Search results for: emission lines
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2545

Search results for: emission lines

2425 A Petri Net Model to Obtain the Throughput of Unreliable Production Lines in the Buffer Allocation Problem

Authors: Joselito Medina-Marin, Alexandr Karelin, Ana Tarasenko, Juan Carlos Seck-Tuoh-Mora, Norberto Hernandez-Romero, Eva Selene Hernandez-Gress

Abstract:

A production line designer faces with several challenges in manufacturing system design. One of them is the assignment of buffer slots in between every machine of the production line in order to maximize the throughput of the whole line, which is known as the Buffer Allocation Problem (BAP). The BAP is a combinatorial problem that depends on the number of machines and the total number of slots to be distributed on the production line. In this paper, we are proposing a Petri Net (PN) Model to obtain the throughput in unreliable production lines, based on PN mathematical tools and the decomposition method. The results obtained by this methodology are similar to those presented in previous works, and the number of machines is not a hard restriction.

Keywords: buffer allocation problem, Petri Nets, throughput, production lines

Procedia PDF Downloads 280
2424 O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography/Computed Tomography in Patients with Suspicious Recurrent Low and High-Grade Glioma

Authors: Mahkameh Asadi, Habibollah Dadgar

Abstract:

The precise definition margin of high and low-grade glioma is crucial for choosing best treatment approach after surgery and radio-chemotherapy. The aim of the current study was to assess the O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in patients with low (LGG) and high grade glioma (HGG). We retrospectively analyzed 18F-FET PET/CT of 10 patients (age: 33 ± 12 years) with suspicious for recurrent LGG and HGG. The final decision of recurrence was made by magnetic resonance imaging (MRI) and registered clinical data. While response to radio-chemotherapy by MRI is often complex and sophisticated due to the edema, necrosis, and inflammation, emerging amino acid PET leading to better interpretations with more specifically differentiate true tumor boundaries from equivocal lesions. Therefore, integrating amino acid PET in the management of glioma to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design.

Keywords: positron emission tomography, amino acid positron emission tomography, magnetic resonance imaging, low and high grade glioma

Procedia PDF Downloads 142
2423 Study of Nanocrystalline Scintillator for Alpha Particles Detection

Authors: Azadeh Farzaneh, Mohammad Reza Abdi, A. Quaranta, Matteo Dalla Palma, Seyedshahram Mortazavi

Abstract:

We report on the synthesis of cesium-iodide nanoparticles using sol-gel technique. The structural properties of CsI nanoparticles were characterized by X-ray diffraction and Scanning Electron Microscope (SEM) Also, optical properties were followed by optical absorption and UV–vis fluorescence. Intense photoluminescence is also observed, with some spectral tuning possible with ripening time getting a range of emission photon wavelength approximately from 366 to 350 nm. The size effect on CsI luminescence leads to an increase in scintillation light yield, a redshift of the emission bands of the on_center and off_center self_trapped excitons (STEs) and an increase in the contribution of the off_center STEs to the net intrinsic emission yield. The energy transfer from the matrix to CsI nanoparticles is a key characteristic for scintillation detectors. So the scintillation spectra to alpha particles of sample were monitored.

Keywords: nanoparticles, luminescence, sol gel, scintillator

Procedia PDF Downloads 565
2422 Interface Engineering of Short- and Ultrashort Period W-Based Multilayers for Soft X-Rays

Authors: A. E. Yakshin, D. Ijpes, J. M. Sturm, I. A. Makhotkin, M. D. Ackermann

Abstract:

Applications like synchrotron optics, soft X-ray microscopy, X-ray astronomy, and wavelength dispersive X-ray fluorescence (WD-XRF) rely heavily on short- and ultra-short-period multilayer (ML) structures. In WD-XRF, ML serves as an analyzer crystal to disperse emission lines of light elements. The key requirement for the ML is to be highly reflective while also providing sufficient angular dispersion to resolve specific XRF lines. For these reasons, MLs with periods ranging from 1.0 to 2.5 nm are of great interest in this field. Due to the short period, the reflectance of such MLs is extremely sensitive to interface imperfections such as roughness and interdiffusion. Moreover, the thickness of the individual layers is only a few angstroms, which is close to the limit of materials to grow a continuous film. MLs with a period between 2.5 nm and 1.0 nm, combining tungsten (W) reflector with B₄C, Si, and Al spacers, were created and examined. These combinations show high theoretical reflectance in the full range from C-Kα (4.48nm) down to S-Kα (0.54nm). However, the formation of optically unfavorable compounds, intermixing, and interface roughness result in limited reflectance. A variety of techniques, including diffusion barriers, seed layers, and ion polishing for sputter-deposited MLs, were used to address these issues. Diffuse scattering measurements, photo-electron spectroscopy analysis, and X-ray reflectivity measurements showed a noticeable reduction of compound formation, intermixing, and interface roughness. This also resulted in a substantial increase in soft X-ray reflectance for W/Si, W/B4C, and W/Al MLs. In particular, the reflectivity of 1 nm period W/Si multilayers at the wavelength of 0.84 nm increased more than 3-fold – propelling forward the applicability of such multilayers for shorter wavelengths.

