Search results for: earth retaining wall
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2402

Search results for: earth retaining wall

2192 Cantilever Secant Pile Constructed in Sand: Capping Beam Analysis and Design - Part I

Authors: Khaled R. Khater

Abstract:

The paper theme is soil retaining structures. Cantilever secant-pile wall is triggering scientific point of curiosity. Specially the capping beams structural analysis and its interaction with secant piles as one integrated matrix. It is believed that straining actions of this integrated matrix are most probably induced due to a combination of induced line load and non-uniform horizontal pile tips displacement. The strategy that followed throughout this study starts by converting the pile head horizontal displacements generated by Plaxis-2D model to a system of concentrated line load acting per meter run along the capping beam. Then, those line loads are the input data of Staad-Pro 3D-model. Those models tailored to allow the capping beam and the secant piles interacting as one matrix, i.e. a unit. It is believed that the suggested strategy presents close to real structural simulation. The above is the paper thought and methodology. Three sand densities, one pile rigidity and one excavation depth, “h = 4.0-m,” are completely sufficient to achieve the paper’s objective.

Keywords: secant piles, capping beam, analysis, design, plaxis 2D, staad pro 3D

Procedia PDF Downloads 66
2191 Study of Adsorption Isotherm Models on Rare Earth Elements Biosorption for Separation Purposes

Authors: Nice Vasconcelos Coimbra, Fábio dos Santos Gonçalves, Marisa Nascimento, Ellen Cristine Giese

Abstract:

The development of chemical routes for the recovery and separation of rare earth elements (REE) is seen as a priority and strategic action by several countries demanding these elements. Among the possibilities of alternative routes, the biosorption process has been evaluated in our laboratory. In this theme, the present work attempts to assess and fit the solution equilibrium data in Langmuir, Freundlich and DKR isothermal models, based on the biosorption results of the lanthanum and samarium elements by Bacillus subtilis immobilized on calcium alginate gel. It was observed that the preference of adsorption of REE by the immobilized biomass followed the order Sm (III)> La (III). It can be concluded that among the studied isotherms models, the Langmuir model presented better mathematical results than the Freundlich and DKR models.

Keywords: rare earth elements, biosorption, Bacillus subtilis, adsorption isotherm models

Procedia PDF Downloads 132
2190 Optimal Retrofit Design of Reinforced Concrete Frame with Infill Wall Using Fiber Reinforced Plastic Materials

Authors: Sang Wook Park, Se Woon Choi, Yousok Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

Various retrofit techniques for reinforced concrete frame with infill wall have been steadily developed. Among those techniques, strengthening methodology based on diagonal FRP strips (FRP bracings) has numerous advantages such as feasibility of implementing without interrupting the building under operation, reduction of cost and time, and easy application. Considering the safety of structure and retrofit cost, the most appropriate retrofit solution is needed. Thus, the objective of this study is to suggest pareto-optimal solution for existing building using FRP bracings. To find pareto-optimal solution analysis, NSGA-II is applied. Moreover, the seismic performance of retrofit building is evaluated. The example building is 5-storey, 3-bay RC frames with infill wall. Nonlinear static pushover analyses are performed with FEMA 356. The criterion of performance evaluation is inter-story drift ratio at the performance level IO, LS, CP. Optimal retrofit solutions is obtained for 32 individuals and 200 generations. Through the proposed optimal solutions, we confirm the improvement of seismic performance of the example building.

Keywords: retrofit, FRP bracings, reinforced concrete frame with infill wall, seismic performance evaluation, NSGA-II

Procedia PDF Downloads 400
2189 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model

Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu

Abstract:

The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.

Keywords: subcooled boiling flow, computational fluid dynamics (CFD), mechanistic approach, two-fluid model

Procedia PDF Downloads 285
2188 Experimental and Analytical Studies for the Effect of Thickness and Axial Load on Load-Bearing Capacity of Fire-Damaged Concrete Walls

Authors: Yeo Kyeong Lee, Ji Yeon Kang, Eun Mi Ryu, Hee Sun Kim, Yeong Soo Shin

Abstract:

The objective of this paper is an investigation of the effects of the thickness and axial loading during a fire test on the load-bearing capacity of a fire-damaged normal-strength concrete wall. Two factors are attributed to the temperature distributions in the concrete members and are mainly obtained through numerous experiments. Toward this goal, three wall specimens of different thicknesses are heated for 2 h according to the ISO-standard heating curve, and the temperature distributions through the thicknesses are measured using thermocouples. In addition, two wall specimens are heated for 2 h while simultaneously being subjected to a constant axial loading at their top sections. The test results show that the temperature distribution during the fire test depends on wall thickness and axial load during the fire test. After the fire tests, the specimens are cured for one month, followed by the loading testing. The heated specimens are compared with three unheated specimens to investigate the residual load-bearing capacities. The fire-damaged walls show a minor difference of the load-bearing capacity regarding the axial loading, whereas a significant difference became evident regarding the wall thickness. To validate the experiment results, finite element models are generated for which the material properties that are obtained for the experiment are subject to elevated temperatures, and the analytical results show sound agreements with the experiment results. The analytical method based on validated thought experimental results is applied to generate the fire-damaged walls with 2,800 mm high considering the buckling effect: typical story height of residual buildings in Korea. The models for structural analyses generated to deformation shape after thermal analysis. The load-bearing capacity of the fire-damaged walls with pin supports at both ends does not significantly depend on the wall thickness, the reason for it is restraint of pinned ends. The difference of the load-bearing capacity of fire-damaged walls as axial load during the fire is within approximately 5 %.

