Search results for: electric car technology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8560

Search results for: electric car technology

8200 The Effect of Artificial Intelligence on Urbanism, Architecture and Environmental Conditions

Authors: Abanoub Rady Shaker Saleb

Abstract:

Nowadays, design and architecture are being affected and underwent change with the rapid advancements in technology, economics, politics, society and culture. Architecture has been transforming with the latest developments after the inclusion of computers into design. Integration of design into the computational environment has revolutionized the architecture and new perspectives in architecture have been gained. The history of architecture shows the various technological developments and changes in which the architecture has transformed with time. Therefore, the analysis of integration between technology and the history of the architectural process makes it possible to build a consensus on the idea of how architecture is to proceed. In this study, each period that occurs with the integration of technology into architecture is addressed within historical process. At the same time, changes in architecture via technology are identified as important milestones and predictions with regards to the future of architecture have been determined. Developments and changes in technology and the use of technology in architecture within years are analyzed in charts and graphs comparatively. The historical process of architecture and its transformation via technology are supported with detailed literature review and they are consolidated with the examination of focal points of 20th-century architecture under the titles; parametric design, genetic architecture, simulation, and biomimicry. It is concluded that with the historical research between past and present; the developments in architecture cannot keep up with the advancements in technology and recent developments in technology overshadow the architecture, even the technology decides the direction of architecture. As a result, a scenario is presented with regards to the reach of technology in the future of architecture and the role of the architect.

Keywords: design and development the information technology architecture, enterprise architecture, enterprise architecture design result, TOGAF architecture development method (ADM)

Procedia PDF Downloads 30
8199 Distance Education Technologies for Empowerment and Equity in an Information Technology Environment

Authors: Leila Goosen, Toppie N. Mukasa-Lwanga

Abstract:

The purpose of this paper relates to exploring academics’ use of distance education technologies for empowerment and equity in an Information Technology environment. Literature was studied on academics’ technology use towards effective teaching and meaningful learning in a distance education Information Technology environment. Main arguments presented center on formulating and situating significant concepts within an appropriate theoretical and conceptual framework, including those related to distance education, throughput and other measures of academic efficiency. The research design, sampling, data collection instrument and the validity and reliability thereof, as well as the data analysis method used is described. The paper discusses results related to academics’ use of technology towards effective teaching and meaningful learning in a distance education Information Technology environment. Conclusions are finally presented on the way in which this paper makes a significant and original contribution regarding academics’ use of technology towards effective teaching and meaningful learning in a distance education Information Technology environment.

Keywords: distance, education, technologies, Information Technology Environment

Procedia PDF Downloads 490
8198 Impact of Electric Field on the Optical Properties of Hydrophilic Quantum Dots

Authors: Valentina V. Goftman, Vladislav A. Pankratov, Alexey V. Markin, Tangi Aubert, Zeger Hens, Sarah De Saeger, Irina Yu. Goryacheva

Abstract:

The most important requirements for biochemical applicability of quantum dots (QDs) are: 1) the surface cap should render intact or improved optical properties; 2) mono-dispersion and good stability in aqueous phase in a wide range of pH and ionic strength values; 3) presence of functional groups, available for bioconjugation; 4) minimal impact from the environment on the QDs’ properties and, vice versa, minimal influence of the QDs’ components on the environment; and 5) stability against chemical/biochemical/physical influence. The latter is especially important for in vitro and in vivo applications. For example, some physical intracellular delivery strategies (e.g., electroporation) imply a rapid high-voltage electric field impulse in order to temporarily generate hydrophilic pores in the cell plasma membrane, necessary for the passive transportation of QDs into the cell. In this regard, it is interesting to investigate how different capping layers, which can provide high stability and sufficient fluorescent properties of QDs in a water solution, behave under these abnormal conditions. In this contribution, hydrophobic core-shell CdSe/CdS/CdZnS/ZnS QDs (λem=600 nm), produced by means of the Successive Ion Layer Adsorption and Reaction (SILAR) technique, were transferred to a water solution using two of the most commonly used methods: (i) encapsulation in an amphiphilic brush polymer based on poly(maleic anhydride-alt-1-octadecene) (PMAO) modified with polyethylene glycol (PEG) chains and (ii) silica covering. Polymer encapsulation preserves the initial ligands on the QDs’ surface owing to the hydrophobic attraction between the hydrophobic groups of the amphiphilic molecules and the surface hydrophobic groups of the QDs. This covering process allows maintaining the initial fluorescent properties, but it leads to a considerable increase of the QDs’ size. However, covering with a silica shell, by means of the reverse microemulsion method, allows maintaining both size and fluorescent properties of the initial QDs. The obtained water solutions of polymer covered and silica-coated QDs in three different concentrations were exposed to a low-voltage electric field for a short time and the fluorescent properties were investigated. It is shown that the PMAO-PEG polymer acquires some additional charges in the presence of the electric field, which causes repulsion between the polymer and the QDs’ surface. This process destroys the homogeneity of the whole amphiphilic shell and it dramatically decreases the fluorescent properties (dropping to 10% from its initial value) because of the direct contact of the QDs with the strongly oxidative environment (water). In contrast, a silica shell possesses dielectric properties which allow retaining 90% of its initial fluorescence intensity, even after a longer electric impact. Thus, silica shells are clearly a preferable covering for bio-application of QDs, because – besides the high uniform morphology, controlled size and biocompatibility – it allows protecting QDs from oxidation, even under the influence of an electric field.

