Search results for: distributed energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9798

Search results for: distributed energy

2148 Numerical Approach to Boost an Internal Combustion Engine

Authors: Mohamed Amine El Hameur, Lyes Tarabet, Mahfoudh Cerdoun, Boubkr Zebiri, Giovanni Ferrara

Abstract:

Due to the drastic environmental and energy regulations regarding the reduction of exhaust emissions and fuel consumption, added to the increasing demand for powerful performance, several automotive manufacturers are constantly obliged to redesign their existing products and/or develop novel powertrain techniques to respond to the aforementioned restrictions. In this aspect, an implemented approach is proposed in the present work to boost a 1.5 L, three-cylinder Diesel engine with a new turbocharger, based on 1D preliminary design codes, 3D design, and numerical assessment of a suitable radial turbine followed by an accurate selection procedure of an adequate centrifugal compressor. Furthermore, to investigate the effect of the turbine’s rotor position on the simulation convergence, stability, and calculation time; two combinations (rotor blade- volute) have been assessed. Consequently, significant results are obtained when comparing the original turbocharged engine and the new one at the engine’s full load and rated speed (@4500rpm) conditions. A maximum improvement in terms of brake-specific fuel consumption, thermal efficiency, total-to-static turbine efficiency, and total-to-total compressor efficiency equal 6.5% (corresponding to a decrease of 2.3 litre/hr in fuel consumption), 7%, 10.9%, and 19.9%, respectively.

Keywords: CFD investigation, engine boosting, turbine design, turbocharger, rotor blade positioning

Procedia PDF Downloads 83
2147 Multi-Level Clustering Based Congestion Control Protocol for Cyber Physical Systems

Authors: Manpreet Kaur, Amita Rani, Sanjay Kumar

Abstract:

The Internet of Things (IoT), a cyber-physical paradigm, allows a large number of devices to connect and send the sensory data in the network simultaneously. This tremendous amount of data generated leads to very high network load consequently resulting in network congestion. It further amounts to frequent loss of useful information and depletion of significant amount of nodes’ energy. Therefore, there is a need to control congestion in IoT so as to prolong network lifetime and improve the quality of service (QoS). Hence, we propose a two-level clustering based routing algorithm considering congestion score and packet priority metrics that focus on minimizing the network congestion. In the proposed Priority based Congestion Control (PBCC) protocol the sensor nodes in IoT network form clusters that reduces the amount of traffic and the nodes are prioritized to emphasize important data. Simultaneously, a congestion score determines the occurrence of congestion at a particular node. The proposed protocol outperforms the existing Packet Discard Network Clustering (PDNC) protocol in terms of buffer size, packet transmission range, network region and number of nodes, under various simulation scenarios.

Keywords: internet of things, cyber-physical systems, congestion control, priority, transmission rate

Procedia PDF Downloads 281
2146 High-Tech Based Simulation and Analysis of Maximum Power Point in Energy System: A Case Study Using IT Based Software Involving Regression Analysis

Authors: Enemeri George Uweiyohowo

Abstract:

Improved achievement with respect to output control of photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0∘N, with a corresponding tilt angle of 36∘, 26∘ and 16∘. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking.

Keywords: poly-crystalline PV panels, information technology (IT), maximum power point tracking (MPPT), pulse width modulation (PWM)

Procedia PDF Downloads 176
2145 Teachers Engagement to Teaching: Exploring Australian Teachers’ Attribute Constructs of Resilience, Adaptability, Commitment, Self/Collective Efficacy Beliefs

Authors: Lynn Sheridan, Dennis Alonzo, Hoa Nguyen, Andy Gao, Tracy Durksen

Abstract:

Disruptions to teaching (e.g., COVID-related) have increased work demands for teachers. There is an opportunity for research to explore evidence-informed steps to support teachers. Collective evidence informs data on teachers’ personal attributes (e.g., self-efficacy beliefs) in the workplace are seen to promote success in teaching and support teacher engagement. Teacher engagement plays a role in students’ learning and teachers’ effectiveness. Engaged teachers are better at overcoming work-related stress, burnout and are more likely to take on active roles. Teachers’ commitment is influenced by a host of personal (e.g., teacher well-being) and environmental factors (e.g., job stresses). The job demands-resources model provided a conceptual basis for examining how teachers’ well-being, and is influenced by job demands and job resources. Job demands potentially evoke strain and exceed the employee’s capability to adapt. Job resources entail what the job offers to individual teachers (e.g., organisational support), helping to reduce job demands. The application of the job demands-resources model involves gathering an evidence-base of and connection to personal attributes (job resources). The study explored the association between constructs (resilience, adaptability, commitment, self/collective efficacy) and a teacher’s engagement with the job. The paper sought to elaborate on the model and determine the associations between key constructs of well-being (resilience, adaptability), commitment, and motivation (self and collective-efficacy beliefs) to teachers’ engagement in teaching. Data collection involved online a multi-dimensional instrument using validated items distributed from 2020-2022. The instrument was designed to identify construct relationships. The participant number was 170. Data Analysis: The reliability coefficients, means, standard deviations, skewness, and kurtosis statistics for the six variables were completed. All scales have good reliability coefficients (.72-.96). A confirmatory factor analysis (CFA) and structural equation model (SEM) were performed to provide measurement support and to obtain latent correlations among factors. The final analysis was performed using structural equation modelling. Several fit indices were used to evaluate the model fit, including chi-square statistics and root mean square error of approximation. The CFA and SEM analysis was performed. The correlations of constructs indicated positive correlations exist, with the highest found between teacher engagement and resilience (r=.80) and the lowest between teacher adaptability and collective teacher efficacy (r=.22). Given the associations; we proceeded with CFA. The CFA yielded adequate fit: CFA fit: X (270, 1019) = 1836.79, p < .001, RMSEA = .04, and CFI = .94, TLI = .93 and SRMR = .04. All values were within the threshold values, indicating a good model fit. Results indicate that increasing teacher self-efficacy beliefs will increase a teacher’s level of engagement; that teacher ‘adaptability and resilience are positively associated with self-efficacy beliefs, as are collective teacher efficacy beliefs. Implications for school leaders and school systems: 1. investing in increasing teachers’ sense of efficacy beliefs to manage work demands; 2. leadership approaches can enhance teachers' adaptability and resilience; and 3. a culture of collective efficacy support. Preparing teachers for now and in the future offers an important reminder to policymakers and school leaders on the importance of supporting teachers’ personal attributes when faced with the challenging demands of the job.

Keywords: collective teacher efficacy, teacher self-efficacy, job demands, teacher engagement

Procedia PDF Downloads 60
2144 Producing Outdoor Design Conditions based on the Dependency between Meteorological Elements: Copula Approach

Authors: Zhichao Jiao, Craig Farnham, Jihui Yuan, Kazuo Emura

Abstract:

It is common to use the outdoor design weather data to select the air-conditioning capacity in the building design stage. The outdoor design weather data are usually comprised of multiple meteorological elements for a 24-hour period separately, but the dependency between the elements is not well considered, which may cause an overestimation of selecting air-conditioning capacity. Considering the dependency between the air temperature and global solar radiation, we used the copula approach to model the joint distributions of those two weather elements and suggest a new method of selecting more credible outdoor design conditions based on the specific simultaneous occurrence probability of air temperature and global solar radiation. In this paper, the 10-year period hourly weather data from 2001 to 2010 in Osaka, Japan, was used to analyze the dependency structure and joint distribution, the result shows that the Joe-Frank copula fit for almost all hourly data. According to calculating the simultaneous occurrence probability and the common exceeding probability of air temperature and global solar radiation, the results have shown that the maximum difference in design air temperature and global solar radiation of the day is about 2 degrees Celsius and 30W/m2, respectively.