Keywords: normal-strength concrete wall, wall thickness, axial-load ratio, slenderness ratio, fire test, residual strength, finite element analysis

Procedia PDF Downloads 195
2187 Monitoring the Vegetation Cover Dynamics of the African Great Green Wall in Yobe State Nigeria

Authors: Isa Muhammad Zumo

Abstract:

The African Great Green Wall (GGW) is a significant initiative in northern Nigeria because it promotes land restoration and conservation utilizing both commercial and species of forest trees while also helping to mitigate desertification and hazards from the sand dunes and shifting Sahara deserts. Conflicts and weather, however, pose a significant danger to the achievement of these goals. The scientific method for monitoring the vegetation dynamics since inception has not received the required attention, despite the African Development Bank (ADB)'s help in funding the project and its integration into the state's development plans for GGW initiatives. This study will monitor the changes in the vegetation cover of the great green wall within Yobe State Nigeria from 2014 to 2023. The vegetation dynamics will be monitored using Landsat 8 Operational Land Imager (OLI) for 6 years at 2 years intervals. The result will show the fluctuations in the vegetation cover density within the period of study. This will guide the design and implementation of policies of the GGW in achieving its objectives. The result can also contribute to the realization of Sustainable Development Goal (SDG) Target 13.2: Integrate climate change measures into national policies, strategies, and planning.

Keywords: monitoring, green wall, Landsat 8, Nigeria

Procedia PDF Downloads 48
2186 Analysis of Heat Transfer in a Closed Cavity Ventilated Inside

Authors: Benseghir Omar, Bahmed Mohamed

Abstract:

In this work, we presented a numerical study of the phenomenon of heat transfer through the laminar, incompressible and steady mixed convection in a closed square cavity with the left vertical wall of the cavity is subjected to a warm temperature, while the right wall is considered to be cold. The horizontal walls are assumed adiabatic. The governing equations were discretized by finite volume method on a staggered mesh and the SIMPLER algorithm was used for the treatment of velocity-pressure coupling. The numerical simulations were performed for a wide range of Reynolds numbers 1, 10, 100, and 1000 numbers are equal to 0.01,0.1 Richardson, 0.5,1 and 10.The analysis of the results shows a flow bicellular (two cells), one is created by the speed of the fan placed in the inner cavity, one on the left is due to the difference between the temperatures right wall and the left wall. Knowledge of the intensity of each of these cells allowed us to get an original result. And the values obtained from each of Nuselt convection which allow to know the rate of heat transfer in the cavity.Finally we find that there is a significant influence on the position of the fan on the heat transfer (Nusselt evolution) for values of Reynolds studied and for low values of Richardson handed this influence is negligible for high values of the latter.

Keywords: thermal transfer, mixed convection, square cavity, finite volume method

Procedia PDF Downloads 407
2185 Inertial Particle Focusing Dynamics in Trapezoid Straight Microchannels: Application to Continuous Particle Filtration

Authors: Reza Moloudi, Steve Oh, Charles Chun Yang, Majid Ebrahimi Warkiani, May Win Naing

Abstract:

Inertial microfluidics has emerged recently as a promising tool for high-throughput manipulation of particles and cells for a wide range of flow cytometric tasks including cell separation/filtration, cell counting, and mechanical phenotyping. Inertial focusing is profoundly reliant on the cross-sectional shape of the channel and its impacts not only on the shear field but also the wall-effect lift force near the wall region. Despite comprehensive experiments and numerical analysis of the lift forces for rectangular and non-rectangular microchannels (half-circular and triangular cross-section), which all possess planes of symmetry, less effort has been made on the 'flow field structure' of trapezoidal straight microchannels and its effects on inertial focusing. On the other hand, a rectilinear channel with trapezoidal cross-sections breaks down all planes of symmetry. In this study, particle focusing dynamics inside trapezoid straight microchannels was first studied systematically for a broad range of channel Re number (20 < Re < 800). The altered axial velocity profile and consequently new shear force arrangement led to a cross-laterally movement of equilibration toward the longer side wall when the rectangular straight channel was changed to a trapezoid; however, the main lateral focusing started to move backward toward the middle and the shorter side wall, depending on particle clogging ratio (K=a/Hmin, a is particle size), channel aspect ratio (AR=W/Hmin, W is channel width, and Hmin is smaller channel height), and slope of slanted wall, as the channel Reynolds number further increased (Re > 50). Increasing the channel aspect ratio (AR) from 2 to 4 and the slope of slanted wall up to Tan(α)≈0.4 (Tan(α)=(Hlonger-sidewall-Hshorter-sidewall)/W) enhanced the off-center lateral focusing position from the middle of channel cross-section, up to ~20 percent of the channel width. It was found that the focusing point was spoiled near the slanted wall due to the dissymmetry; it mainly focused near the bottom wall or fluctuated between the channel center and the bottom wall, depending on the slanted wall and Re (Re < 100, channel aspect ratio 4:1). Eventually, as a proof of principle, a trapezoidal straight microchannel along with a bifurcation was designed and utilized for continuous filtration of a broader range of particle clogging ratio (0.3 < K < 1) exiting through the longer wall outlet with ~99% efficiency (Re < 100) in comparison to the rectangular straight microchannels (W > H, 0.3 ≤ K < 0.5).