Keywords: interface engineering, reflectance, short period multilayer structures, x-ray optics

Procedia PDF Downloads 23
2421 HLA-G, a Neglected Immunosuppressive Checkpoint for Breast Cancer Immunotherapy

Authors: Xian-Peng Jiang, Catherine C. Baucom, Toby Jiang, Robert L. Elliott

Abstract:

HLA-G binds to the inhibitory receptors of uterine NK cells and plays an important role in protection of fetal cells from maternal NK lysis. HLA-G also mediates tumor escape, but the immunosuppressive role is often neglected. These studies have focused on the examination of HLA-G expression in human breast carcinoma and HLA-G immunosuppressive role in NK cytolysis. We examined HLA-G expression in breast cell lines by real time PCR, ELISA and immunofluorescent staining. We treated the breast cancer cell lines with anti-human HLA-G antibody or progesterone. Then, NK cytolysis was measured by using MTT assay. We find that breast carcinoma cell lines increase the expression of HLA-G mRNA and protein, compared to normal cells. Blocking HLA-G of the breast cancer cells by the antibody increases NK cytolysis. Progesterone upregulates HLA-G mRNA and protein of human breast cancer cell lines. The increased HLA-G expression suppresses NK cytolysis. In summary, human breast carcinoma overexpress HLA-G immunosuppressive molecules. Blocking HLA-G protein by antibody improves NK cytolysis. In contrast, upregulation of HLA-G expression by progesterone impairs NK cytolytic function. Thus, HLA-G is a new immunosuppressive checkpoint and potential cancer immunotherapeutic target.

Keywords: HLA-G, Breast carcinoma, NK cells, Immunosuppressive checkpoint

Procedia PDF Downloads 53
2420 CAD Tool for Parametric Design modification of Yacht Hull Surface Models

Authors: Shahroz Khan, Erkan Gunpinar, Kemal Mart

Abstract:

Recently parametric design techniques became a vital concept in the field of Computer Aided Design (CAD), which helps to provide sophisticated platform to the designer in order to automate the design process in efficient time. In these techniques, design process starts by parameterizing the important features of design models (typically the key dimensions), with the implementation of design constraints. The design constraints help to retain the overall shape of the model while modifying its parameters. However, the process of initializing an appropriate number of design parameters and constraints is the crucial part of parametric design techniques, especially for complex surface models such as yacht hull. This paper introduces a method to create complex surface models in favor of parametric design techniques, a method to define the right number of parameters and respective design constraints, and a system to implement design parameters in contract to design constraints schema. For this, in our proposed approach the design process starts by dividing the yacht hull into three sections. Each section consists of different shape lines, which form the overall shape of yacht hull. The shape lines are created using Cubic Bezier Curves, which allow larger design flexibility. Design parameters and constraints are defined on the shape lines in 3D design space to facilitate the designers for better and individual handling of parameters. Afterwards, shape modifiers are developed, which allow the modification of each parameter while satisfying the respective set of criteria and design constraints. Such as, geometric continuities should be maintained between the shape lines of the three sections, fairness of the hull surfaces should be preserved after modification and while design modification, effect of a single parameter should be negligible on other parameters. The constraints are defined individually on shape lines of each section and mutually between the shape lines of two connecting sections. In order to validate and visualize design results of our shape modifiers, a real time graphic interface is created.

Keywords: design parameter, design constraints, shape modifies, yacht hull

Procedia PDF Downloads 278
2419 Laser Ultrasonic Diagnostics and Acoustic Emission Technique for Examination of Rock Specimens under Uniaxial Compression

Authors: Elena B. Cherepetskaya, Vladimir A. Makarov, Dmitry V. Morozov, Ivan E. Sas

Abstract:

Laboratory studies of the stress-strain behavior of rocks specimens were conducted by using acoustic emission and laser-ultrasonic diagnostics. The sensitivity of the techniques allowed changes in the internal structure of the specimens under uniaxial compressive load to be examined at micro- and macro scales. It was shown that microcracks appear in geologic materials when the stress level reaches about 50% of breaking strength. Also, the characteristic stress of the main crack formation was registered in the process of single-stage compression of rocks. On the base of laser-ultrasonic echoscopy, 2D visualization of the internal structure of rocky soil specimens was realized, and the microcracks arising during uniaxial compression were registered.

Keywords: acoustic emission, geomaterial, laser ultrasound, uniaxial compression

Procedia PDF Downloads 342
2418 Effect of Plant Growth Regulator on Vegetative Growth and Yield Components of Winter Wheat under Different Levels of Irrigation

Authors: Mohammed Ahmed Alghamdi

Abstract:

Field experiment were carried out to investigate the effect of the plant growth regulator on vegetative growth and yield components of reduced height isogenic lines of the wheat (Triticum aestivum L.) cultivar Mercia. The Field experiment compared the growth regulator response of seven isogenic lines of Mercia. Growth regulators reduced plant height significantly in all lines. Growth regulator decreased total dry matter and grain yield with greatest reduction generally for the control and Rht8 lines. Rht1 was the least affected. There were few significant effects of growth regulator on gas exchange and chlorophyll fluorescence but the trend was for greater values with growth regulator. In this field experiment, a rate of 2.0 l ha-1 applied just before the third node detectable stage under non water stressed and water stressed conditions gave slight increases in yield of up to 14% except for line Rht10 which increased significantly in non-stressed conditions. In the second glasshouse experiment, a rate of 2.5 l ha-1 applied at the start of stem elongation under 30% FC and 100% FC gave reductions in yield up to 16% for the growth regulator and 55% under water stress. In the field experiment, rates of 2.5 and 3.0 l ha-1 applied at the start of stem elongation gave reductions in yield up to 20% mainly through individual seed weight. In the final glasshouse experiment, rates of 2.5 and 3.0 l ha-1 applied at 6 leaves unfolded and 1st node detectable both reduced grain yield.