Keywords: energy conservation, design weather database, HVAC, copula approach

Procedia PDF Downloads 220
2143 Dietary Nutrient Consumption Patterns by the Pregnant Mother in Dhaka City, Bangladesh

Authors: Kazi Muhammad Rezaul Karim, Tasmia Tasnim

Abstract:

Introduction: Pregnancy is a condition of higher nutrient requirement but in developing countries like Bangladesh most of the pregnant women can not meet their nutrient requirement and sometimes they are neglected in the family. The purpose of the study was to assess the nutritional status and dietary nutrient intake by the pregnant women, in Dhaka city, Bangladesh. Methods: The study population comprised of pregnant women from urban or semi-urban, aged between 18 to 35 and free of pregnancy related complication and other diseases. Under a cross-sectional design, 30 healthy non-pregnant as well as 130 pregnant women, at 3 different trimesters of pregnancy were assessed. A questionnaire was developed to obtain demographic, socio-economic, anthropometric, drug and medical history. Three day consecutive 24-hour food recalls were used to assess food intake and then converted to nutrient intake. Results: The average BMI of the nonpregnant women was 22.89 ± 3.4 kg/m2 and that of pregnant women was 23.52 ± 3.71 kg/m2. The mean dietary nutrient intake of dietary fiber, calorie, protein, fat, carbohydrate, calcium, iron, thiamine, riboflavin, vitamin C, Vitamin A, folate, vitamin B6 and Vitamin B12 of the pregnant mothers were 4.38 g, 1619 kcal, 60.05 g, 30.38 g, 268.79 g, 537.21 mg, 21.53 mg, 1.15 mg, 0.94 mg, 97.36 mg, 647.6 µg, 153.93 µg, 1.41 mg and 4.09 µg respectively. Most of pregnant women (more than 90%) can not meet their energy, calcium and folate requirements. Conclusion: Most of the pregnant mother in Bangladesh can not meet their dietary requirements during pregnancy.

Keywords: pregnancy, dietary nutrient, nutritional status, BMI

Procedia PDF Downloads 411
2142 Water-Repellent Finishing on Cotton Fabric by SF₆ Plasma

Authors: We'aam Alali, Ziad Saffour, Saker Saloum

Abstract:

Low-pressure, sulfur hexafluoride (SF₆) remote radio-frequency (RF) plasma, ignited in a hollow cathode discharge (HCD-L300) plasma system, has been shown to be a powerful method in cotton fabric finishing to achieve water-repellent property. This plasma was ignited at an SF6 flow rate of (200 cm), low pressure (0.5 mbar), and radio frequency (13.56 MHz) with a power of (300 W). The contact angle has been measured as a function of the plasma exposure period using the water contact angle measuring device (WCA), and the changes in the morphology, chemical structure, and mechanical properties as tensile strength and elongation at the break of the fabric have also been investigated using the scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflectance Fourier transform Infrared spectroscopy (ATR-FTIR), and tensile test device, respectively. In addition, weight loss of the fabric and the fastness of washing have been studied. It was found that the exposure period of the fabric to the plasma is an important parameter. Moreover, a good water-repellent cotton fabric can be obtained by treating it with SF₆ plasma for a short time (1 min) without degrading its mechanical properties. Regarding the modified morphology of the cotton fabric, it was found that grooves were formed on the surface of the fibers after treatment. Chemically, the fluorine atoms were attached to the surface of the fibers.

Keywords: cotton fabric, SEM, SF₆ plasma, water-repellency

Procedia PDF Downloads 50
2141 Visualization of Wave Propagation in Monocoupled System with Effective Negative Stiffness, Effective Negative Mass, and Inertial Amplifier

Authors: Abhigna Bhatt, Arnab Banerjee

Abstract:

A periodic system with only a single coupling degree of freedom is called a monocoupled system. Monocoupled systems with mechanisms like mass in the mass system generates effective negative mass, mass connected with rigid links generates inertial amplification, and spring-mass connected with a rigid link generateseffective negative stiffness. In this paper, the representative unit cell is introduced, considering all three mechanisms combined. Further, the dynamic stiffness matrix of the unit cell is constructed, and the dispersion relation is obtained by applying the Bloch theorem. The frequency response function is also calculated for the finite length of periodic unit cells. Moreover, the input displacement signal is given to the finite length of periodic structure and using inverse Fourier transform to visualize the wave propagation in the time domain. This visualization explains the sudden attenuation in metamaterial due to energy dissipation by an embedded resonator at the resonance frequency. The visualization created for wave propagation is found necessary to understand the insights of physics behind the attenuation characteristics of the system.