Keywords: cell/particle sorting, filtration, inertial microfluidics, straight microchannel, trapezoid

Procedia PDF Downloads 185
2184 Relationship between Matrix Metalloproteases and Tissue Inhibitor of Matrix Metalloproteinase Levels and Elastic Moduli of Ascending Aneurysms

Authors: Khalil Khanafer

Abstract:

The objective of this study is to determine if there is a correlation between the biological levels of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinase (TIMP) and the elastic moduli of the ascending aortic wall in patients with ascending thoracic aortic aneurysms (ATAA). Methods: Circumferential specimens from twelve patients with ATAA were obtained from the greater curvature, and their tensile properties (maximum elastic modulus) were tested uniaxially. The levels of MMP2, 3, and 9, as well as TIMP1, were determined in these aortic wall specimens using MMP/TIMP antibodies array. Direct relations were found between MMP2 and the elastic modulus of the ascending aorta wall and between MMP9 and TIMP1.

Keywords: elastic modulus, MMPs/TIMPs levels, Ascending Thoracic Aortic Aneurysm

Procedia PDF Downloads 133
2183 The Effect of Foundation on the Earth Fill Dam Settlement

Authors: Masoud Ghaemi, Mohammadjafar Hedayati, Faezeh Yousefzadeh, Hoseinali Heydarzadeh

Abstract:

Careful monitoring in the earth dams to measure deformation caused by settlement and movement has always been a concern for engineers in the field. In order to measure settlement and deformation of earth dams, usually, the precision instruments of settlement set and combined Inclinometer that is commonly referred to IS instrument will be used. In some dams, because the thickness of alluvium is high and there is no possibility of alluvium removal (technically and economically and in terms of performance), there is no possibility of placing the end of IS instrument (precision instruments of Inclinometer-settlement set) in the rock foundation. Inevitably, have to accept installing pipes in the weak and deformable alluvial foundation that leads to errors in the calculation of the actual settlement (absolute settlement) in different parts of the dam body. The purpose of this paper is to present new and refine criteria for predicting settlement and deformation in earth dams. The study is based on conditions in three dams with a deformation quite alluvial (Agh Chai, Narmashir and Gilan-e Gharb) to provide settlement criteria affected by the alluvial foundation. To achieve this goal, the settlement of dams was simulated by using the finite difference method with FLAC3D software, and then the modeling results were compared with the reading IS instrument. In the end, the caliber of the model and validate the results, by using regression analysis techniques and scrutinized modeling parameters with real situations and then by using MATLAB software and CURVE FITTING toolbox, new criteria for the settlement based on elasticity modulus, cohesion, friction angle, the density of earth dam and the alluvial foundation was obtained. The results of these studies show that, by using the new criteria measures, the amount of settlement and deformation for the dams with alluvial foundation can be corrected after instrument readings, and the error rate in reading IS instrument can be greatly reduced.

Keywords: earth-fill dam, foundation, settlement, finite difference, MATLAB, curve fitting

Procedia PDF Downloads 165
2182 An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock

Authors: Taiwo Ebenezer Abioye, Alexis Medrano-Tellez, Peter Kayode Farayibi, Peter Kayode Oke,

Abstract:

Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions.

Keywords: laser metal deposition, ultimate tensile strength, hardness, wall, microstructure

Procedia PDF Downloads 374
2181 Interpretation of Sweep Frequency Response Analysis (SFRA) Traces for the Earth Fault Damage Practically Simulated on the Power Transformer Specially Developed for Performing Sweep Frequency Response Analysis for Various Transformers

Authors: Akshay A. Pandya, B. R. Parekh

Abstract:

This paper presents how earth fault damage in the transformer can be detected by Sweep Frequency Response Analysis (SFRA). The test methods used by the authors for presenting the results are described. The power transformer of rating 10 KVA, 11000 V/440 V, 3-phase, 50 Hz, Dyn11 has been specially developed in-house for carrying out SFRA testing by practically simulated various transformer damages on it. Earth fault has been practically simulated on HV “U” phase winding and LV “W” phase winding separately. The result of these simulated faults are presented and discussed. The motivation of this presented work is to extend the guideline approach; there are ideas to organize database containing collected measurement results. Since the SFRA interpretation is based on experience, such databases are thought to be of great importance when interpreting SFRA response. The evaluation of the SFRA responses against guidelines and experience have to be performed and conclusions regarding usefulness of each simulation has been drawn and at last overall conclusion has also been drawn.