Keywords: electric field, polymer coating, quantum dots, silica covering, stability

Procedia PDF Downloads 437
8197 Factors Impacting Technology Integration in EFL Classrooms: A Study of Qatari Independent Schools

Authors: Youmen Chaaban, Maha Ellili-Cherif

Abstract:

The purpose of this study was to examine the effects of teachers’ individual characteristics and perceptions of environmental factors that impact their technology integration into their EFL (English as a Foreign Language) classrooms. To this end, a national survey examining EFL teachers’ perceptions was conducted at Qatari Independent schools. 263 EFL teachers responded to the survey which investigated several factors known to impact technology integration. These factors included technology availability and support, EFL teachers’ perceptions of importance, obstacles facing technology integration, competency with technology use, and formal technology preparation. The impact of these factors on teachers’ and students’ educational technology use was further measured. The analysis of the data included descriptive statistics and a chi-square analysis test in order to examine the relationship between these factors. The results revealed important cultural factors that impact teachers’ practices and attitudes towards technology in the Qatari context. EFL teachers were found to integrate technology most prominently for instructional delivery and preparation. The use of technology as a learning tool received less emphasis. Teachers further revealed consistent perceptions about obstacles to integration, high levels of confidence in using technology, and consistent beliefs about the importance of using technology as a learning tool. Further analyses of the factors impacting technology integration can assist with Qatar’s technology advancement and development efforts by indicating the areas of strength and areas where additional efforts are needed. The results will lay the foundation for conducting context-specific professional development suitable for the needs of EFL teachers in Qatari Independent Schools.

Keywords: educational technology integration, Qatar, EFL, independent schools, ICT

Procedia PDF Downloads 360
8196 Controlled Growth of Charge Transfer Complex Nanowire by Physical Vapor Deposition Method Using Dielectrophoretic Force

Authors: Rabaya Basori, Arup K. Raychaudhuri

Abstract:

In recent years, a variety of semiconductor nanowires (NWs) has been synthesized and used as basic building blocks for the development of electronic and optoelectronic nanodevices. Dielectrophoresis (DEP) has been widely investigated as a scalable technique to trap and manipulate polarizable objects. This includes biological cells, nanoparticles, DNA molecules, organic or inorganic NWs and proteins using electric field gradients. In this article, we have used DEP force to localize nanowire growth by physical vapor deposition (PVD) method as well as control of NW diameter on field assisted growth of the NWs of CuTCNQ (Cu-tetracyanoquinodimethane); a metal-organic charge transfer complex material which is well known of resistive switching. We report a versatile analysis platform, based on a set of nanogap electrodes, for the controlled growth of nanowire. Non-uniform electric field and dielectrophoretic force is created in between two metal electrodes, patterned by electron beam lithography process. Suspended CuTCNQ nanowires have been grown laterally between two electrodes in the vicinity of electric field and dielectric force by applying external bias. Growth and diameter dependence of the nanowires on external bias has been investigated in the framework of these two forces by COMSOL Multiphysics simulation. This report will help successful in-situ nanodevice fabrication with constrained number of NW and diameter without any post treatment.

Keywords: nanowire, dielectrophoretic force, confined growth, controlled diameter, comsol multiphysics simulation

Procedia PDF Downloads 162
8195 Evaluation and Selection of Drilling Technologies: An Application of Portfolio Analysis Matrix in South Azadgan Oilfield

Authors: M. Maleki Sadabad, A. Pointing, N. Marashi

Abstract:

With respect to the role and increasing importance of technology for countries development, in recent decades technology development has paid attention in a systematic form. Nowadays the markets face with highly complicated and competitive conditions in foreign markets, therefore, evaluation and selection of technology effectiveness and also formulating technology strategy have changed into a vital subject for some organizations. The study introduces the standards of empowerment evaluation and technology attractiveness especially strategic technologies which explain the way of technology evaluation, selection and finally formulating suitable technology strategy in the field of drilling in South Azadegan oil field. The study firstly identifies the key challenges of oil fields in order to evaluate the technologies in field of drilling in South Azadegan oil field through an interview with the experts of industry and then they have been prioritised. In the following, the existing and new technologies were identified to solve the challenges of South Azadegan oil field. In order to explore the ability, availability, and attractiveness of every technology, a questionnaire based on Julie indices has been designed and distributed among the industry elites. After determining the score of ability, availability and attractiveness, every technology which has been obtained by the average of expert’s ideas, the technology package has been introduced by Morin’s model. The matrix includes four areas which will follow the especial strategy. Finally, by analysing the above matrix, the technology options have been suggested in order to select and invest.