Keywords: mono coupled system, negative effective mass, negative effective stiffness, inertial amplifier, fourier transform

Procedia PDF Downloads 85
2140 A Simulation Study of Direct Injection Compressed Natural Gas Spark Ignition Engine Performance Utilizing Turbulent Jet Ignition with Controlled Air Charge

Authors: Siyamak Ziyaei, Siti Khalijah Mazlan, Petros Lappas

Abstract:

Compressed Natural Gas (CNG) mainly consists of Methane CH₄ and has a low carbon to hydrogen ratio relative to other hydrocarbons. As a result, it has the potential to reduce CO₂ emissions by more than 20% relative to conventional fuels like diesel or gasoline Although Natural Gas (NG) has environmental advantages compared to other hydrocarbon fuels whether they are gaseous or liquid, its main component, CH₄, burns at a slower rate than conventional fuels A higher pressure and a leaner cylinder environment will overemphasize slow burn characteristic of CH₄. Lean combustion and high compression ratios are well-known methods for increasing the efficiency of internal combustion engines. In order to achieve successful CNG lean combustion in Spark Ignition (SI) engines, a strong ignition system is essential to avoid engine misfires, especially in ultra-lean conditions. Turbulent Jet Ignition (TJI) is an ignition system that employs a pre-combustion chamber to ignite the lean fuel mixture in the main combustion chamber using a fraction of the total fuel per cycle. TJI enables ultra-lean combustion by providing distributed ignition sites through orifices. The fast burn rate provided by TJI enables the ordinary SI engine to be comparable to other combustion systems such as Homogeneous Charge Compression Ignition (HCCI) or Controlled Auto-Ignition (CAI) in terms of thermal efficiency, through the increased levels of dilution without the need of sophisticated control systems. Due to the physical geometry of TJIs, which contain small orifices that connect the prechamber to the main chamber, scavenging is one of the main factors that reduce TJI performance. Specifically, providing the right mixture of fuel and air has been identified as a key challenge. The reason for this is the insufficient amount of air that is pushed into the pre-chamber during each compression stroke. There is also the problem that combustion residual gases such as CO₂, CO and NOx from the previous combustion cycle dilute the pre- chamber fuel-air mixture preventing rapid combustion in the pre-chamber. An air-controlled active TJI is presented in this paper in order to address these issues. By applying air to the pre-chamber at a sufficient pressure, residual gases are exhausted, and the air-fuel ratio is controlled within the pre-chamber, thereby improving the quality of combustion. This paper investigates the 3D-simulated combustion characteristics of a Direct Injected (DI-CNG) fuelled SI en- gine with a pre-chamber equipped with an air channel by using AVL FIRE software. Experiments and simulations were performed at the Worldwide Mapping Point (WWMP) at 1500 Revolutions Per Minute (RPM), 3.3 bar Indicated Mean Effective Pressure (IMEP), using only conventional spark plugs as the baseline. After validating simulation data, baseline engine conditions were set for all simulation scenarios at λ=1. Following that, the pre-chambers with and without an auxiliary fuel supply were simulated. In the simulated (DI-CNG) SI engine, active TJI was observed to perform better than passive TJI and spark plug. In conclusion, the active pre-chamber with an air channel demon-strated an improved thermal efficiency (ηth) over other counterparts and conventional spark ignition systems.

Keywords: turbulent jet ignition, active air control turbulent jet ignition, pre-chamber ignition system, active and passive pre-chamber, thermal efficiency, methane combustion, internal combustion engine combustion emissions

Procedia PDF Downloads 62
2139 Conventional and Computational Investigation of the Synthesized Organotin(IV) Complexes Derived from o-Vanillin and 3-Nitro-o-Phenylenediamine

Authors: Harminder Kaur, Manpreet Kaur, Akanksha Kapila, Reenu

Abstract:

Schiff base with general formula H₂L was derived from condensation of o-vanillin and 3-nitro-o-phenylenediamine. This Schiff base was used for the synthesis of organotin(IV) complexes with general formula R₂SnL [R=Phenyl or n-octyl] using equimolar quantities. Elemental analysis UV-Vis, FTIR, and multinuclear spectroscopic techniques (¹H, ¹³C, and ¹¹⁹Sn) NMR were carried out for the characterization of the synthesized complexes. These complexes were coloured and soluble in polar solvents. Computational studies have been performed to obtain the details of the geometry and electronic structures of ligand as well as complexes. Geometry of the ligands and complexes have been optimized at the level of Density Functional Theory with B3LYP/6-311G (d,p) and B3LYP/MPW1PW91 respectively followed by vibrational frequency analysis using Gaussian 09. Observed ¹¹⁹Sn NMR chemical shifts of one of the synthesized complexes showed tetrahedral geometry around Tin atom which is also confirmed by DFT. HOMO-LUMO energy distribution was calculated. FTIR, ¹HNMR and ¹³CNMR spectra were also obtained theoretically using DFT. Further IRC calculations were employed to determine the transition state for the reaction and to get the theoretical information about the reaction pathway. Moreover, molecular docking studies can be explored to ensure the anticancer activity of the newly synthesized organotin(IV) complexes.

Keywords: DFT, molecular docking, organotin(IV) complexes, o-vanillin, 3-nitro-o-phenylenediamine

Procedia PDF Downloads 128
2138 Nuclear Terrorism Decision Making: A Comparative Study of South Asian Nuclear Weapons States

Authors: Muhammad Jawad Hashmi

Abstract:

The idea of nuclear terrorism is as old as nuclear weapons but the global concerns of likelihood of nuclear terrorism are uncertain. Post 9/11 trends manifest that terrorists are believers of massive causalities. Innovation in terrorist’s tactics, sophisticated weaponry, vulnerability, theft and smuggling of nuclear/radiological material, connections between terrorists, black market and rough regimes are signaling seriousness of upcoming challenges as well as global trends of “terror-transnationalism.” Furthermore, the International-Atomic-Energy-Agency’s database recorded 2734 incidents regarding misuse, unauthorized possession, trafficking of nuclear material etc. Since, this data also includes incidents from south Asia, so, there is every possibility to claim that such illicit activities may increase in future, mainly due to expansion of nuclear industry in South Asia. Moreover, due to such mishaps the region is vulnerable to threats of nuclear terrorism. This is also a reason that the region is in limelight along with issues such as rapidly growing nuclear arsenals, nuclear safety and security, terrorism and political instability. With this backdrop, this study is aimed to investigate the prevailing threats and challenges in South Asia vis a vis nuclear safety and security. A comparative analysis of the overall capabilities would be done to identify the areas of cooperation to eliminate the probability of nuclear/radiological terrorism in the region.

Keywords: nuclear terrorism, safety, security, South Asia, india, Pakistan

Procedia PDF Downloads 329
2137 Modeling and Simulation of Organic Solar Cells Based on P3HT:PCBM using SCAPS 1-D (Influence of Defects and Temperature on the Performance of the Solar Cell)

Authors: Souhila Boukli Hacene, Djamila Kherbouche, Abdelhak Chikhaoui

Abstract:

In this work, we elucidate theoretically the effect of defects and temperature on the performance of the organic bulk heterojunction solar cell (BHJ) P3HT: PCBM. We have studied the influence of their parameters on cell characteristics. For this purpose, we used the effective medium model and the solar cell simulator (SCAPS) to model the characteristics of the solar cell. We also explore the transport of charge carriers in the device. It was assumed that the mixture is lightly p-type doped and that the band gap contains acceptor defects near the HOMO level with a Gaussian distribution of energy states at 100 and 50 meV. We varied defects density between 1012-1017 cm-3, from 1016 cm-3, a total decrease of the photovoltaic characteristics due to the increase of the non-radiative recombination can be noticed. Then we studied the effect of variation of the electron and the hole capture cross-section on the cell’s performance, we noticed that the cell obtains a better efficiency of about 3.6% for an electron capture cross section ≤ 10-15 cm2 and a hole capture cross section ≤ 10-19 cm2. On the other hand, we also varied the temperature between 120K and 400K. We observed that the temperature of the solar cell induces a noticeable effect on its voltage. While the effect of temperature on the solar cell current is negligible.