Keywords: earth fault damage, power transformer, practical simulation, SFRA traces, transformer damages

Procedia PDF Downloads 254
2180 Preliminary Study of Material Composition of Wreathed Hornbill (Rhycticeros undulatus) Nest Cover Entrance in Mount Ungaran

Authors: Margareta Rahayuningsih, Siti Alimah, Novita Hermayani, Misbahul Munir

Abstract:

Wreathed Hornbill (Rhycticeros undulatus) was a protected bird that we can found in Mount Ungaran. It is known that the bird have been breeding and nesting on the mountain. The objective of the research was to analysis the materials composition of the Wreathed Hornbill nest wall plaster. The study was carried out in Curug Lawe and Gunung Gentong, Mount Ungaran Central Java. Nest wall plaster samples were collected from nest cavities were used by hornbill but after they left from the nest. The nest tree species on Gunung Gentong was Syzygium antisepticum and Syzigium glabratum on Curug Lawe. Materials analysis used proximate analysis and have been done on Chemistry Laboratory of Semarang State University. The result of proximate analysis showed that the material composition of nest wall plaster such as water, proteins. lipid, carbohydrate, and ash between Curug Lawe and Gunung Gentong was different. Except Carbohidrate, the highest componen showed in the nest wall plaster on Gunung Gentong.

Keywords: Mount Ungaran, nest cover entrance, Rhyticeros undulatus, proximate analysis

Procedia PDF Downloads 222
2179 Strong Ground Motion Characteristics Revealed by Accelerograms in Ms8.0 Wenchuan Earthquake

Authors: Jie Su, Zhenghua Zhou, Yushi Wang, Yongyi Li

Abstract:

The ground motion characteristics, which are given by the analysis of acceleration records, underlie the formulation and revision of the seismic design code of structural engineering. China Digital Strong Motion Network had recorded a lot of accelerograms of main shock from 478 permanent seismic stations, during the Ms8.0 Wenchuan earthquake on 12th May, 2008. These accelerograms provided a large number of essential data for the analysis of ground motion characteristics of the event. The spatial distribution characteristics, rupture directivity effect, hanging-wall and footwall effect had been studied based on these acceleration records. The results showed that the contours of horizontal peak ground acceleration and peak velocity were approximately parallel to the seismogenic fault which demonstrated that the distribution of the ground motion intensity was obviously controlled by the spatial extension direction of the seismogenic fault. Compared with the peak ground acceleration (PGA) recorded on the sites away from which the front of the fault rupture propagates, the PGA recorded on the sites toward which the front of the fault rupture propagates had larger amplitude and shorter duration, which indicated a significant rupture directivity effect. With the similar fault distance, the PGA of the hanging-wall is apparently greater than that of the foot-wall, while the peak velocity fails to observe this rule. Taking account of the seismic intensity distribution of Wenchuan Ms8.0 earthquake, the shape of strong ground motion contours was significantly affected by the directional effect in the regions with Chinese seismic intensity level VI ~ VIII. However, in the regions whose Chinese seismic intensity level are equal or greater than VIII, the mutual positional relationship between the strong ground motion contours and the surface outcrop trace of the fault was evidently influenced by the hanging-wall and foot-wall effect.

Keywords: hanging-wall and foot-wall effect, peak ground acceleration, rupture directivity effect, strong ground motion

Procedia PDF Downloads 323
2178 Stress Analysis of Water Wall Tubes of a Coal-fired Boiler during Soot Blowing Operation

Authors: Pratch Kittipongpattana, Thongchai Fongsamootr

Abstract:

This research aimed to study the influences of a soot blowing operation and geometrical variables to the stress characteristic of water wall tubes located in soot blowing areas which caused the boilers of Mae Moh power plant to lose their generation hour. The research method is divided into 2 parts (a) measuring the strain on water wall tubes by using 3-element rosette strain gages orientation during a full capacity plant operation and in periods of soot blowing operations (b) creating a finite element model in order to calculate stresses on tubes and validating the model by using experimental data in a steady state plant operation. Then, the geometrical variables in the model were changed to study stresses on the tubes. The results revealed that the stress was not affected by the soot blowing process and the finite element model gave the results 1.24% errors from the experiment. The geometrical variables influenced the stress, with the most optimum tubes design in this research reduced the average stress from the present design 31.28%.

