light of recent changes affecting the Oil & Gas Industry, optimization measures have become imperative for all companies globally, including Kuwait Oil Company (KOC). To keep abreast of the dynamic market, a detailed Integrated Asset Plan (IAP) was developed to drive optimization across the organization, which was facilitated through the in-house developed software “Well Inventory Data Entry” (WIDE). This comprehensive and integrated approach enabled centralization of all planned asset components for better well planning, enhancement of performance, and to facilitate continuous improvement through performance tracking and midterm forecasting. Traditionally, this was hard to achieve as, in the past, various legacy methods were used. This paper briefly describes the methods successfully adopted to meet the company’s objective. IAPs were initially designed using computerized spreadsheets. However, as data captured became more complex and the number of stakeholders requiring and updating this information grew, the need to automate the conventional spreadsheets became apparent. WIDE, existing in other aspects of the company (namely, the Workover Optimization project), was utilized to meet the dynamic requirements of the IAP cycle. With the growth of extensive features to enhance the planning process, the tool evolved into a centralized data-hub for all asset-groups and technical support functions to analyze and infer from, leading WIDE to become the reference two-year operational plan for the entire company. To achieve WIDE’s goal of operational efficiency, asset-groups continuously add their parameters in a series of predefined workflows that enable the creation of a structured process which allows risk factors to be flagged and helps mitigation of the same. This tool dictates assigned responsibilities for all stakeholders in a method that enables continuous updates for daily performance measures and operational use. The reliable availability of WIDE, combined with its user-friendliness and easy accessibility, created a platform of cross-functionality amongst all asset-groups and technical support groups to update contents of their respective planning parameters. The home-grown entity was implemented across the entire company and tailored to feed in internal processes of several stakeholders across the company. Furthermore, the implementation of change management and root cause analysis techniques captured the dysfunctionality of previous plans, which in turn resulted in the improvement of already existing mechanisms of planning within the IAP. The detailed elucidation of the 2 year plan flagged any upcoming risks and shortfalls foreseen in the plan. All results were translated into a series of developments that propelled the tool’s capabilities beyond planning and into operations (such as Asset Production Forecasts, setting KPIs, and estimating operational needs). This process exemplifies the ability and reach of applying advanced development techniques to seamlessly integrated the planning parameters of various assets and technical support groups. These techniques enables the enhancement of integrating planning data workflows that ultimately lay the founding plans towards an epoch of accuracy and reliability. As such, benchmarks of establishing a set of standard goals are created to ensure the constant improvement of the efficiency of the entire planning and operational structure.

Keywords: automation, integration, value, communication

Procedia PDF Downloads 117
103 Heterotopic Ossification: DISH and Myositis Ossificans in Human Remains Identification

Authors: Patricia Shirley Almeida Prado, Liz Brito, Selma Paixão Argollo, Gracie Moreira, Leticia Matos Sobrinho

Abstract:

Diffuse idiopathic skeletal hyperostosis (DISH) is a degenerative bone disease also known as Forestier´s disease and ankylosing hyperostosis of the spine is characterized by a tendency toward ossification of half the anterior longitudinal spinal ligament without intervertebral disc disease. DISH is not considered to be osteoarthritis, although the two conditions commonly occur together. Diagnostic criteria include fusion of at least four vertebrae by bony bridges arising from the anterolateral aspect of the vertebral bodies. These vertebral bodies have a 'dripping candle wax' appearance, also can be seen periosteal new bone formation on the anterior surface of the vertebral bodies and there is no ankylosis at zygoapophyseal facet joint. Clinically, patients with DISH tend to be asymptomatic some patients mention moderate pain and stiffness in upper back. This disease is more common in man, uncommon in patients younger than 50 years and rare in patients under 40 years old. In modern populations, DISH is found in association with obesity, (type II) diabetes; abnormal vitamin A metabolism and also associated with higher levels of serum uric acid. There is also some association between the increase of risk of stroke or other cerebrovascular disease. The DISH condition can be confused with Heterotopic Ossification, what is the bone formation in the soft tissues as the result of trauma, wounding, surgery, burnings, prolonged immobility and some central nervous system disorder. All these conditions have been described extensively as myositis ossificans which can be confused with the fibrodysplasia (myositis) ossificans progressive. As in the DISH symptomatology it can be asymptomatic or extensive enough to impair joint function. A third confusion osteoarthritis disease that can bring confusion are the enthesopathies that occur in the entire skeleton being common on the ischial tuberosities, iliac crests, patellae, and calcaneus. Ankylosis of the sacroiliac joint by bony bridges may also be found. CASE 1: this case is skeletal remains presenting skull, some vertebrae and scapulae. This case remains unidentified and due to lack of bone remains. Sex, age and ancestry profile was compromised, however the DISH pathognomonic findings and diagnostic helps to estimate sex and age characteristics. Moreover to presenting DISH these skeletal remains also showed some bone alterations and non-metrics as fusion of the first vertebrae with occipital bone, maxillae and palatine torus and scapular foramen on the right scapulae. CASE 2: this skeleton remains shows an extensive bone heterotopic ossification on the great trochanter area of left femur, right fibula showed a healed fracture in its body however in its inteosseous crest there is an extensive bone growth, also in the Ilium at the region of inferior gluteal line can be observed some pronounced bone growth and the skull presented a pronounced mandibular, maxillary and palatine torus. Despite all these pronounced heterotopic ossification the whole skeleton presents moderate bone overgrowth that is not linked with aging, since the skeleton belongs to a young unidentified individual. The appropriate osteopathological diagnosis support the human identification process through medical reports and also assist with epidemiological data that can strengthen vulnerable anthropological estimates.

Keywords: bone disease, DISH, human identification, human remains

Procedia PDF Downloads 303
102 Pluripotent Stem Cells as Therapeutic Tools for Limbal Stem Cell Deficiencies and Drug Testing

Authors: Aberdam Edith, Sangari Linda, Petit Isabelle, Aberdam Daniel

Abstract:

Background and Rationale: Transparent avascularised cornea is essential for normal vision and depends on limbal stem cells (LSC) that reside between the cornea and the conjunctiva. Ocular burns or injuries may destroy the limbus, causing limbal stem cell deficiency (LSCD). The cornea becomes vascularised by invaded conjunctival cells, the stroma is scarring, resulting in corneal opacity and loss of vision. Grafted autologous limbus or cultivated autologous LCS can restore the vision, unless the two eyes are affected. Alternative cellular sources have been tested in the last decades, including oral mucosa or hair follicle epithelial cells. However, only partial success has been achieved by the use of these cells since they were not able to uniformly commit into corneal epithelial cells. Human pluripotent stem cells (iPSC) display both unlimited growth capacity and ability to differentiate into any cell type. Our goal was to design a standardized and reproducible protocol to produce transplantable autologous LSC from patients through cell reprogramming technology. Methodology: First, keratinocyte primary culture was established from a small number of plucked hair follicles of healthy donors. The resulting epithelial cells were reprogrammed into induced pluripotent stem cells (iPSCs) and further differentiate into corneal epithelial cells (CEC), according to a robust protocol that recapitulates the main step of corneal embryonic development. qRT-PCR analysis and immunofluorescent staining during the course of differentiation confirm the expression of stage specific markers of corneal embryonic lineage. First appear ectodermal progenitor-specific cytokeratins K8/K18, followed at day 7 by limbal-specific PAX6, TP63 and cytokeratins K5/K14. At day 15, K3/K12+-corneal cells are present. To amplify the iPSC-derived LSC (named COiPSC), intact small epithelial colonies were detached and cultivated in limbal cell-specific medium. In that culture conditions, the COiPSC can be frozen and thaw at any passage, while retaining their corneal characteristics for at least eight passages. To evaluate the potential of COiPSC as an alternative ocular toxicity model, COiPSC were treated at passage P0 to P4 with increasing amounts of SDS and Benzalkonium. Cell proliferation and apoptosis of treated cells was compared to LSC and the SV40-immortalized human corneal epithelial cell line (HCE) routinely used by cosmetological industrials. Of note, HCE are more resistant to toxicity than LSC. At P0, COiPSC were systematically more resistant to chemical toxicity than LSC and even to HCE. Remarkably, this behavior changed with passage since COiPSC at P2 became identical to LSC and thus closer to physiology than HCE. Comparative transcriptome analysis confirmed that COiPSC from P2 are similar to a mixture of LSC and CEC. Finally, by organotypic reconstitution assay, we demonstrated the ability of COiPSC to produce a 3D corneal epithelium on a stromal equivalent made of keratocytes. Conclusion: COiPSC could become valuable for two main applications: (1) an alternative robust tool to perform, in a reproducible and physiological manner, toxicity assays for cosmetic products and pharmacological tests of drugs. (2). COiPSC could become an alternative autologous source for cornea transplantation for LSCD.