Keywords: growth regulator, irrigation, isogenic lines, yield, winter wheat

Procedia PDF Downloads 432
2417 Sustainable Development of HV Substation in Urban Areas Considering Environmental Aspects

Authors: Mahdi Naeemi Nooghabi, Mohammad Tofiqu Arif

Abstract:

Gas Insulated Switchgears by using an insulation material named SF6 (Sulphur Hexafluoride) and its significant dielectric properties have been the only choice in urban areas and other polluted industries. However, the initial investment of GIS is more than conventional AIS substation, its total life cycle costs caused to reach huge amounts of electrical market share. SF6 environmental impacts on global warming, atmosphere depletion, and decomposing to toxic gases in high temperature situation, and highest rate in Global Warming Potential (GWP) with 23900 times of CO2e and a 3200-year period lifetime was the only undeniable concern of GIS substation. Efforts of international environmental institute and their politic supports have been able to lead SF6 emission reduction legislation. This research targeted to find an appropriate alternative for GIS substations to meet all advantages in land occupation area and to improve SF6 environmental impacts due to its leakage and emission. An innovative new conceptual design named Multi-Storey prepared a new AIS design similar in land occupation, extremely low Sf6 emission, and maximum greenhouse gas emission reduction. Surprisingly, by considering economic benefits due to carbon price saving, it can earn more than $675 million during the 30-year life cycle by replacing of just 25% of total annual worldly additional GIS switchgears.

Keywords: AIS substation, GIS substation, SF6, greenhouse gas, global warming potential, carbon price, emission

Procedia PDF Downloads 277
2416 Spectroscopic Investigations of Nd³⁺ Doped Lithium Lead Alumino Borate Glasses for 1.06μM Laser Applications

Authors: Nisha Deopa, A. S. Rao

Abstract:

Neodymium doped lithium lead alumino borate glasses were synthesized with the molar composition 10Li₂O – 10PbO – (10-x) Al₂O₃ – 70B₂O₃ – xNd₂O₃ (where, x = 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) via conventional melt quenching technique to understand their lasing potentiality. From the absorption spectra, Judd-Ofelt intensity parameters along with various spectroscopic parameters have been estimated. The emission spectra recorded for the as-prepared glasses under investigation exhibit two emission transitions, ⁴F₃/₂→⁴I₁₁/₂ (1063 nm) and ⁴F₃/₂→⁴I₉/₂ (1350 nm) for which radiative parameters have been evaluated. The emission intensity increases with increase in Nd³⁺ ion concentration up to 1 mol %, and beyond concentration quenching took place. The decay profile shows single exponential nature for lower Nd³⁺ ions concentration and non-exponential for higher concentration. To elucidate the nature of energy transfer process, non-exponential decay curves were well fitted to Inokuti-Hirayama model. The relatively high values of emission cross-section, branching ratio, lifetimes and quantum efficiency suggest that 1.0 mol% of Nd³⁺ in LiPbAlB glasses is aptly suitable to generate lasing action in NIR region at 1063 nm.

Keywords: energy transfer, glasses, J-O parameters, photoluminescence

Procedia PDF Downloads 166
2415 On-Plot Piping Corrosion Analysis for Gas and Oil Separation Plants (GOSPs)

Authors: Sultan A. Al Shaqaq

Abstract:

Corrosion is a serious challenge for a piping system in our Gas and Oil Separation Plant (GOSP) that causes piping failures. Two GOSPs (Plant-A and Plant-B) observed chronic corrosion issue with an on-plot piping system that leads to having more piping replacement during the past years. Since it is almost impossible to avoid corrosion, it is becoming more obvious that managing the corrosion level may be the most economical resolution. Corrosion engineers are thus increasingly involved in approximating the cost of their answers to corrosion prevention, and assessing the useful life of the equipment. This case study covers the background of corrosion encountered in piping internally and externally in these two GOSPs. The collected piping replacement data from year of 2011 to 2014 was covered. These data showed the replicate corrosion levels in an on-plot piping system. Also, it is included the total piping replacement with drain lines system and other service lines in plants (Plant-A and Plant-B) at Saudi Aramco facility.

Keywords: gas and oil separation plant, on-plot piping, drain lines, Saudi Aramco

Procedia PDF Downloads 304
2414 On Board Measurement of Real Exhaust Emission of Light-Duty Vehicles in Algeria

Authors: R. Kerbachi, S. Chikhi, M. Boughedaoui

Abstract:

The study presents an analysis of the Algerian vehicle fleet and resultant emissions. The emission measurement of air pollutants emitted by road transportation (CO, THC, NOX and CO2) was conducted on 17 light duty vehicles in real traffic. This sample is representative of the Algerian light vehicles in terms of fuel quality (gasoline, diesel and liquefied petroleum gas) and the technology quality (injection system and emission control). The experimental measurement methodology of unit emission of vehicles in real traffic situation is based on the use of the mini-Constant Volume Sampler for gas sampling and a set of gas analyzers for CO2, CO, NOx and THC, with an instrumentation to measure kinematics, gas temperature and pressure. The apparatus is also equipped with data logging instrument and data transfer. The results were compared with the database of the European light vehicles (Artemis). It was shown that the technological injection liquefied petroleum gas (LPG) has significant impact on air pollutants emission. Therefore, with the exception of nitrogen oxide compounds, uncatalyzed LPG vehicles are more effective in reducing emissions unit of air pollutants compared to uncatalyzed gasoline vehicles. LPG performance seems to be lower under real driving conditions than expected on chassis dynamometer. On the other hand, the results show that uncatalyzed gasoline vehicles emit high levels of carbon monoxide, and nitrogen oxides. Overall, and in the absence of standards in Algeria, unit emissions are much higher than Euro 3. The enforcement of pollutant emission standard in developing countries is an important step towards introducing cleaner technology and reducing vehicular emissions.