Keywords: boiler water wall tube, finite element, stress analysis, strain gage rosette

Procedia PDF Downloads 355
2177 Effectiveness of Earthing System in Vertical Configurations

Authors: S. Yunus, A. Suratman, N. Mohamad Nor, M. Othman

Abstract:

This paper presents the measurement and simulation results by Finite Element Method (FEM) for earth resistance (RDC) for interconnected vertical ground rod configurations. The soil resistivity was measured using the Wenner four-pin Method, and RDC was measured using the Fall of Potential (FOP) method, as outlined in the standard. Genetic Algorithm (GA) is employed to interpret the soil resistivity to that of a 2-layer soil model. The same soil resistivity data that were obtained by Wenner four-pin method were used in FEM for simulation. This paper compares the results of RDC obtained by FEM simulation with the real measurement at field site. A good agreement was seen for RDC obtained by measurements and FEM. This shows that FEM is a reliable software to be used for design of earthing systems. It is also found that the parallel rod system has a better performance compared to a similar setup using a grid layout.

Keywords: earthing system, earth electrodes, finite element method, genetic algorithm, earth resistances

Procedia PDF Downloads 87
2176 Strategic Shear Wall Arrangement in Buildings under Seismic Loads

Authors: Akram Khelaifia, Salah Guettala, Nesreddine Djafar Henni, Rachid Chebili

Abstract:

Reinforced concrete shear walls are pivotal in protecting buildings from seismic forces by providing strength and stiffness. This study highlights the importance of strategically placing shear walls and optimizing the shear wall-to-floor area ratio in building design. Nonlinear analyses were conducted on an eight-story building situated in a high seismic zone, exploring various scenarios of shear wall positioning and ratios to floor area. Employing the performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria such as inter-story drift ratio and damage levels. The results indicate that concentrating shear walls in the middle of the structure during the design phase yields superior performance compared to peripheral distributions. Utilizing shear walls that fully infill the frame and adopting compound shapes (e.g., Box, U, and L) enhances reliability in terms of inter-story drift. Conversely, the absence of complete shear walls within the frame leads to decreased stiffness and degradation of shorter beams. Increasing the shear wall-to-floor area ratio in building design enhances structural rigidity and reliability regarding inter-story drift, facilitating the attainment of desired performance levels. The study suggests that a shear wall ratio of 1.0% is necessary to meet validation criteria for inter-story drift and structural damage, as exceeding this percentage leads to excessive performance levels, proving uneconomical as structural elements operate near the elastic range.

Keywords: nonlinear analyses, pushover analysis, shear wall, plastic hinge, performance level

Procedia PDF Downloads 19
2175 Two Step Biodiesel Production from High Free Fatty Acid Spent Bleaching Earth

Authors: Rajiv Arora

Abstract:

Biodiesel may be economical if produced from inexpensive feedstock which commonly contains high level of free fatty acids (FFA) as an inhibitor in production of methyl ester. In this study, a two-step process for biodiesel production from high FFA spent bleach earth oil in a batch reactor is developed. Oil sample extracted from spent bleaching earth (SBE) was utilized for biodiesel process. In the first step, FFA of the SBE oil was reduced to 1.91% through sulfuric acid catalyzed esterification. In the second step, the product prepared from the first esterification process was carried out transesterification with an alkaline catalyst. The influence of four variables on conversion efficiency to methyl ester, i.e., methanol/ SBE oil molar ratio, catalyst amount, reaction temperature and reaction time, was studied in the second stage. The optimum process variables in the transesterification were methanol/oil molar ratio 6:1, heterogeneous catalyst conc. 5 wt %, reaction temperature 65 °C and reaction time 60 minutes to produce biodiesel. Major fuel properties of SBE biodiesel were measured to comply with ASTM and EN standards. Therefore, an optimized process for production of biodiesel from a low-cost high FFA source was accomplished.

Keywords: biodiesel, esterification, free fatty acids, residual oil, spent bleaching earth, transesterification

Procedia PDF Downloads 153
2174 Geomagnetic Jerks Observed in Geomagnetic Observatory Data Over Southern Africa Between 2017 and 2023

Authors: Sanele Lionel Khanyile, Emmanuel Nahayo

Abstract:

Geomagnetic jerks are jumps observed in the second derivative of the main magnetic field that occurs on annual to decadal timescales. Understanding these jerks is crucial as they provide valuable insights into the complex dynamics of the Earth’s outer liquid core. In this study, we investigate the occurrence of geomagnetic jerks in geomagnetic observatory data collected at southern African magnetic observatories, Hermanus (HER), Tsumeb (TSU), Hartebeesthoek (HBK) and Keetmanshoop (KMH) between 2017 and 2023. The observatory data was processed and analyzed by retaining quiet night-time data recorded during quiet geomagnetic activities with the help of Kp, Dst, and ring current RC indices. Results confirm the occurrence of the 2019-2020 geomagnetic jerk in the region and identify the recent 2021 jerk detected with V-shaped secular variation changes in X and Z components at all four observatories. The highest estimated 2021 jerk secular acceleration amplitudes in X and Z components were found at HBK, 12.7 nT/year² and 19. 1 nT/year², respectively. Notably, the global CHAOS-7 model aptly identifies this 2021 jerk in the Z component at all magnetic observatories in the region.