Keywords: technology, technology identification, drilling technologies, technology capability

Procedia PDF Downloads 108
8194 Modeling and Energy Analysis of Limestone Decomposition with Microwave Heating

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

The energy transition is spurred by structural changes in energy demand, supply, and prices. Microwave technology was first proposed as a faster alternative for cooking food. It was found that food heated instantly when interacting with high-frequency electromagnetic waves. The dielectric properties account for a material’s ability to absorb electromagnetic energy and dissipate this energy in the form of heat. Many energy-intense industries could benefit from electromagnetic heating since many of the raw materials are dielectric at high temperatures. Limestone sedimentary rock is a dielectric material intensively used in the cement industry to produce unslaked lime. A numerical 3D model was implemented in COMSOL Multiphysics to study the limestone continuous processing under microwave heating. The model solves the two-way coupling between the Energy equation and Maxwell’s equations as well as the coupling between heat transfer and chemical interfaces. Complementary, a controller was implemented to optimize the overall heating efficiency and control the numerical model stability. This was done by continuously matching the cavity impedance and predicting the required energy for the system, avoiding energy inefficiencies. This controller was developed in MATLAB and successfully fulfilled all these goals. The limestone load influence on thermal decomposition and overall process efficiency was the main object of this study. The procedure considered the Verification and Validation of the chemical kinetics model separately from the coupled model. The chemical model was found to correctly describe the chosen kinetic equation, and the coupled model successfully solved the equations describing the numerical model. The interaction between flow of material and electric field Poynting vector revealed to influence limestone decomposition, as a result from the low dielectric properties of limestone. The numerical model considered this effect and took advantage from this interaction. The model was demonstrated to be highly unstable when solving non-linear temperature distributions. Limestone has a dielectric loss response that increases with temperature and has low thermal conductivity. For this reason, limestone is prone to produce thermal runaway under electromagnetic heating, as well as numerical model instabilities. Five different scenarios were tested by considering a material fill ratio of 30%, 50%, 65%, 80%, and 100%. Simulating the tube rotation for mixing enhancement was proven to be beneficial and crucial for all loads considered. When uniform temperature distribution is accomplished, the electromagnetic field and material interaction is facilitated. The results pointed out the inefficient development of the electric field within the bed for 30% fill ratio. The thermal efficiency showed the propensity to stabilize around 90%for loads higher than 50%. The process accomplished a maximum microwave efficiency of 75% for the 80% fill ratio, sustaining that the tube has an optimal fill of material. Electric field peak detachment was observed for the case with 100% fill ratio, justifying the lower efficiencies compared to 80%. Microwave technology has been demonstrated to be an important ally for the decarbonization of the cement industry.

Keywords: CFD numerical simulations, efficiency optimization, electromagnetic heating, impedance matching, limestone continuous processing

Procedia PDF Downloads 144
8193 Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors

Authors: Ali H. Daraji, Ye Jianqiao

Abstract:

The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing.

Keywords: energy harvesting, optimisation, sensor, wing

Procedia PDF Downloads 279
8192 Technology Angels and Entrepreneurs: Insights from a Study in Poland

Authors: Rafal Morawczynski

Abstract:

The paper presents results of a study of technology angels in Poland, who are important for the development of the high technology industries. For entrepreneurs, they offer not only capital but also expertise, engagement, and networking. A technology angel is a relatively new type of investor who invests in high-tech start-ups and supports their founders (entrepreneurs) in the development process of a new venture. Conclusions are drawn from a comparison between 8 technology angels and 7 'classical' business angels. Results present features and behaviors of technology angels that distinguish them from traditional (typical, classic) business angels. As this type of investor actively cooperates with entrepreneurs, the study focuses mainly on their perception of venture founders and several aspects of this cooperation: perception of entrepreneurs’ characteristics by angels, correction of expectations toward corporate governance, and 'value adding' activities.

Keywords: business angels, entrepreneurs, Poland, start-up, technology entrepreneurship, venture capital

Procedia PDF Downloads 159
8191 Experimental Study of Sahara Climat Effect in Photovoltaic Solar Module

Authors: A. Benatiallah, A. Hadjadj, D. Benatiallah, F. Abaidi, A. Harrouz

Abstract:

Photovoltaic system is established as a reliable and economical source of electricity in rural and Sahara areas, especially in developing countries where the population is dispersed, has low consumption of energy and the grid power is not extended to these areas due to viability and financial problems. The production of energy by the photovoltaic system is very fluctuates and depend of meteorological conditions. Wind is a very important and often neglected parameter in the behavior of the solar module. The electric performances of a solar module to the silicon are very appreciable to the blows; in the present work we have studies the behavior of multi-crystal solar module according to the density of dust, and the principals electric feature of the solar module. An evaluation permits to affirm that a solar module under the effect of sand will collect a lower flux to the normal conditions.

Keywords: photovoltaic, multi-crystal module, experimental, effect of dust, performances

Procedia PDF Downloads 280
8190 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack

Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo

Abstract:

The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.

Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications

Procedia PDF Downloads 93
8189 Optimization and Operation of Charging and Discharging Stations for Hybrid Cars and their Effects on the Electricity Distribution Network

Authors: Ali Heydarimoghim

Abstract:

In this paper, the optimal placement of charging and discharging stations is done to determine the location and capacity of the stations, reducing the cost of electric vehicle owners' losses, reducing the cost of distribution system losses, and reducing the costs associated with the stations. Also, observing the permissible limits of the bus voltage and the capacity of the stations and their distance are considered as constraints of the problem. Given the traffic situation in different areas of a city, we estimate the amount of energy required to charge and the amount of energy provided to discharge electric vehicles in each area. We then introduce the electricity distribution system of the city in question. Following are the scenarios for introducing the problem and introducing the objective and constraint functions. Finally, the simulation results for different scenarios are compared.

Keywords: charging & discharging stations, hybrid vehicles, optimization, replacement

Procedia PDF Downloads 111
8188 Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Authors: E. M. Hassan, A. L. Kalamkarov

Abstract:

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Keywords: asymptotic homogenization method, finite element analysis, effective piezothermoelastic coefficients, 3D smart network composite structures

Procedia PDF Downloads 373
8187 High Temperature Oxidation Behavior of Aluminized Steel by Arc Spray and Cementation Techniques

Authors: Minoo Tavakoli, Alireza Kiani Rashid, Abbas Afrasiabi

Abstract:

An aluminum coating deposited on mild steel substrate by electric arc spray and diffused to the base steel material by diffusion treatment at 800 and 900°C for 1 and 3 hours in a static air. Alloy layers formed by diffusion at both temperatures were investigated, and their features were compared with those of pack cementation aluminized steel. High-temperature oxidation tests were carried out in air at 600 °C for 145 hours. Results indicated that the aluminide coatings obtained from this process have significantly improved the high-temperature oxidation resistance in both methods due to the Al2O3 scale formation. Furthermore, it showed that the isothermal oxidation resistance of arc spray technique is better than pack cementation method. This can be attributed to voids that formed at the intermetallic layer /Al layer interface which is increased in the pack cementation method.

Keywords: electric arc spray, pack cementation, oxidation resistance, aluminized steel

Procedia PDF Downloads 437
8186 Thermal Characteristics of Sewage Sludge to Develop an IDPG Technology

Authors: Young Nam Chun, Mun Sup Lim, Byeo Ri Jeong

Abstract:

Sewage sludge is regarded as the residue produced by the waste water treatment process, during which liquids and solids are being separated. Thermal treatments are interesting techniques to stabilize the sewage sludge for disposal. Among the thermal treatments, pyrolysis and/or gasification has been being applied to the sewage sludge. The final goal of our NRF research is to develop a microwave In-line Drying-Pyrolysis-Gasification (IDPG) technology for the dewatered sewage sludge for the bio-waste to energy conversion. As a first step, the pyrolysis characteristics in a bench scale electric furnace was investigated at 800℃ for the dewatered sludge and dried sludge samples of which moisture contents are almost 80% and 0%, respectively. Main components of producer gas are hydrogen and carbon dioxide. Particularly, higher hydrogen for the dewatered sludge is shown as 75%. The hydrogen production for the dewatered sludge and dried sludge are 56% and 32%, respectively. However, the pyrolysis for the dried sludge produces higher carbon dioxide and other gases, while higher methane and carbon dioxide are given to 74% and 53%, respectively. Tar also generates during the pyrolysis process, showing lower value for case of the dewatered sludge. Gravimetric tar is 195 g/m3, and selected light tar like benzene, naphthalene, anthracene, pyrene are 9.4 g/m3, 2.1 g/m3, 0.5 g/m3, 0.3 g/m3, respectively. After the pyrolysis process, residual char for the dewatered sludge and dried sludge remain 1g and 1.3g, showing weight reduction rate of 93% and 57%, respectively. Through the results, this could be known that the dewatered sludge can be used to produce a clean hydrogen-rich gas fuel without the drying process. Therefore, the IDPG technology can be applied effectively to the energy conversion for dewater sludge waste without a drying pretreatment. Acknowledgment: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2015R1A2A2A03003044).

Keywords: pyrolysis, gasification, sewage sludge, tar generation, producer gas, sludge char, biomass energy

Procedia PDF Downloads 324
8185 The Transformation of Architecture through the Technological Developments in History: Future Architecture Scenario

Authors: Adel Gurel, Ozge Ceylin Yildirim

Abstract:

Nowadays, design and architecture are being affected and underwent change with the rapid advancements in technology, economics, politics, society and culture. Architecture has been transforming with the latest developments after the inclusion of computers into design. Integration of design into the computational environment has revolutionized the architecture and new perspectives in architecture have been gained. The history of architecture shows the various technological developments and changes in which the architecture has transformed with time. Therefore, the analysis of integration between technology and the history of the architectural process makes it possible to build a consensus on the idea of how architecture is to proceed. In this study, each period that occurs with the integration of technology into architecture is addressed within historical process. At the same time, changes in architecture via technology are identified as important milestones and predictions with regards to the future of architecture have been determined. Developments and changes in technology and the use of technology in architecture within years are analyzed in charts and graphs comparatively. The historical process of architecture and its transformation via technology are supported with detailed literature review and they are consolidated with the examination of focal points of 20th-century architecture under the titles; parametric design, genetic architecture, simulation, and biomimicry. It is concluded that with the historical research between past and present; the developments in architecture cannot keep up with the advancements in technology and recent developments in technology overshadow the architecture, even the technology decides the direction of architecture. As a result, a scenario is presented with regards to the reach of technology in the future of architecture and the role of the architect.