Keywords: on-board measurements of unit emissions of CO, HC, NOx and CO2, light vehicles, mini-CVS, LPG-fuel, artemis, Algeria

Procedia PDF Downloads 254
2413 Engineering of Filtration Systems in Egyptian Cement Plants: Industrial Case Study

Authors: Mohamed. A. Saad

Abstract:

The paper represents a case study regarding the conversion of Electro-Static Precipitators (ESP`s) into Fabric Filters (FF). Seven cement production companies were established in Egypt during the period 1927 to 1980 and 6 new companies were established to cope with the increasing cement demand in 1980's. The cement production market shares in Egypt indicate that there are six multinational companies in the local market, they are interested in the environmental conditions improving and so decided to achieve emission reduction project. The experimental work in the present study is divided into two main parts: (I) Measuring Efficiency of Filter Fabrics with detailed description of a designed apparatus. The paper also reveals the factors that should be optimized in order to assist problem diagnosis, solving and increasing the life of bag filters. (II) Methods to mitigate dust emissions in Egyptian cement plants with a special focus on converting the Electrostatic Precipitators (ESP`s) into Fabric Filters (FF) using the same ESP casing, bottom hoppers, dust transportation system, and ESP ductwork. Only the fan system for the higher pressure drop with the fabric filter was replaced. The proper selection of bag material was a prime factor with regard to gas composition, temperature and particle size. Fiberglass with PTFE membrane coated bags was selected. This fabric is rated for a continuous temperature of 250 C and a surge temperature of 280C. The dust emission recorded was less than 20 mg/m3 from the production line fitted with fabric filters which is super compared with the ESP`s working lines stack.

Keywords: Engineering Electrostatic Precipitator, filtration, dust collectors, cement

Procedia PDF Downloads 227
2412 Light Emission Enhancement of Silicon Nanocrystals by Gold Layer

Authors: R. Karmouch

Abstract:

A thin gold metal layer was deposited on the top of silicon oxide films containing embedded Si nanocrystals (Si-nc). The sample was annealed in gas containing nitrogen, and subsequently characterized by photoluminescence. We obtained 3-fold enhancement of photon emission from the Si-nc embedded in silicon dioxide covered with a Gold layer as compared with an uncovered sample. We attribute this enhancement to the increase of the spontaneous emission rate caused by the coupling of the Si-nc emitters with the surface plasmons (SP). The evolution of PL emission with laser irradiated time was also collected from covered samples, and compared to that from uncovered samples. In an uncovered sample, the PL intensity decreases with time, approximately with two decay constants. Although the decrease of the initial PL intensity associated with the increase of sample temperature under CW pumping is still observed in samples covered with a gold layer, this film significantly contributes to reduce the permanent deterioration of the PL intensity. The resistance to degradation of light-emitting silicon nanocrystals can be increased by SP coupling to suppress the permanent deterioration. Controlling the permanent photodeterioration can allow to perform a reliable optical gain measurement.

Keywords: photodeterioration, silicon nanocrystals, ion implantation, photoluminescence, surface plasmons

Procedia PDF Downloads 397
2411 Rehabilitation of the Blind Using Sono-Visualization Tool

Authors: Ashwani Kumar

Abstract:

In human beings, eyes play a vital role. A very less research has been done for rehabilitation of blindness for the blind people. This paper discusses the work that helps blind people for recognizing the basic shapes of the objects like circle, square, triangle, horizontal lines, vertical lines, diagonal lines and the wave forms like sinusoidal, square, triangular etc. This is largely achieved by using a digital camera, which is used to capture the visual information present in front of the blind person and a software program, which achieves the image processing operations, and finally the processed image is converted into sound. After the sound generation process, the generated sound is fed to the blind person through headphones for visualizing the imaginary image of the object. For visualizing the imaginary image of the object, it needs to train the blind person. Various training process methods had been applied for recognizing the object.

Keywords: image processing, pixel, pitch, loudness, sound generation, edge detection, brightness

Procedia PDF Downloads 359
2410 Differential Infection of Primary Human B-Cells and EBV Positive B-Lymphoma Cell Lines by Recombinant AAV Serotypes

Authors: Elham Ahmadi, Mehrdad Ravanshad, Joyce Fingeroth, Mazyar Ziyaeyan, Rajesh Panigrahi, Jun Xie, Gao Guangping

Abstract:

B-cell proliferative disorders often occur among persons that are T-cell compromised. These disorders are primarily EBV+ and can first present with a focal lesion. Direct introduction of oncolytic viruses into localized tumors provides theoretical advantages over chemotherapy and immunotherapy by reducing systemic toxicity, to which the immunocompromised host is most vulnerable. Widely studied as a vehicle for gene therapy, AAV has only rarely been applied to treat cancer. As a prelude to development of a therapeutic vehicle, we assessed the ability of 15 distinct recombinant AAV serotypes (rAAV1, rAAV2, rAAV3b, rAAV4, rAAV5, rAAV6, rAAV6.2, rAAV6TM, rAAV7, rAAV8, rAAVrh8, rAAV9, rAAVrh10, rAAV39, rAAV43) bearing eGFP to infect human B-cell tumor lines compared with primary B-cells in vitro. Enhanced infection of tumor lines by AAV 6.2 was demonstrated by flow cytometry. EBV superinfection of EBV negative B-cell tumor lines increased susceptibility to AAV6.2 infection. As proof of concept, AAV6.2 bearing HSV-1 thymidine kinase in place of eGFP eliminated tumor cells upon exposure to ganciclovir.

Keywords: AAV, gene therapy, lymphoma, malignancy, tropism

Procedia PDF Downloads 91
2409 Multi-Objective Simulated Annealing Algorithms for Scheduling Just-In-Time Assembly Lines

Authors: Ghorbanali Mohammadi

Abstract:

New approaches to sequencing mixed-model manufacturing systems are present. These approaches have attracted considerable attention due to their potential to deal with difficult optimization problems. This paper presents Multi-Objective Simulated Annealing Algorithms (MOSAA) approaches to the Just-In-Time (JIT) sequencing problem where workload-smoothing (WL) and the number of set-ups (St) are to be optimized simultaneously. Mixed-model assembly lines are types of production lines where varieties of product models similar in product characteristics are assembled. Moreover, this type of problem is NP-hard. Two annealing methods are proposed to solve the multi-objective problem and find an efficient frontier of all design configurations. The performances of the two methods are tested on several problems from the literature. Experimentation demonstrates the relative desirable performance of the presented methodology.

Keywords: scheduling, just-in-time, mixed-model assembly line, sequencing, simulated annealing

Procedia PDF Downloads 90
2408 A Semi-Automated GIS-Based Implementation of Slope Angle Design Reconciliation Process at Debswana Jwaneng Mine, Botswana

Authors: K. Mokatse, O. M. Barei, K. Gabanakgosi, P. Matlhabaphiri

Abstract:

The mining of pit slopes is often associated with some level of deviation from design recommendations, and this may translate to associated changes in the stability of the excavated pit slopes. Therefore slope angle design reconciliations are essential for assessing and monitoring compliance of excavated pit slopes to accepted slope designs. These associated changes in slope stability may be reflected by changes in the calculated factors of safety and/or probabilities of failure. Reconciliations of as-mined and slope design profiles are conducted periodically to assess the implications of these deviations on pit slope stability. Currently, the slope design reconciliation process being implemented in Jwaneng Mine involves the measurement of as-mined and design slope angles along vertical sections cut along the established geotechnical design section lines on the GEOVIA GEMS™ software. Bench retentions are calculated as a percentage of the available catchment area, less over-mined and under-mined areas, to that of the designed catchment area. This process has proven to be both tedious and requires a lot of manual effort and time to execute. Consequently, a new semi-automated mine-to-design reconciliation approach that utilizes laser scanning and GIS-based tools is being proposed at Jwaneng Mine. This method involves high-resolution scanning of targeted bench walls, subsequent creation of 3D surfaces from point cloud data and the derivation of slope toe lines and crest lines on the Maptek I-Site Studio software. The toe lines and crest lines are then exported to the ArcGIS software where distance offsets between the design and actual bench toe lines and crest lines are calculated. Retained bench catchment capacity is measured as distances between the toe lines and crest lines on the same bench elevations. The assessment of the performance of the inter-ramp and overall slopes entails the measurement of excavated and design slope angles along vertical sections on the ArcGIS software. Excavated and design toe-to-toe or crest-to-crest slope angles are measured for inter-ramp stack slope reconciliations. Crest-to-toe slope angles are also measured for overall slope angle design reconciliations. The proposed approach allows for a more automated, accurate, quick and easier workflow for carrying out slope angle design reconciliations. This process has proved highly effective and timeous in the assessment of slope performance in Jwaneng Mine. This paper presents a newly proposed process for assessing compliance to slope angle designs for Jwaneng Mine.

Keywords: slope angle designs, slope design recommendations, slope performance, slope stability

Procedia PDF Downloads 199
2407 Comparative Performance and Emission Analysis of Diesel Engine Fueled with Diesel and Bitter Apricot Kernal Oil Biodiesel Blends

Authors: Virender Singh Gurau, Akash Deep, Sarbjot S. Sandhu

Abstract:

Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. In the present research work Bitter Apricot kernel oil was employed as a feedstock for the production of biodiesel. The physicochemical properties of the Bitter Apricot kernel oil methyl ester were investigated as per ASTM D6751. From the series of engine testing, it is concluded that the brake thermal efficiency (BTE) with biodiesel blend was little lower than that of diesel. BSEC is slightly higher for Bitter apricot kernel oil methyl ester blends than neat diesel. For biodiesel blends, CO emission was lower than diesel fuel as B 20 reduced CO emissions by 18.75%. Approximately 11% increase in NOx emission was observed with 20% biodiesel blend. It is observed that HC emissions tend to decrease for biodiesel based fuels and Smoke opacity was found lower for biodiesel blends in comparison to diesel fuel.