Keywords: Limbal stem cell deficiency, iPSC, cornea, limbal stem cells

Procedia PDF Downloads 383
101 Distribution System Modelling: A Holistic Approach for Harmonic Studies

Authors: Stanislav Babaev, Vladimir Cuk, Sjef Cobben, Jan Desmet

Abstract:

The procedures for performing harmonic studies for medium-voltage distribution feeders have become relatively mature topics since the early 1980s. The efforts of various electric power engineers and researchers were mainly focused on handling large harmonic non-linear loads connected scarcely at several buses of medium-voltage feeders. In order to assess the impact of these loads on the voltage quality of the distribution system, specific modeling and simulation strategies were proposed. These methodologies could deliver a reasonable estimation accuracy given the requirements of least computational efforts and reduced complexity. To uphold these requirements, certain analysis assumptions have been made, which became de facto standards for establishing guidelines for harmonic analysis. Among others, typical assumptions include balanced conditions of the study and the negligible impact of impedance frequency characteristics of various power system components. In latter, skin and proximity effects are usually omitted, and resistance and reactance values are modeled based on the theoretical equations. Further, the simplifications of the modelling routine have led to the commonly accepted practice of neglecting phase angle diversity effects. This is mainly associated with developed load models, which only in a handful of cases are representing the complete harmonic behavior of a certain device as well as accounting on the harmonic interaction between grid harmonic voltages and harmonic currents. While these modelling practices were proven to be reasonably effective for medium-voltage levels, similar approaches have been adopted for low-voltage distribution systems. Given modern conditions and massive increase in usage of residential electronic devices, recent and ongoing boom of electric vehicles, and large-scale installing of distributed solar power, the harmonics in current low-voltage grids are characterized by high degree of variability and demonstrate sufficient diversity leading to a certain level of cancellation effects. It is obvious, that new modelling algorithms overcoming previously made assumptions have to be accepted. In this work, a simulation approach aimed to deal with some of the typical assumptions is proposed. A practical low-voltage feeder is modeled in PowerFactory. In order to demonstrate the importance of diversity effect and harmonic interaction, previously developed measurement-based models of photovoltaic inverter and battery charger are used as loads. The Python-based script aiming to supply varying voltage background distortion profile and the associated current harmonic response of loads is used as the core of unbalanced simulation. Furthermore, the impact of uncertainty of feeder frequency-impedance characteristics on total harmonic distortion levels is shown along with scenarios involving linear resistive loads, which further alter the impedance of the system. The comparative analysis demonstrates sufficient differences with cases when all the assumptions are in place, and results indicate that new modelling and simulation procedures need to be adopted for low-voltage distribution systems with high penetration of non-linear loads and renewable generation.