Keywords: computer technologies, future architecture, scientific developments, transformation

Procedia PDF Downloads 163
8184 Transformation of Health Communication Literacy in Information Technology during Pandemic in 2019-2022

Authors: K. Y. S. Putri, Heri Fathurahman, Yuki Surisita, Widi Sagita, Kiki Dwi Arviani

Abstract:

Society needs the assistance of academics in understanding and being skilled in health communication literacy. Information technology runs very fast while health communication literacy skills in getting health communication information during the pandemic are not as fast as the development of information technology. The research question is whether there is an influence of health communication on information technology in health information during the pandemic in Indonesia. The purpose of the study is to find out the influence of health communication on information technology in health information during the pandemic in Indonesia. The concepts of health communication literacy and information technology are used this study. Previous research is in support of this study. Quantitative research methods by disseminating questionnaires in this study. The validity and reliability test of this study is positive, so it can proceed to the next statistical analysis. Descriptive results of variable health communication literacy are of positive value in all dimensions. All dimensions of information technology are of positive value. Statistical tests of the influence of health communication literacy on information technology are of great value. Discussion of both variables in the influence of health communication literacy and high-value information technology because health communication literacy has a high effect in information technology. Respondents to this study have high information technology skills. So that health communication literacy in obtaining health information during the 2019-2022 pandemic is needed. Research advice is that academics are still very much needed by the community in the development of society during the pandemic.

Keywords: health information, health information needs, literacy health communication, information technology

Procedia PDF Downloads 98
8183 Determining the Octanol-Water Partition Coefficient for Armchair Polyhex BN Nanotubes Using Topological Indices

Authors: Esmat Mohammadinasab

Abstract:

The aim of this paper is to investigate theoretically and establish a predictive model for determination LogP of armchair polyhex BN nanotubes by using simple descriptors. The relationship between the octanol-water partition coefficient (LogP) and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory (DFT) electric moments and physico-chemical properties of those nanotubes are calculated. The DFT method performed based on the Becke’s 3-parameter formulation with the Lee-Yang-Parr functional (B3LYP) method and 3-21G standard basis sets. For the first time, the relationship between partition coefficient and different properties of polyhex BN nanotubes is investigated.

Keywords: topological indices, quantum descriptors, DFT method, nanotubes

Procedia PDF Downloads 314
8182 Magnetoelectric Coupling in Hetero-Structured Nano-Composite of BST-BLFM Films

Authors: Navneet Dabra, Jasbir S. HUndal

Abstract:

Hetero-structured nano-composite thin film of Ba0.5Sr0.5TiO3/Bi0.9La0.1Fe0.9Mn0.1O3 (BST/BLFM) has been prepared by chemical solution deposition method with various BST to BLFM thickness ratios. These films have been deposited over on p-type Si (100) substrate. These samples exhibited low leakage current, large grain size and uniform distribution of particles. The maximum remanent polarization (Pr) was achieved in the heterostructures with thickness ratio of 2.65. The dielectric tenability, electric hysteresis (P-E), ME coupling coefficient, magnetic hysteresis (M-H), ferromagnetic exchange interaction and magnetoelectric measurements were carried out. Field Emission Scanning Electron Microscopy has been employed to investigate the surface morphology of these heterostructured nano-composite films.

Keywords: magnetoelectric, Schottky emission, interface coupling, dielectric tenability, electric hysteresis (P-E), ME coupling coefficient, magnetic hysteresis (M-H)

Procedia PDF Downloads 397
8181 Delineation of Fracture Zones for Investigation of Groundwater Potentials Using Vertical Electrical Sounding in a Sedimentary Complex Terrain

Authors: M. N. Yahaya, K. A. Salako, U. Z. Magawata

Abstract:

Vertical electrical sounding (VES) method was used to investigate the groundwater potential at the southern part of Gulumbe district, Kebbi State, north-western part of Nigeria. The study was carried out with the aim of determining the subsurface layer’s parameters (resistivity and thickness) and uses the same to characterize the groundwater potential of the study area. The Schlumberger configuration was used for data acquisition. A total number of thirty-three (33) sounding points (VES) were surveyed over six profiles. The software IPI2WIN was used to obtain n-layered geo-electric sections. The geo-electric section drawn from the results of the interpretation revealed that three subsurface layers could be delineated, which comprise of top soil, sand, sandstone, coarse sand, limestone, and gravelly sand. The results of the resistivity sounding were correlated with the lithological logs of nearby boreholes that expose cross-section geologic units around the study area. We found out that the area is dominated by three subsurface layers. The coarse sand layers constituted the aquifer zones in the majority of sounding stations. Thus, this present study concluded that the depth of any borehole in the study area should be located between the depth of 18.5 to 39 m. The study further classified the VES points penetrated based on their conductivity content as highly suitable, suitable, moderately suitably, and poor zones for groundwater exploration. Hence, from this research, we recommended that boreholes can be sited in high conductivity zones across VES 2, 11, 13, 16, 20, 21, 27, and 33, respectively.