Keywords: biodiesel, transesterification, bitter apricot kernel oil, performance and emission testing

Procedia PDF Downloads 300
2406 Feasibility of Iron Scrap Recycling with Considering Demand-Supply Balance

Authors: Reina Kawase, Yuzuru Matsuoka

Abstract:

To mitigate climate change, to reduce CO2 emission from steel sector, energy intensive sector, is essential. One of the effective countermeasure is recycling of iron scrap and shifting to electric arc furnace. This research analyzes the feasibility of iron scrap recycling with considering demand-supply balance and quantifies the effective by CO2 emission reduction. Generally, the quality of steel made from iron scrap is lower than the quality of steel made from basic oxygen furnace. So, the constraint of demand side is goods-wise steel demand and that of supply side is generation of iron scap. Material Stock and Flow Model (MSFM_demand) was developed to estimate goods-wise steel demand and generation of iron scrap and was applied to 35 regions which aggregated countries in the world for 2005-2050. The crude steel production was estimated under two case; BaU case (No countermeasures) and CM case (With countermeasures). For all the estimation periods, crude steel production is greater than generation of iron scrap. This makes it impossible to substitute electric arc furnaces for all the basic oxygen furnaces. Even though 100% recycling rate of iron scrap, under BaU case, CO2 emission in 2050 increases by 12% compared to that in 2005. With same condition, 32% of CO2 emission reduction is achieved in CM case. With a constraint from demand side, the reduction potential is 6% (CM case).

Keywords: iron scrap recycling, CO2 emission reduction, steel demand, MSFM demand

Procedia PDF Downloads 522
2405 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission

Authors: Ramin Khamedi, Isa Ahmadi

Abstract:

In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).

Keywords: acoustic emission, dual phase steels, deformation, failure, fracture

Procedia PDF Downloads 373
2404 Climate Change Effects of Vehicular Carbon Monoxide Emission from Road Transportation in Part of Minna Metropolis, Niger State, Nigeria

Authors: H. M. Liman, Y. M. Suleiman A. A. David

Abstract:

Poor air quality often considered one of the greatest environmental threats facing the world today is caused majorly by the emission of carbon monoxide into the atmosphere. The principal air pollutant is carbon monoxide. One prominent source of carbon monoxide emission is the transportation sector. Not much was known about the emission levels of carbon monoxide, the primary pollutant from the road transportation in the study area. Therefore, this study assessed the levels of carbon monoxide emission from road transportation in the Minna, Niger State. The database shows the carbon monoxide data collected. MSA Altair gas alert detector was used to take the carbon monoxide emission readings in Parts per Million for the peak and off-peak periods of vehicular movement at the road intersections. Their Global Positioning System (GPS) coordinates were recorded in the Universal Transverse Mercator (UTM). Bar chart graphs were plotted by using the emissions level of carbon dioxide as recorded on the field against the scientifically established internationally accepted safe limit of 8.7 Parts per Million of carbon monoxide in the atmosphere. Further statistical analysis was also carried out on the data recorded from the field using the Statistical Package for Social Sciences (SPSS) software and Microsoft excel to show the variance of the emission levels of each of the parameters in the study area. The results established that emissions’ level of atmospheric carbon monoxide from the road transportation in the study area exceeded the internationally accepted safe limits of 8.7 parts per million. In addition, the variations in the average emission levels of CO between the four parameters showed that morning peak is having the highest average emission level of 24.5PPM followed by evening peak with 22.84PPM while morning off peak is having 15.33 and the least is evening off peak 12.94PPM. Based on these results, recommendations made for poor air quality mitigation via carbon monoxide emissions reduction from transportation include Introduction of the urban mass transit would definitely reduce the number of traffic on the roads, hence the emissions from several vehicles that would have been on the road. This would also be a cheaper means of transportation for the masses and Encouraging the use of vehicles using alternative sources of energy like solar, electric and biofuel will also result in less emission levels as the these alternative energy sources other than fossil fuel originated diesel and petrol vehicles do not emit especially carbon monoxide.

Keywords: carbon monoxide, climate change emissions, road transportation, vehicular

Procedia PDF Downloads 353
2403 Determination of Some Agricultural Characters of Developed Pea (Pisum sativum L.) Lines

Authors: Ercan Ceyhan, Mehmet Ali Avci

Abstract:

This research was made during the 2015 growing periods in the trial filed of ‘Research Station for Department of Field Crops, Agricultural Faculty, Selcuk University’ according to ‘Randomized Blocks Design’ with 3 replications. Research material was the following pea lines; PS16, PS18, PS21, PS23, PS24, PS25, PS36, PS47, PS49, PS51, PS54, PS58, PS67, PS69, PS71, PS73, PS83, PS84, PS87 and PSKY and three cultivars and other 2 commercial varieties named as Bolero, Rondo and Ultrello. Some agronomical characteristics such as plant height (cm) number of pod per plant number of seed per pod number of seed per plant 100 seed weight (g) and seed yield (kg ha-1) were determined. Results of the research implicated that the new developed lines were superior compared with the control (commercial) varieties by means of most of the characteristics. Nevertheless, similar researches should be continued in different locations and years.