Keywords: electric power system, harmonic distortion, power quality, public low-voltage network, harmonic modelling

Procedia PDF Downloads 133
100 The Impact of Spirituality on the Voluntary Simplicity Lifestyle Tendency: An Explanatory Study on Turkish Consumers

Authors: Esna B. Buğday, Niray Tunçel

Abstract:

Spirituality has a motivational influence on consumers' psychological states, lifestyles, and behavioral intentions. Spirituality refers to the feeling that there is a divine power greater than ourselves and a connection among oneself, others, nature, and the sacred. In addition, spirituality concerns the human soul and spirit against the material and physical world and consists of three dimensions: self-discovery, relationships, and belief in a higher power. Of them, self-discovery is to explore the meaning and the purpose of life. Relationships refer to the awareness of the connection between human beings and nature as well as respect for them. In addition, higher power represents the transcendent aspect of spirituality, which means to believe in a holy power that creates all the systems in the universe. Furthermore, a voluntary simplicity lifestyle is (1) to adopt a simple lifestyle by minimizing the attachment to and the consumption of material things and possessions, (2) to have an ecological awareness respecting all living creatures, and (3) to express the desire for exploring and developing the inner life. Voluntary simplicity is a multi-dimensional construct that consists of a desire for a voluntarily simple life (e.g., avoiding excessive consumption), cautious attitudes in shopping (e.g., not buying unnecessary products), acceptance of self-sufficiency (e.g., being self-sufficient individual), and rejection of highly developed functions of products (e.g., preference for simple functioned products). One of the main reasons for living simply is to sustain a spiritual life, as voluntary simplicity provides the space for achieving psychological and spiritual growth, cultivating self-reliance since voluntary simplifier frees themselves from the overwhelming externals and takes control of their daily lives. From this point of view, it is expected that people with a strong sense of spirituality will be likely to adopt a simple lifestyle. In this respect, the study aims to examine the impact of spirituality on consumers' voluntary simple lifestyle tendencies. As consumers' consumption attitudes and behaviors depend on their lifestyles, exploring the factors that lead them to embrace voluntary simplicity significantly predicts their purchase behavior. In this respect, this study presents empirical research based on a data set collected from 478 Turkish consumers through an online survey. First, exploratory factor analysis is applied to the data to reveal the dimensions of spirituality and voluntary simplicity scales. Second, confirmatory factor analysis is conducted to assess the measurement model. Last, the hypotheses are analyzed using partial least square structural equation modeling (PLS-SEM). The results confirm that spirituality's self-discovery and relationships dimensions positively impact both cautious attitudes in shopping and acceptance of self-sufficiency dimensions of voluntary simplicity. In contrast, belief in a higher power does not significantly influence consumers' voluntary simplicity tendencies. Even though there has been theoretical support drawing a positive relationship between spirituality and voluntary simplicity, to the best of the authors' knowledge, this has not been empirically tested in the literature before. Hence, this study contributes to the current knowledge by analyzing the direct influence of spirituality on consumers' voluntary simplicity tendencies. Additionally, analyzing this impact on the consumers of an emerging market is another contribution to the literature.

Keywords: spirituality, voluntary simplicity, self-sufficiency, conscious shopping, Turkish consumers

Procedia PDF Downloads 126
99 Structural Fluxionality of Luminescent Coordination Compounds with Lanthanide Ions

Authors: Juliana A. B. Silva, Caio H. T. L. Albuquerque, Leonardo L. dos Santos, Cristiane K. Oliveira, Ivani Malvestiti, Fernando Hallwass, Ricardo L. Longo

Abstract:

Complexes with lanthanide ions have been extensively studied due to their applications as luminescent, magnetic and catalytic materials as molecular or extended crystals, thin films, glasses, polymeric matrices, ionic liquids, and in solution. NMR chemical shift data in solution have been reported and suggest fluxional structures in a wide range of coordination compounds with rare earth ions. However, the fluxional mechanisms for these compounds are still not established. This structural fluxionality may affect the photophysical, catalytic and magnetic properties in solution. Thus, understanding the structural interconversion mechanisms may aid the design of coordination compounds with, for instance, improved (electro)luminescence, catalytic and magnetic behaviors. The [Eu(btfa)₃bipy] complex, where btfa= 4,4,4-trifluoro-1-phenyl-1,3-butanedionate and bipy= 2,2’-bipiridyl, has a well-defined X-ray crystallographic structure and preliminary 1H NMR data suggested a structural fluxionality. Thus, we have investigated a series of coordination compounds with lanthanide ions [Ln(btfa)₃L], where Ln = La, Eu, Gd or Yb and L= bipy or phen (phen=1,10-phenanthroline) using a combined theoretical-experimental approach. These complexes were synthesized and fully characterized, and detailed NMR measurements were obtained. They were also studied by quantum chemical computational methods (DFT-PBE0). The aim was to determine the relevant factors in the structure of these compounds that favor or not the fluxional behavior. Measurements of the 1H NMR signals at variable temperature in CD₂Cl₂ of the [Eu(btfa)₃L] complexes suggest that these compounds have a fluxional structure, because the crystal structure has non-equivalent btfa ligands that should lead to non-equivalent hydrogen atoms and thus to more signals in the NMR spectra than those obtained at room temperature, where all hydrogen atoms of the btfa ligands are equivalent, and phen ligand has an effective vertical symmetry plane. For the [Eu(btfa)₃bipy] complex, the broadening of the signals at –70°C provides a lower bound for the coalescence temperature, which indicates the energy barriers involved in the structural interconversion mechanisms are quite small. These barriers and, consequently, the coalescence temperature are dependent upon the radii of the lanthanide ion as well as to their paramagnetic effects. The PBE0 calculated structures are in very good agreement with the crystallographic data and, for the [Eu(btfa)₃bipy] complex, this method provided several distinct structures with almost the same energy. However, the energy barrier for structural interconversion via dissociative pathways were found to be quite high and could not explain the experimental observations. Whereas the pseudo-rotation pathways, involving the btfa and bipy ligands, have very small activation barriers, in excellent agreement with the NMR data. The results also showed an increase in the activation barrier along the lanthanide series due to the decrease of the ionic radii and consequent increase of the steric effects. TD-DFT calculations showed a dependence of the ligand donor state energy with different structures of the complex [Eu(btfa)₃phen], which can affect the energy transfer rates and the luminescence. The energy required to promote the structural fluxionality may also enhance the luminescence quenching in solution. These results can aid in the design of more luminescent compounds and more efficient devices.

Keywords: computational chemistry, lanthanide-based compounds, NMR, structural fluxionality

Procedia PDF Downloads 175
98 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 52
97 Buddhism and Education for Children: Cultivating Wisdom and Compassion

Authors: Harry Einhorn

Abstract:

This paper aims to explore the integration of Buddhism into educational settings with the goal of fostering the holistic development of children. By incorporating Buddhist principles and practices, educators can create a nurturing environment that cultivates wisdom, compassion, and ethical values in children. The teachings of Buddhism provide valuable insights into mindfulness, compassion, and critical thinking, which can be adapted and applied to educational curricula to enhance children's intellectual, emotional, and moral growth. One of the fundamental aspects of Buddhist philosophy that is particularly relevant to education is the concept of mindfulness. By introducing mindfulness practices, such as meditation and breathing exercises, children can learn to cultivate present-moment awareness, develop emotional resilience, and enhance their ability to concentrate and focus. These skills are essential for effective learning and can contribute to reducing stress and promoting overall well-being in children. Mindfulness practices can also teach children how to manage their emotions and thoughts, promoting self-regulation and creating a positive classroom environment. In addition to mindfulness, Buddhism emphasizes the cultivation of compassion and empathy toward all living beings. Integrating teachings on kindness, empathy, and ethical behavior into the educational framework can help children develop a deep sense of interconnectedness and social responsibility. By engaging children in activities that promote empathy and encourage acts of kindness, such as community service projects and cooperative learning, educators can foster the development of compassionate individuals who are actively engaged in creating a more harmonious and compassionate society. Moreover, Buddhist teachings encourage critical thinking and inquiry, which are crucial skills for intellectual development. By introducing children to fundamental Buddhist concepts such as impermanence, interdependence, and the nature of suffering, educators can engage them in philosophical reflections and broaden their perspectives on life. These teachings promote open-mindedness, curiosity, and a deeper understanding of the interconnectedness of all things. Through the exploration of these concepts, children can develop critical thinking skills and gain insights into the complexities of the world, enabling them to navigate challenges with wisdom and discernment. While integrating Buddhism into education requires sensitivity, cultural awareness, and respect for diverse beliefs and backgrounds, it holds great potential for nurturing the holistic development of children. By incorporating mindfulness practices, fostering compassion and empathy, and promoting critical thinking, Buddhism can contribute to the creation of a more compassionate, inclusive, and harmonious educational environment. This integration can shape well-rounded individuals who are equipped with the necessary skills and qualities to navigate the complexities of the modern world with wisdom, compassion, and resilience. In conclusion, the integration of Buddhism into education offers a valuable framework for cultivating wisdom, compassion, and ethical values in children. By incorporating mindfulness, compassion, and critical thinking into educational practices, educators can create a supportive environment that promotes children's holistic development. By nurturing these qualities, Buddhism can help shape individuals who are not only academically proficient but also morally and ethically responsible, contributing to a more compassionate and harmonious society.

Keywords: Buddhism, education, children, mindfulness

Procedia PDF Downloads 38
96 Dietetics Practice in the Scope of Disease Prevention in Community Settings: A School-Based Obesity Prevention Program

Authors: Elham Abbas Aljaaly, Nahlaa Abdulwahab Khalifa

Abstract:

The active method of disease prevention is seen as the most affordable and sustainable action to deal with risks of non-communicable diseases such as obesity. This eight-week project aimed to pilot the feasibility and acceptability of a school-based programme, which is proposed to prevent and modify overweight status and possible related risk factors among student girls 'at the intermediate level' in Jeddah city. The programme was conducted through comprehensible approach targeting physical environment and school policies (nutritional/exercise/behavioural approach). The programme was designed to cultivate the personal and environmental awareness in schools for girls. This was applied by promoting healthy eating and physical activity through policies, physical education, healthier options for school canteens, and the creation of school health teams. The prevention programme was applied on 68 students (who agreed to participate) from grades 7th, 8th and 9th. A pre and post assessment questionnaire was employed on 66 students. The questionnaires were designed to obtain information on students' knowledge about health, nutrition and physical activity. Survey questions included information about nutrients, food consumption patterns, food intake and lifestyle. Physical education included training sessions for new opportunities for physical activities to be performed during school or after school hours. A running competition 'to enhance students’ performance for physical activities' was also conducted during the school visit. A visit to the school canteen was conducted to check, observe, record and assess all available food/beverage items and meals. The assessment method was a subjective method for the type of food/beverages if high in saturated fat, salt and sugar (HFSS) or non-HFSS. The school canteen administrators were encouraged to provide healthy food/beverage items and a sample healthy canteen was provided for implementation. Two healthy options were introduced to the school canteen. A follow up for students’ preferences for the introduced options and the purchasing power were assessed. Thirty-eight percent of young girls (n=26) were not participating in any form of physical activities inside or outside school. Skipping breakfast was stated by 42% (n=28) of students with no daily consumption (19%, n=13) for fruit/vegetables. Significant changes were noticed in students’ (n=66) overall responses to the pre and post questions (P value=.001). All students had participated in the conducted running competition sessions and reported satisfaction and enjoyment about the sessions. No absence was reported by the research team for attending physical education and activity sessions throughout the delivered programme. The purchasing power of the introduced healthy options of 'Salad and oatmeal' was increased to 18% in 8 weeks at the school canteen, and slightly affected the purchase for other less healthy options. The piloted programme indorsed better health and nutrition knowledge, healthy eating and lifestyle attitude, which could help young girls to obtain sustainable changes. It is expected that the outcomes of the programme will be a cornerstone for the futuristic national study that will assist policy makers and participants to build a knowledgeable health promotion scenario and make sure that school students have access to healthy foods, physical exercise and healthy lifestyle.