Keywords: geomagnetic jerks, secular variation, magnetic observatory data, South Atlantic Anomaly

Procedia PDF Downloads 25
2173 Identifying and Prioritizing Critical Success Factors (Csfs) in Retaining and Developing Knowledge Workers in Oil and Gas Project–Based Companies

Authors: Ehsan Samimi, Mohammaa Ali Shahosseeni, Ali Abasltian, Shahriar Shafaghi

Abstract:

Background/Objectives: Voluntary turnover and early retirement request by specialists and experienced people in project-based organizations (PBO) has caused many problems in finding suitable experts to execute the projects. Methods/Statistical analysis: The present study is a descriptive and applied research. Research population consists of KWs in oil and gas PBO. The engineers in these organizations were considered as research sample. Interviews and questionnaire were used to gather information. Interviews with experts were used to identify factors and questionnaires were utilized to identify the importance and prioritization. 72 factors were identified and categorized into 9 groups within organizational and HR initiative levels. Results: Results of the research indicate the priority of each group of factors according to the proposed model in the view of KWs in oil, gas and petrochemical industries. On this basis, the following factors have the highest effect ratio based on the respondents’ point of view: 1. knowledge management 2. Performance appraisal system 3. Communication 4.Training and development 5.Job design and analysis 6. Employment policies 7. Career planning 8. Project/organizational factors 9. Salary and rewards. Additionally, in each group the priority of effective sub-factors has been identified as the result of the research .The results support the definitions of KWs and influence of factors examined and specified by similar studies in retention and development of KWs. The high importance of knowledge management and low rank for salary and rewards can be mentioned as example in this regard. Despite the priority of each group of factors the uniqueness of the result is due to identification of effective factors in the specific industry (oil and gas) and type of organization (PBO). Conclusion/Application: The findings of present study can be used to devise plans for retaining and developing KWs in PBO especially in oil and gas industry.

Keywords: project–based organizations, knowledge workers, HR management, turnover, retaining and developing employees

Procedia PDF Downloads 260
2172 Effective Solvents for Proteins Recovery from Microalgae

Authors: Win Nee Phong, Tau Chuan Ling, Pau Loke Show

Abstract:

From an industrial perspective, the exploitation of microalgae for protein source is of great economical and commercial interest due to numerous attractive characteristics. Nonetheless, the release of protein from microalgae is limited by the multiple layers of the rigid thick cell wall that generally contain a large proportion of cellulose. Thus an efficient cell disruption process is required to rupture the cell wall. The conventional downstream processing methods which typically involve several unit operational steps such as disruption, isolation, extraction, concentration and purification are energy-intensive and costly. To reduce the overall cost and establish a feasible technology for the success of the large-scale production, microalgal industry today demands a more cost-effective and eco-friendly technique in downstream processing. One of the main challenges to extract the proteins from microalgae is the presence of rigid cell wall. This study aims to provide some guidance on the selection of the efficient solvent to facilitate the proteins released during the cell disruption process. The effects of solvent types such as methanol, ethanol, 1-propanol and water in rupturing the microalgae cell wall were studied. It is interesting to know that water is the most effective solvent to recover proteins from microalgae and the cost is cheapest among all other solvents.

Keywords: green, microalgae, protein, solvents

Procedia PDF Downloads 227
2171 Amelioration of Lipopolysaccharide Induced Murine Colitis by Cell Wall Contents of Probiotic Lactobacillus Casei: Targeting Immuno-Inflammation and Oxidative Stress

Authors: Vishvas N. Patel, Mehul Chorawala

Abstract:

Currently, according to the authors best knowledge there are less effective therapeutic agents to limit intestinal mucosa damage associated with inflammatory bowel disease (IBD). Clinical studies have shown beneficial effects of several probiotics in patients of IBD. Probiotics are live organisms; confer a health benefit to the host by modulating immunoinflammation and oxidative stress. Although probiotics in murine and human improve disease severity, very little is known about the specific contribution of cell wall contents of probiotics in IBD. Herein, we investigated the ameliorative potential of cell wall contents of Lactobacillus casei (LC) in lipopolysaccharide (LPS)-induced murine colitis. Methods: Colitis was induced in LPS-sensitized rats by intracolonic instillation of LPS (50 µg/rat) for consecutive 14 days. Concurrently, cell wall contents isolated from 103, 106 and 109 CFU of LC was given subcutaneously to each rat for 21 days, considering sulfasalazine (100 mg/kg, p.o.) as standard. The severity of colitis was assessed by body weight loss, food intake, stool consistency, rectal bleeding, colon weight/length, spleen weight and histological analysis. Colonic inflammatory markers (myeloperoxidase (MPO) activity, C-reactive protein and proinflammatory cytokines) and oxidative stress markers (malondialdehyde, reduced glutathione and nitric oxide) were also assayed. Results: Cell wall contents of isolated from 106 and 109 CFU of LC significantly improved the severity of colitis by reducing body weight loss and diarrhea & bleeding incidence, improving food intake, colon weight/length, spleen weight and microscopic damage to the colonic mucosa. The treatment also reduced levels of inflammatory and oxidative stress markers and boosted antioxidant molecule. However, cell wall contents of isolated from 103 were ineffective. Conclusion: In conclusion, cell wall contents of LC attenuate LPS-induced colitis by modulating immuno-inflammation and oxidative stress.