Keywords: organic solar cell, P3HT:PCBM, defects, temperature, SCAPS

Procedia PDF Downloads 51
2136 Aging Evaluation of Ammonium Perchlorate/Hydroxyl Terminated Polybutadiene-Based Solid Rocket Engine by Reactive Molecular Dynamics Simulation and Thermal Analysis

Authors: R. F. B. Gonçalves, E. N. Iwama, J. A. F. F. Rocco, K. Iha

Abstract:

Propellants based on Hydroxyl Terminated Polybutadiene/Ammonium Perchlorate (HTPB/AP) are the most commonly used in most of the rocket engines used by the Brazilian Armed Forces. This work aimed at the possibility of extending its useful life (currently in 10 years) by performing kinetic-chemical analyzes of its energetic material via Differential Scanning Calorimetry (DSC) and also performing computer simulation of aging process using the software Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). Thermal analysis via DSC was performed in triplicates and in three heating ratios (5 ºC, 10 ºC, and 15 ºC) of rocket motor with 11 years shelf-life, using the Arrhenius equation to obtain its activation energy, using Ozawa and Kissinger kinetic methods, allowing comparison with manufacturing period data (standard motor). In addition, the kinetic parameters of internal pressure of the combustion chamber in 08 rocket engines with 11 years of shelf-life were also acquired, for comparison purposes with the engine start-up data.

Keywords: shelf-life, thermal analysis, Ozawa method, Kissinger method, LAMMPS software, thrust

Procedia PDF Downloads 100
2135 Cellulose Containing Metal Organic Frameworks in Environmental Applications

Authors: Hossam El-Sayed Emam

Abstract:

As an essential issue for life, water while it’s important for all living organisms. However, the world is dangerously facing the serious problem for the deficiency of the sources of drinking water. Within the aquatic systems, there are various gases, microbes, and other toxic ingredients (chemical compounds and heavy metals) occurred owing to the draining of agricultural and industrial wastewater, resulting in water pollution. On the other hand, fuel (gaseous, liquid, or in solid phase) is one of the extensively consumable energy sources, and owing to its origin from fossil, it contains some sulfur-, nitrogen- and oxygen-based compounds that cause serious problems (toxicity, catalyst poisoning, corrosion, and gum formation andcarcinogenic effects), to be ascribed as undesirable pollutants.MOFs as porous coordinating polymers are superiorly exploited in the adsorption and separationof contaminants for wastewater treatment and fuel purification. The inclusion of highly adsorbent materials like MOFs to be immobilized within cellulosic materialscould be investigated as a new challenge for the separation of contaminants with high efficiency and opportunity for recyclability. Therefore, the current approach ascribes the exploitation of different MOFsimmobilized within cellulose (powder, films, and fabrics)for applications in environmental. Herein, using cellulose containing MOFs in dye removal (degradation and adsorption), pharmaceutical intermediates removal, and fuel purification were summarized.

Keywords: cellulose, MOFs, dye removal, pharmaceutical intermediates, fuel purification

Procedia PDF Downloads 121
2134 Study of Tribological Behavior of Zirconium Alloy Against SS-410 at High Temperature

Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry

Abstract:

Zirconium alloys exhibit low neutron absorption cross-section and excellent mechanical properties. Due to these unique characteristics, these materials are widely used in designing core components of pressurized heavy water reactors (PHWRs). Another material that is widely used in the design of reactor core is stainless steel. Under operating conditions of the reactor, there are possibilities for mechanical and tribological interaction between the components made of zirconium alloy (Zr-2.5 Nb) and stainless steel (SS-410). This may result in wear of the material. To study the tribological characteristics of Zr-2.5 Nb and SS-410, low amplitude reciprocating wear tests are conducted at room temperature and at high temperatures (260 degrees Celsius). The tests are conducted at frequencies ranging from 5 Hz to 25 Hz. The displacement amplitude is varied from 200 µm to 600 µm. The responses are recorded, analyzed and correlated with damage observed using scanning electron microscopy (SEM) and an optical profilometer. Energy dispersive spectroscopy (EDS) is used to study the damage mechanism prevailing at the contact interface. A higher coefficient of friction (COF) is observed at higher temperatures as compared to the one at room temperature. Tests carried out at high temperature reveals adhesive wear as the dominant mechanism resulting in significant material transfer.

Keywords: PHWRs, Zr-2.5Nb, SS-410, wear

Procedia PDF Downloads 57
2133 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System

Authors: Qian Liu, Steve Furber

Abstract:

To explore how the brain may recognize objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor~(DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network~(SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modeled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study's largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognize the postures with an accuracy of around 86.4% -only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much-improved cost to performance trade-off in its approach.