Keywords: adolescents, diet, exercise, behaviours, overweight/obesity, prevention-intervention programme, Saudi Arabia, schoolgirls

Procedia PDF Downloads 108
95 Differential Expression Analysis of Busseola fusca Larval Transcriptome in Response to Cry1Ab Toxin Challenge

Authors: Bianca Peterson, Tomasz J. Sańko, Carlos C. Bezuidenhout, Johnnie Van Den Berg

Abstract:

Busseola fusca (Fuller) (Lepidoptera: Noctuidae), the maize stem borer, is a major pest in sub-Saharan Africa. It causes economic damage to maize and sorghum crops and has evolved non-recessive resistance to genetically modified (GM) maize expressing the Cry1Ab insecticidal toxin. Since B. fusca is a non-model organism, very little genomic information is publicly available, and is limited to some cytochrome c oxidase I, cytochrome b, and microsatellite data. The biology of B. fusca is well-described, but still poorly understood. This, in combination with its larval-specific behavior, may pose problems for limiting the spread of current resistant B. fusca populations or preventing resistance evolution in other susceptible populations. As part of on-going research into resistance evolution, B. fusca larvae were collected from Bt and non-Bt maize in South Africa, followed by RNA isolation (15 specimens) and sequencing on the Illumina HiSeq 2500 platform. Quality of reads was assessed with FastQC, after which Trimmomatic was used to trim adapters and remove low quality, short reads. Trinity was used for the de novo assembly, whereas TransRate was used for assembly quality assessment. Transcript identification employed BLAST (BLASTn, BLASTp, and tBLASTx comparisons), for which two libraries (nucleotide and protein) were created from 3.27 million lepidopteran sequences. Several transcripts that have previously been implicated in Cry toxin resistance was identified for B. fusca. These included aminopeptidase N, cadherin, alkaline phosphatase, ATP-binding cassette transporter proteins, and mitogen-activated protein kinase. MEGA7 was used to align these transcripts to reference sequences from Lepidoptera to detect mutations that might potentially be contributing to Cry toxin resistance in this pest. RSEM and Bioconductor were used to perform differential gene expression analysis on groups of B. fusca larvae challenged and unchallenged with the Cry1Ab toxin. Pairwise expression comparisons of transcripts that were at least 16-fold expressed at a false-discovery corrected statistical significance (p) ≤ 0.001 were extracted and visualized in a hierarchically clustered heatmap using R. A total of 329,194 transcripts with an N50 of 1,019 bp were generated from the over 167.5 million high-quality paired-end reads. Furthermore, 110 transcripts were over 10 kbp long, of which the largest one was 29,395 bp. BLAST comparisons resulted in identification of 157,099 (47.72%) transcripts, among which only 3,718 (2.37%) were identified as Cry toxin receptors from lepidopteran insects. According to transcript expression profiles, transcripts were grouped into three subclusters according to the similarity of their expression patterns. Several immune-related transcripts (pathogen recognition receptors, antimicrobial peptides, and inhibitors) were up-regulated in the larvae feeding on Bt maize, indicating an enhanced immune status in response to toxin exposure. Above all, extremely up-regulated arylphorin genes suggest that enhanced epithelial healing is one of the resistance mechanisms employed by B. fusca larvae against the Cry1Ab toxin. This study is the first to provide a resource base and some insights into a potential mechanism of Cry1Ab toxin resistance in B. fusca. Transcriptomic data generated in this study allows identification of genes that can be targeted by biotechnological improvements of GM crops.

Keywords: epithelial healing, Lepidoptera, resistance, transcriptome

Procedia PDF Downloads 166