Keywords: probiotics, Lactobacillus casei, immuno-inflammation, oxidative stress, lipopolysaccharide, colitis

Procedia PDF Downloads 57
2170 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel

Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali

Abstract:

The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.

Keywords: cold formed steel 'CFS', shear wall panel, strip method, finite elements

Procedia PDF Downloads 281
2169 Synthesis of Rare-Earth Pyrazolate Compounds

Authors: Nazli Eslamirad, Peter C. Junk, Jun Wang, Glen B. Deacon

Abstract:

Since coordination behavior of pyrazoles and pyrazolate ions are widely versatile towards a great range of metals such as d-block, f-block as well as main group elements; they attract interest as ligands for preparing compounds. A variety of rare-earth pyrazolate complexes have been synthesized by redox transmetalation/protolysis (RTP) previously, therefore, a variety of rare-earth pyrazolate complexes using two pyrazoles, 3,5-dimethylpyrazole (Me₂pzH) and 3,5-di-tert -butylpyrazolate (t-Bu₂pzH), in which the structures span the whole La-Lu array beside Sc and Y has been synthesized by RTP reaction. There have been further developments in this study: Synthesizing structure of [Tb(Me₂pz)₃(thf)]₂ which is isomorphous with those of the previously reported [Dy(Me₂pz)₃(thf)]₂ and [Lu(Me₂pz)₃(thf)]₂ analogous that has two µ-1(N):2(Nʹ)-Me2pz ligands (the most common pyrazolate ligation for non-rare-earth complexes). Previously most of the reported compounds using t-Bu2pzH were monomeric compounds however the lanthanum derivative [La(Me₂pz)₃thf₂] ,which has been reported previously without crystal structure, has now been structurally characterized, along with cerium and lutetium analogue. Also a polymeric structure with samarium has now been synthesized which the neodymium analogue has been reported previously and comparing these polymeric structures can support the idea that the geometry of Sm(tBu₂pz)₃ affect the coordination of the solvent. Also, by using 1,2-dimethoxyethane (DME) instead of tetrahydrofuran (THF) new [Er(tBu₂pz)₃ (dme)₂] has now been reported.

Keywords: lanthanoid complexes, pyrazolate, redox transmetalation/protolysis, x-ray crystal structures

Procedia PDF Downloads 186
2168 Neuronal Networks for the Study of the Effects of Cosmic Rays on Climate Variations

Authors: Jossitt Williams Vargas Cruz, Aura Jazmín Pérez Ríos

Abstract:

The variations of solar dynamics have become a relevant topic of study due to the effects of climate changes generated on the earth. One of the most disconcerting aspects is the variability that the sun has on the climate is the role played by sunspots (extra-atmospheric variable) in the modulation of the Cosmic Rays CR (extra-atmospheric variable). CRs influence the earth's climate by affecting cloud formation (atmospheric variable), and solar cycle influence is associated with the presence of solar storms, and the magnetic activity is greater, resulting in less CR entering the earth's atmosphere. The different methods of climate prediction in Colombia do not take into account the extra-atmospheric variables. Therefore, correlations between atmospheric and extra-atmospheric variables were studied in order to implement a Python code based on neural networks to make the prediction of the extra-atmospheric variable with the highest correlation.

Keywords: correlations, cosmic rays, sun, sunspots and variations.

Procedia PDF Downloads 47
2167 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network

Authors: Masoud Safarishaal

Abstract:

Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.

Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network

Procedia PDF Downloads 78
2166 Sustainable Design in the Use of Deployable Structures

Authors: Umweni Osahon Joshua, Anton Ianakiev

Abstract:

Deployable structures have been used in various scenarios from moving roofs in stadia, space antennae or booms. There has been a lot of literature relating deployable structures but with main focus on space applications. The complexities in the design of deployable structures may be the reason only few have been constructed for earth based solutions. This paper intends to explore the possibilities of integrating sustainable design concepts in deployable structures. Key aspects of sustainable design of structures as applicable to deployable structures have not been explored. Sustainable design of structures have mainly been concerned with static structures in the built environment. However, very little literature, concepts or framework has been drafted as it relates to deployable structures or their integration to static structures as a model for sustainable design. This article seeks to address this flaw in sustainable design for structural engineering and to provide a framework for designing structures in a sustainable manner. This framework will apply to deployable structures for earth-based environments as a form of disaster relief measures and also as part of static structures in the built environment.