Keywords: agricultural characters, pea, Pisum sativum, seed yield

Procedia PDF Downloads 212
2402 Acoustic Emission for Investigation of Processes Occurring at Hydrogenation of Metallic Titanium

Authors: Anatoly A. Kuznetsov, Pavel G. Berezhko, Sergey M. Kunavin, Eugeny V. Zhilkin, Maxim V. Tsarev, Vyacheslav V. Yaroshenko, Valery V. Mokrushin, Olga Y. Yunchina, Sergey A. Mityashin

Abstract:

The acoustic emission is caused by short-time propagation of elastic waves that are generated as a result of quick energy release from sources localized inside some material. In particular, the acoustic emission phenomenon lies in the generation of acoustic waves resulted from the reconstruction of material internal structures. This phenomenon is observed at various physicochemical transformations, in particular, at those accompanying hydrogenation processes of metals or intermetallic compounds that make it possible to study parameters of these transformations through recording and analyzing the acoustic signals. It has been known that at the interaction between metals or inter metallides with hydrogen the most intensive acoustic signals are generated as a result of cracking or crumbling of an initial compact powder sample as a result of the change of material crystal structure under hydrogenation. This work is dedicated to the study into changes occurring in metallic titanium samples at their interaction with hydrogen and followed by acoustic emission signals. In this work the subjects for investigation were specimens of metallic titanium in two various initial forms: titanium sponge and fine titanium powder made of this sponge. The kinetic of the interaction of these materials with hydrogen, the acoustic emission signals accompanying hydrogenation processes and the structure of the materials before and after hydrogenation were investigated. It was determined that in both cases interaction of metallic titanium and hydrogen is followed by acoustic emission signals of high amplitude generated on reaching some certain value of the atomic ratio [H]/[Ti] in a solid phase because of metal cracking at a macrolevel. The typical sizes of the cracks are comparable with particle sizes of hydrogenated specimens. The reasons for cracking are internal stresses initiated in a sample due to the increasing volume of a solid phase as a result of changes in a material crystal lattice under hydrogenation. When the titanium powder is used, the atomic ratio [H]/[Ti] in a solid phase corresponding to the maximum amplitude of an acoustic emission signal are, as a rule, higher than when titanium sponge is used.

Keywords: acoustic emission signal, cracking, hydrogenation, titanium specimen

Procedia PDF Downloads 353
2401 Estimation of Exhaust and Non-Exhaust Particulate Matter Emissions’ Share from On-Road Vehicles in Addis Ababa City

Authors: Solomon Neway Jida, Jean-Francois Hetet, Pascal Chesse

Abstract:

Vehicular emission is the key source of air pollution in the urban environment. This includes both fine particles (PM2.5) and coarse particulate matters (PM10). However, particulate matter emissions from road traffic comprise emissions from exhaust tailpipe and emissions due to wear and tear of the vehicle part such as brake, tire and clutch and re-suspension of dust (non-exhaust emission). This study estimates the share of the two sources of pollutant particle emissions from on-roadside vehicles in the Addis Ababa municipality, Ethiopia. To calculate its share, two methods were applied; the exhaust-tailpipe emissions were calculated using the Europeans emission inventory Tier II method and Tier I for the non-exhaust emissions (like vehicle tire wear, brake, and road surface wear). The results show that of the total traffic-related particulate emissions in the city, 63% emitted from vehicle exhaust and the remaining 37% from non-exhaust sources. The annual roads transport exhaust emission shares around 2394 tons of particles from all vehicle categories. However, from the total yearly non-exhaust particulate matter emissions’ contribution, tire and brake wear shared around 65% and 35% emanated by road-surface wear. Furthermore, vehicle tire and brake wear were responsible for annual 584.8 tons of coarse particles (PM10) and 314.4 tons of fine particle matter (PM2.5) emissions in the city whereas surface wear emissions were responsible for around 313.7 tons of PM10 and 169.9 tons of PM2.5 pollutant emissions in the city. This suggests that non-exhaust sources might be as significant as exhaust sources and have a considerable contribution to the impact on air quality.

Keywords: Addis Ababa, automotive emission, emission estimation, particulate matters

Procedia PDF Downloads 101
2400 Investigation of Genetic Variation for Agronomic Traits among the Recombinant Inbred Lines of Wheat from the Norstar × Zagross Cross under Water Stress Condition

Authors: Mohammad Reza Farzami Pour

Abstract:

Determination of genetic variation is useful for plant breeding and hence production of more efficient plant species under different conditions, like drought stress. In this study, a sample of 28 recombinant inbred lines (RILs) of wheat developed from the cross of Norstar and Zagross varieties, together with their parents, were evaluated for two years (2010-2012) under normal and water stress conditions using split plot design with three replications. Main plots included two irrigation treatments of 70 and 140 mm evaporation from Class A pan and sub-plots consisted of 30 genotypes. The effect of genotypes and interaction of genotypes with years and water regimes were significant for all characters. Significant genotypic effect implies the existence of genetic variation among the lines under study. Heritability estimates were high for 1000 grain weight (0.87). Biomass and grain yield showed the lowest heritability values (0.42 and 0.50, respectively). Highest genotypic and phenotypic coefficients of variation (GCV and PCV) belonged to harvest index. Moderate genetic advance for most of the traits suggested the feasibility of selection among the RILs under investigation. Some RILs were higher yielding than either parent at both environments.