Keywords: spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system

Procedia PDF Downloads 438
2132 Photocatalytic Degradation of Methylene Blue Dye Using Pure and Ag-Doped SnO₂ Nanoparticles as Catalyst

Authors: M. S. Abd El-Sadek, Mahmoud A. Omar, Gharib M. Taha

Abstract:

Photodegradation of methylene blue in the presence of tin dioxide (SnO₂) nanoparticles under solar light irradiation are known to be an effective photocatalytic process. In this study, pure and silver (Ag) doped tin dioxide (SnO₂) nanoparticles were prepared at calcination temperature (800ºC) by a modified sol-gel method and studied for their photocatalytic activity with methylene blue as a test contaminant. The characterization of undoped and doped SnO₂ photocatalyst was studied by X-rays diffraction patterns (XRD), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Energy Dispersive X-ray Microanalysis (EDX). The catalytic degradation of methylene blue in aqueous media was studied using UV-Vis spectrophotometer to monitor the degradation process by measuring its absorption spectra. The main absorption peak of methylene blue is observed at λ= 664 nm. The change in the percent of silver in the catalyst affects the photoactivity of SnO₂ on the degradation of methylene blue. The photoactivity of pure SnO₂ was found to be a maximum at dose 0.2 gm of the catalyst with 100 ml of 5 ppm methylene blue in the water. Within 210 min of photodegradation (under sunlight) after leaving the reaction for 90 minutes in the dark to avoid the effect of adsorption, the pure SnO₂ at calcination temperature 800ºC exhibited the best photocatalytic degradation with removal percentage of 93.66% on methylene blue degradation under solar light.

Keywords: SnO₂ nanoparticles, methylene blue degradation, photocatalysis, silver doped-SnO₂

Procedia PDF Downloads 106
2131 A New Low Cost Seismic Response Controlling Structures with Semi Base Isolation Devices

Authors: M. Ezati Kooshki, A. Abbaszadeh Shahri

Abstract:

A number of devices used to control seismic structures have been developed during the past decades. One of the effective ways to reduce seismic forces transmitted to the buildings is through the base isolation systems, but the use of these devices is currently limited to large and expensive buildings. This study was an attempt to introduce an effective and low cost way to protect of structures against grand motions by a semi base isolation system. In this new way, structures were not completely decoupled of bases and the natural frequency of structures was changed due to earthquake by changing the horizontal stiffness; therefore, ground excitation energy was dissipated before entering the structures. For analyzing the dynamic behavior, the new method used finite element software (ABAQUS 6-10-1). This investigation introduced a new package of semi base isolation devices with a new material constitutive, but common in automobile industries, seeking to evaluate the effects of additional new devices on the seismic response when compared with structures without additional devises for different ground motions. The proposed semi base isolation devices were applied to a one story frame and the time history analysis was conducted on the record of Kobe earthquake (1995). The results showed that the efficiency reduced the floor acceleration and displacement, as well as velocity.

Keywords: semi base isolation system, finite element, natural frequency, horizontal stiffness

Procedia PDF Downloads 368
2130 Production of Premium Quality Cinnamon Bark Powder Using Cryogenic Grinding

Authors: Monika R. Bhoi, R. F. Sutar, Bhaumik B. Patel

Abstract:

The objective of this research paper is to obtain the premium quality of cinnamon bark powder through cryogenic grinding technology. The effect of grinding temperature (0, -20, -40, -60, -80 and -100˚C), feed rate (8, 9 and 10 kg/h), and sieve size (0.8, 1.0 and 1.5 mm) were evaluated with respect to grinding time, volatile oil content, particle size, energy consumption, and liquid nitrogen consumption. Cryogenic grinding process parameters were optimized to obtain premium quality cinnamon bark powder was carried out using three factorial completely randomized design. The optimization revealed that grinding of cinnamon bark at -80⁰C temperature using 0.8 mm sieve size and 10 kg/h feed rate resulted in premium quality cinnamon bark powder containing volatile oil 3.01%. In addition, volatile oil retention in cryogenically ground powder was 88.23%, whereas control (ambient grinding) had 33.11%. Storage study of premium quality cryogenically ground powder was carried out under accelerated storage conditions (38˚C & 90% R.H). Accelerated storage of cryoground powder was found to be advantageous over the conventional ground for extended storage of the ground cinnamon powder with retention of its nutritional quality. Hence, grinding of spices at optimally low cryogenic temperature is a promising technology for the production of its premium quality powder economically.