Keywords: vertical electrical sounding, resistivity, geo-electric, resistivity, aquifer and groundwater

Procedia PDF Downloads 127
8180 Home Legacy Device Output Estimation Using Temperature and Humidity Information by Adaptive Neural Fuzzy Inference System

Authors: Sung Hyun Yoo, In Hwan Choi, Jun Ho Jung, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Home energy management system (HEMS) has been issued to reduce the power consumption. The HEMS performs electric power control for the indoor electric device. However, HEMS commonly treats the smart devices. In this paper, we suggest the output estimation of home legacy device using the artificial neural fuzzy inference system (ANFIS). This paper discusses the overview and the architecture of the system. In addition, accurate performance of the output estimation using the ANFIS inference system is shown via a numerical example.

Keywords: artificial neural fuzzy inference system (ANFIS), home energy management system (HEMS), smart device, legacy device

Procedia PDF Downloads 514
8179 R Data Science for Technology Management

Authors: Sunghae Jun

Abstract:

Technology management (TM) is important issue in a company improving the competitiveness. Among many activities of TM, technology analysis (TA) is important factor, because most decisions for management of technology are decided by the results of TA. TA is to analyze the developed results of target technology using statistics or Delphi. TA based on Delphi is depended on the experts’ domain knowledge, in comparison, TA by statistics and machine learning algorithms use objective data such as patent or paper instead of the experts’ knowledge. Many quantitative TA methods based on statistics and machine learning have been studied, and these have been used for technology forecasting, technological innovation, and management of technology. They applied diverse computing tools and many analytical methods case by case. It is not easy to select the suitable software and statistical method for given TA work. So, in this paper, we propose a methodology for quantitative TA using statistical computing software called R and data science to construct a general framework of TA. From the result of case study, we also show how our methodology is applied to real field. This research contributes to R&D planning and technology valuation in TM areas.

Keywords: technology management, R system, R data science, statistics, machine learning

Procedia PDF Downloads 429
8178 Drivetrain Comparison and Selection Approach for Armored Wheeled Hybrid Vehicles

Authors: Çağrı Bekir Baysal, Göktuğ Burak Çalık

Abstract:

Armored vehicles may have different traction layouts as a result of terrain capabilities and mobility needs. Two main categories of layouts can be separated as wheeled and tracked. Tracked vehicles have superior off-road capabilities but what they gain on terrain performance they lose on mobility front. Wheeled vehicles on the other hand do not have as good terrain capabilities as tracked vehicles but they have superior mobility capabilities such as top speed, range and agility with respect to tracked vehicles. Conventional armored vehicles employ a diesel ICE as main power source. In these vehicles ICE is mechanically connected to the powertrain. This determines the ICE rpm as a result of speed and torque requested by the driver. ICE efficiency changes drastically with torque and speed required and conventional vehicles suffer in terms of fuel consumption because of this. Hybrid electric vehicles employ at least one electric motor in order to improve fuel efficiency. There are different types of hybrid vehicles but main types are Series Hybrid, Parallel Hybrid and Series-Parallel Hybrid. These vehicles introduce an electric motor for traction and also can have a generator electric motor for range extending purposes. Having an electric motor as the traction power source brings the flexibility of either using the ICE as an alternative traction source while it is in efficient range or completely separating the ICE from traction and using it solely considering efficiency. Hybrid configurations have additional advantages for armored vehicles in addition to fuel efficiency. Heat signature, silent operation and prolonged stationary missions can be possible with the help of the high-power battery pack that will be present in the vehicle for hybrid drivetrain. Because of the reasons explained, hybrid armored vehicles are becoming a target area for military and also for vehicle suppliers. In order to have a better idea and starting point when starting a hybrid armored vehicle design, hybrid drivetrain configuration has to be selected after performing a trade-off study. This study has to include vehicle mobility simulations, integration level, vehicle level and performance level criteria. In this study different hybrid traction configurations possible for an 8x8 vehicle is compared using above mentioned criteria set. In order to compare hybrid traction configurations ease of application, cost, weight advantage, reliability, maintainability, redundancy and performance criteria have been used. Performance criteria points have been defined with the help of vehicle simulations and tests. Results of these simulations and tests also help determining required tractive power for an armored vehicle including conditions like trench and obstacle crossing, gradient climb. With the method explained in this study, each configuration is assigned a point for each criterion. This way, correct configuration can be selected objectively for every application. Also, key aspects of armored vehicles, mine protection and ballistic protection will be considered for hybrid configurations. Results are expected to vary for different types of vehicles but it is observed that having longitudinal differential locking capability improves mobility and having high motor count increases complexity in general.