Keywords: wheat, genetic gain, heritability, recombinant inbred lines

Procedia PDF Downloads 290
2399 Adaptation of Projection Profile Algorithm for Skewed Handwritten Text Line Detection

Authors: Kayode A. Olaniyi, Tola. M. Osifeko, Adeola A. Ogunleye

Abstract:

Text line segmentation is an important step in document image processing. It represents a labeling process that assigns the same label using distance metric probability to spatially aligned units. Text line detection techniques have successfully been implemented mainly in printed documents. However, processing of the handwritten texts especially unconstrained documents has remained a key problem. This is because the unconstrained hand-written text lines are often not uniformly skewed. The spaces between text lines may not be obvious, complicated by the nature of handwriting and, overlapping ascenders and/or descenders of some characters. Hence, text lines detection and segmentation represents a leading challenge in handwritten document image processing. Text line detection methods that rely on the traditional global projection profile of the text document cannot efficiently confront with the problem of variable skew angles between different text lines. Hence, the formulation of a horizontal line as a separator is often not efficient. This paper presents a technique to segment a handwritten document into distinct lines of text. The proposed algorithm starts, by partitioning the initial text image into columns, across its width into chunks of about 5% each. At each vertical strip of 5%, the histogram of horizontal runs is projected. We have worked with the assumption that text appearing in a single strip is almost parallel to each other. The algorithm developed provides a sliding window through the first vertical strip on the left side of the page. It runs through to identify the new minimum corresponding to a valley in the projection profile. Each valley would represent the starting point of the orientation line and the ending point is the minimum point on the projection profile of the next vertical strip. The derived text-lines traverse around any obstructing handwritten vertical strips of connected component by associating it to either the line above or below. A decision of associating such connected component is made by the probability obtained from a distance metric decision. The technique outperforms the global projection profile for text line segmentation and it is robust to handle skewed documents and those with lines running into each other.

Keywords: connected-component, projection-profile, segmentation, text-line

Procedia PDF Downloads 94
2398 Effect of Nanoparticle Addition in the Urea-Formaldehyde Resin on the Formaldehyde Emission from MDF

Authors: Sezen Gurdag, Ayse Ebru Akin

Abstract:

There is a growing concern all over the world on the health effect of the formaldehyde emission coming from the adhesive used in the MDF production. In this research, we investigated the effect of nanoparticle addition such as nanoclay and halloysite into urea-formadehyde resin on the total emitted formaldehyde from MDF plates produced using the resin modified as such. First, the curing behavior of the resin was studied by monitoring the pH, curing time, solid content, density and viscosity of the modified resin in comparison to the reference resin with no added nanoparticle. The dosing of the nanoparticle in the dry resin was kept at 1wt%, 3wt% or 5wt%. Consecutively, the resin was used in the production of 50X50 cm MDF samples using laboratory scale press line with full automation system. Modulus of elasticity, bending strength, internal bonding strength, water absorption were also measured in addition to the main interested parameter formaldehyde emission levels which is determined via spectrometric technique following an extraction procedure. Threshold values for nanoparticle dosing levels were determined to be 5wt% for both nanoparticles. However, the reinforcing behavior was observed to be occurring at different levels in comparison to the reference plates with each nanoparticle such that the level of reinforcement with nanoclay was shown to be more favorable than the addition of halloysite due to higher surface area available with the former. In relation, formaldehyde emission levels were observed to be following a similar trend where addition of 5wt% nanoclay into the urea-formaldehyde adhesive helped decrease the formaldehyde emission up to 40% whereas addition of halloysite at its threshold level demonstrated as the same level, i.e., 5wt%, produced an improvement of 18% only.

Keywords: halloysite, nanoclay, fiberboard, urea-formaldehyde adhesive

Procedia PDF Downloads 126
2397 Dynamic Behaviors of a Floating Bridge with Mooring Lines under Wind and Wave Excitations

Authors: Chungkuk Jin, Moohyun Kim, Woo Chul Chung

Abstract:

This paper presents global performance and dynamic behaviors of a discrete-pontoon-type floating bridge with mooring lines in time domain under wind and wave excitations. The structure is designed for long-distance and deep-water crossing and consists of the girder, columns, pontoons, and mooring lines. Their functionality and behaviors are investigated by using elastic-floater/mooring fully-coupled dynamic simulation computer program. Dynamic wind, first- and second-order wave forces, and current loads are considered as environmental loads. Girder’s dynamic responses and mooring tensions are analyzed under different analysis methods and environmental conditions. Girder’s lateral responses are highly influenced by the second-order wave and wind loads while the first-order wave load mainly influences its vertical responses.

Keywords: floating bridge, mooring line, pontoon, wave excitation

Procedia PDF Downloads 109
2396 Sol-Gel Erbium-Doped Silica-Hafnia Planar Waveguides

Authors: Mustapha El Mataouy, Abellatif Aaliti, Mouhamed Khaddor

Abstract:

Erbium actived silica-hafnia planar waveguides have been prepared by sol-gel route. The films were deposited on vitreous silica substrates using dip-coating technique. The parameters of preparation have been chosen to optimize the waveguides for operation in the near infrared (NIR) region, and to increase the luminescence efficiency of the metastable 4I13/2 state of Erbium ions. The waveguides properties were determined by m-lines spectroscopy, loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical process related to the emission in the C telecom band (1530nm-1565nm) of the Erbium ions. The results are discussed with the aim of comparing the structural and optical properties of Erbium activated silica-hafnia planar waveguides with different molar ratio of Si / Hf.

Keywords: erbium, optical amplifiers, silica-hafnia, sol-gel, waveguide

Procedia PDF Downloads 213