Keywords: deployable structures, sustainable design, framework, earth-based environments

Procedia PDF Downloads 507
2165 Thermodynamic Performance Tests for 3D Printed Steel Slag Powder Concrete Walls

Authors: Li Guoyou, Zhang Tao, Ji Wenzhan, Huo Liang, Lin Xiqiang, Zhang Nan

Abstract:

The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is possible to print engineering structures. 3D printing buildings use wastes from constructions, industries and mine tailings as “ink”, and mix it with property improved materials, such as cement, fiber etc. This paper presents a study of the Thermodynamic performance of 3D printed walls using cement and steel slag powder. Analyses the thermal simulation regarding 3D printed walls and solid brick wall by the way of the hot-box methods and the infrared technology, and the results were contrasted with theoretical calculation. The results show that the excellent thermodynamic performance of 3D printed concrete wall made it suitable as the partial materials for self-thermal insulation walls in residential buildings. The thermodynamic performance of 3D printed concrete walls depended on the density of materials, distribution of holes, and the filling materials. Decreasing the density of materials, increasing the number of holes or replacing the filling materials with foamed concrete could improve its thermodynamic performance significantly. The average of heat transfer coefficient and thermal inertia index of 3D printed steel slag powder concrete wall all better than the traditional solid brick wall with a thickness of 240mm.

Keywords: concrete, 3D printed walls, thermodynamic performance, steel slag powder

Procedia PDF Downloads 158
2164 Ballistic Performance of Magnesia Panels and Modular Wall Systems

Authors: Khin Thandar Soe, Mark Stephen Pulham

Abstract:

Ballistic building materials play a crucial role in ensuring the safety of the occupants within protective structures. Traditional options like Ordinary Portland Cement (OPC)-based walls, including reinforced concrete walls, precast concrete walls, masonry walls, and concrete blocks, are frequently employed for ballistic protection, but they have several drawbacks such as being thick, heavy, costly, and challenging to construct. On the other hand, glass and composite materials offer lightweight and easier construction alternatives, but they come with a high price tag. There has been no reported test data on magnesium-based ballistic wall panels or modular wall systems so far. This paper presents groundbreaking small arms test data related to the development of the world’s first magnesia cement ballistic wall panels and modular wall system. Non-hydraulic magnesia cement exhibits several superior properties, such as lighter weight, flexibility, acoustics, and fire performance, compared to the traditional Portland Cement. However, magnesia cement is hydrophilic and may degrade in prolonged contact with water. In this research, modified magnesia cement for water resistant and durability from UBIQ Technology is applied. The specimens are made of a modified magnesia cement formula and prepared in the Laboratory of UBIQ Technology Pty Ltd. The specimens vary in thickness, and the tests cover various small arms threats in compliance with standards AS/NZS2343 and UL752 and are performed up to the maximum threat level of Classification R2 (NATO) and UL-Level 8(NATO) by the Accredited Test Centre, BMT (Ballistic and Mechanical Testing, VIC, Australia). In addition, the results of the test conducted on the specimens subjected to the small 12mm diameter steel ball projectile impact generated by a gas gun are also presented and discussed in this paper. Gas gun tests were performed in UNSW@ADFA, Canberra, Australia. The tested results of the magnesia panels and wall systems are compared with one of concrete and other wall panels documented in the literature. The conclusion drawn is that magnesia panels and wall systems exhibit several advantages over traditional OPC-based wall systems, and they include being lighter, thinner, and easier to construct, all while providing equivalent protection against threats. This makes magnesia cement-based materials a compelling choice of application where efficiency and performance are critical to create a protective environment.

Keywords: ballistics, small arms, gas gun, projectile, impact, wall panels, modular, magnesia cement

Procedia PDF Downloads 24
2163 Novel Spoke-Type BLDC Motor Design for Cost Effective and High Power Density

Authors: Suyong Kim

Abstract:

Recently because of the rise in the price of rare earth magnet, interest of non-rare earth or less-rare earth motor is growing. Especially to achieve the high power density, Spoke-Type BLDC (Brushless Permanent Magnet) Motor with ferrite permanent magnet are spotlighted. But Spoke-Type Ferrite BLDC Motor has much of magnetic flux leakage in the direction of rotor shaft. In order to solve this problem, there are two conventional ways. But conventional ways bring the increases of product cost or the decreases of the power density. Therefore, this paper proposes new Spoke-Type BLDC Rotor shape that has the advantages of both conventional methods. The new shape is consists of a one-piece core. The inside and the outside of the rotor are open alternately. So it can take reduced production cost and high power density.

Keywords: motor, BLDC, spoke, ferrite

Procedia PDF Downloads 539