Keywords: armored vehicles, electric drivetrain, electric mobility, hybrid vehicles

Procedia PDF Downloads 56
8177 Investigation and Estimation of State of Health of Battery Pack in Battery Electric Vehicles-Online Battery Characterization

Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas Weyh

Abstract:

The tendency to use the Battery-Electric vehicle (BEV) for the low and medium driving range or even high driving range has been growing more and more. As a result, higher safety, reliability, and durability of the battery pack as a component of electric vehicles, which has a great share of cost and weight of the final product, are the topics to be considered and investigated. Battery aging can be considered as the predominant factor regarding the reliability and durability of BEV. To better understand the aging process, offline battery characterization has been widely used, which is time-consuming and needs very expensive infrastructures. This paper presents the substitute method for the conventional battery characterization methods, which is based on battery Modular Multilevel Management (BM3). According to this Topology, the battery cells can be drained and charged concerning their capacity, which allows varying battery pack structures. Due to the integration of the power electronics, the output voltage of the battery pack is no longer fixed but can be dynamically adjusted in small steps. In other words, each cell can have three different states, namely series, parallel, and bypass in connection with the neighbor cells. With the help of MATLAB/Simulink and by using the BM3 modules, the battery string model is created. This model allows us to switch two cells with the different SoC as parallel, which results in the internal balancing of the cells. But if the parallel switching lasts just for a couple of ms, we can have a perturbation pulse which can stimulate the cells out of the relaxation phase. With the help of modeling the voltage response pulse of the battery, it would be possible to characterize the cell. The Online EIS method, which is discussed in this paper, can be a robust substitute for the conventional battery characterization methods.

Keywords: battery characterization, SoH estimation, RLS, BEV

Procedia PDF Downloads 119
8176 Modern Methods of Technology and Organization of Production of Construction Works during the Implementation of Construction 3D Printers

Authors: Azizakhanim Maharramli

Abstract:

The gradual transition from entrenched traditional technology and organization of construction production to innovative additive construction technology inevitably meets technological, technical, organizational, labour, and, finally, social difficulties. Therefore, the chosen nodal method will lead to the elimination of the above difficulties, combining some of the usual methods of construction and the myth in world practice that the labour force is subjected to a strong stream of reduction. The nodal method of additive technology will create favourable conditions for the optimal degree of distribution of labour across facilities due to the consistent performance of homogeneous work and the introduction of additive technology and traditional technology into construction production.

Keywords: parallel method, sequential method, stream method, combined method, nodal method

Procedia PDF Downloads 52
8175 Plasma Chemical Gasification of Solid Fuel with Mineral Mass Processing

Authors: V. E. Messerle, O. A. Lavrichshev, A. B. Ustimenko

Abstract:

Currently and in the foreseeable future (up to 2100), the global economy is oriented to the use of organic fuel, mostly, solid fuels, the share of which constitutes 40% in the generation of electric power. Therefore, the development of technologies for their effective and environmentally friendly application represents a priority problem nowadays. This work presents the results of thermodynamic and experimental investigations of plasma technology for processing of low-grade coals. The use of this technology for producing target products (synthesis gas, hydrogen, technical carbon, and valuable components of mineral mass of coals) meets the modern environmental and economic requirements applied to basic industrial sectors. The plasma technology of coal processing for the production of synthesis gas from the coal organic mass (COM) and valuable components from coal mineral mass (CMM) is highly promising. Its essence is heating the coal dust by reducing electric arc plasma to the complete gasification temperature, when the COM converts into synthesis gas, free from particles of ash, nitrogen oxides and sulfur. At the same time, oxides of the CMM are reduced by the carbon residue, producing valuable components, such as technical silicon, ferrosilicon, aluminum and carbon silicon, as well as microelements of rare metals, such as uranium, molybdenum, vanadium, titanium. Thermodynamic analysis of the process was made using a versatile computation program TERRA. Calculations were carried out in the temperature range 300 - 4000 K and a pressure of 0.1 MPa. Bituminous coal with the ash content of 40% and the heating value 16,632 kJ/kg was taken for the investigation. The gaseous phase of coal processing products includes, basically, a synthesis gas with a concentration of up to 99 vol.% at 1500 K. CMM components completely converts from the condensed phase into the gaseous phase at a temperature above 2600 K. At temperatures above 3000 K, the gaseous phase includes, basically, Si, Al, Ca, Fe, Na, and compounds of SiO, SiH, AlH, and SiS. The latter compounds dissociate into relevant elements with increasing temperature. Complex coal conversion for the production of synthesis gas from COM and valuable components from CMM was investigated using a versatile experimental plant the main element of which was plug and flow plasma reactor. The material and thermal balances helped to find the integral indicators for the process. Plasma-steam gasification of the low-grade coal with CMM processing gave the synthesis gas yield 95.2%, the carbon gasification 92.3%, and coal desulfurization 95.2%. The reduced material of the CMM was found in the slag in the form of ferrosilicon as well as silicon and iron carbides. The maximum reduction of the CMM oxides was observed in the slag from the walls of the plasma reactor in the areas with maximum temperatures, reaching 47%. The thusly produced synthesis gas can be used for synthesis of methanol, or as a high-calorific reducing gas instead of blast-furnace coke as well as power gas for thermal power plants. Reduced material of CMM can be used in metallurgy.

Keywords: gasification, mineral mass, organic mass, plasma, processing, solid fuel, synthesis gas, valuable components

Procedia PDF Downloads 586
8174 The History and Plausible Future of Assistive Technology and What It Might Mean for Singapore Students With Disabilities

Authors: Thomas Chong, Irene Victor

Abstract:

This paper discusses the history and plausible future of assistive technology and what it means for students with disabilities in Singapore, a country known for its high quality of education in the world. Over more than a century, students with disabilities have benefitted from relatively low-tech assistive technology (like eye-glasses, Braille, magnifiers and wheelchairs) to high-tech assistive technology including electronic mobility switches, alternative keyboards, computer-screen enlargers, text-to-speech readers, electronic sign-language dictionaries and signing avatars for individuals with hearing impairments. Driven by legislation, the use of assistive technology in many countries is becoming so ubiquitous that more and more students with disabilities are able to perform as well as if not better than their counterparts. Yet in many other learning environments where assistive technology is not affordable or mandated, the learning gaps can be quite significant. Without stronger legislation, Singapore may still have a long way to go in levelling the playing field for its students with disabilities.

Keywords: assistive technology, students with disabilities, disability laws in Singapore, inclusiveness

Procedia PDF Downloads 40
8173 On the Design of Electronic Control Unitsfor the Safety-Critical Vehicle Applications

Authors: Kyung-Jung Lee, Hyun-Sik Ahn

Abstract:

This paper suggests a design methodology for the hardware and software of the Electronic Control Unit (ECU) of safety-critical vehicle applications such as braking and steering. The architecture of the hardware is a high integrity system such that it incorporates a high performance 32-bit CPU and a separate Peripheral Control-Processor (PCP) together with an external watchdog CPU. Communication between the main CPU and the PCP is executed via a common area of RAM and events on either processor which are invoked by interrupts. Safety-related software is also implemented to provide a reliable, self-testing computing environment for safety critical and high integrity applications. The validity of the design approach is shown by using the Hardware-in-the-Loop Simulation (HILS) for Electric Power Steering (EPS) systems which consists of the EPS mechanism, the designed ECU, and monitoring tools.

Keywords: electronic control unit, electric power steering, functional safety, hardware-in-the-loop simulation

Procedia PDF Downloads 271
8172 Vector Control of Two Five Phase PMSM Connected in Series Powered by Matrix Converter Application to the Rail Traction

Authors: S. Meguenni, A. Djahbar, K. Tounsi

Abstract:

Electric railway traction systems are complex; they have electrical couplings, magnetic and solid mechanics. These couplings impose several constraints that complicate the modeling and analysis of these systems. An example of drive systems, which combine the advantages of the use of multiphase machines, power electronics and computing means, is mono convert isseur multi-machine system which can control a fully decoupled so many machines whose electric windings are connected in series. In this approach, our attention especially on modeling and independent control of two five phase synchronous machine with permanent magnet connected in series and fed by a matrix converter application to the rail traction (bogie of a locomotive BB 36000).

Keywords: synchronous machine, vector control Multi-machine/ Multi-inverter, matrix inverter, Railway traction

Procedia PDF Downloads 344
8171 Assessing the Pre-Service and In-Service Teachers’ Continuation of Use of Technology After Participation in Professional Development

Authors: Ayoub Kafyulilo, Petra Fisser, Joke Voogt

Abstract:

This study was conducted to assess the continuation of the use of technology in science and mathematics teaching of the pre-service and in-service teachers who attended the professional development programme. It also assessed professional development, personal, institutional, and technological factors contributing to the continuous use of technology in teaching. The study involved 42 teachers, thirteen pre-service teachers, and twenty-nine in-service teachers. A mixed-method research approach was used to collect data for this study. Findings showed that the continuous use of technology in teaching after the termination of the professional development arrangement was high among the pre-service teachers, and differed for the in-service teachers. The regression model showed that knowledge and skills, access to technology and ease of use were strong predictors (R2 = 55.3%) of the teachers’ continuous use of technology after the professional development arrangement. The professional development factor did not have a direct effect on the continuous use of technology, rather had an influence on personal factors (knowledge and skills). In turn, the personal factors had influence on the institutional factors (access to technology) and technological factors (ease of use), which together had an effect on the teachers’ continuous use of technology in teaching.

Keywords: technology, professional development, teachers, science and mathematics

Procedia PDF Downloads 120