Keywords: cinnamon bark, cryogenic grinding, feed rate, volatile oil

Procedia PDF Downloads 134
2129 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components

Authors: Jaimala Ghambir, Tilak Thakur, Puneet Chawla

Abstract:

As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, fault ride through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.

Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT

Procedia PDF Downloads 428
2128 Effect of Maize Straw-Derived Biochar on Imidacloprid Adsorption onto Soils Prior to No-Tillage and Rotary Tillage Practices

Authors: Jean Yves Uwamungu, Fiston Bizimana, Chunsheng Hu

Abstract:

Although pesticides are used in crop productivity, their use is highly harming the soil environment, and measures must be taken in the future to eradicate soil and groundwater pollution. The primary aim was to determine the effect of biochar addition on the imidacloprid adsorption on soil prior to no-tillage (NT) and rotational tillage (RT) conditions. In the laboratory, batch tests were conducted to determine the imidacloprid adsorption on soil using equilibrium and kinetic modelling with the addition of biochar. The clay level of the soil was found to be more significant when no-tillage was applied (22.42) than when rotational tillage was applied (14.27). The imidacloprid adsorption equilibrium was significantly shortened to 25 min after biochar addition. The isotherms and kinetic findings confirmed that the adsorption occurred according to Freundlich and pseudo-second-order kinetic models, respectively. The adsorption capacity of imidacloprid (40<35<25 °C) increased with decreasing temperature, indicating an exothermic adsorption behaviour, whereas negative Gibbs free energy (G) values of -6980.5 and 5983.93 Jmol-1, respectively, for soil prior to NT and RT at 25 °C, asserted spontaneous adsorption. The negative values of entropy (ΔS); -22.83 and -38.15 Jmol-1K-1, prior to NT and RT applications, respectively, described a lowered randomness process. The enthalpy was greater when RT was applied (-17533 J mol-1) than when NT was applied (-450 J mol-1). Lastly, it was shown that NTtreatment enhanced imidacloprid adsorption capacity more than RT treatment and that biochar addition enhanced pesticide adsorption in both treatments.

Keywords: adsorption, biochar, imidacloprid, soil, tillage

Procedia PDF Downloads 113
2127 Effect of Lignocellulose-Degrading Bacteria Isolated from Termite Gut on the Nutritive Value of Wheat Straw as Ruminant Feed

Authors: Ayoub Azizi-Shotorkhoft, Tahereh Mohammadabadi, Hosein Motamedi, Morteza Chaji, Hasan Fazaeli

Abstract:

This study was conducted to investigate nutritive value of wheat straw processed with termite gut symbiotic bacteria with lignocellulosic-degrading potential including Bacillus licheniformis, Ochrobactrum intermedium and Microbacterium paludicola in vitro. These bacteria were isolated by culturing termite guts contents in different culture media containing different lignin and lignocellulosic materials that had been prepared from water-extracted sawdust and wheat straw. Results showed that incubating wheat straw with all of three isolated bacteria increased (P<0.05) acid-precipitable polymeric lignin (APPL) compared to control, and highest amount of APPL observed following treatment with B. licheniformis. Highest and lowest (P<0.05) in vitro gas production and ruminal organic matter digestibility were obtained when treating wheat straw with B. licheniformis and control, respectively. However, other fermentation parameters such as b (i.e., gas production from the insoluble fermentable fractions at 144h), c (i.e., rate of gas production during incubation), ruminal dry matter digestibility, metabolizable energy, partitioning factor, pH and ammonia nitrogen concentration were similar between experimental treatments (P>0.05). It is concluded that processing wheat straw with isolated bacteria improved its nutritive value as ruminants feed.

Keywords: termite gut bacteria, wheat straw, nutritive value, ruminant

Procedia PDF Downloads 309
2126 Investigation of the Litho-Structure of Ilesa Using High Resolution Aeromagnetic Data

Authors: Oladejo Olagoke Peter, Adagunodo T. A., Ogunkoya C. O.

Abstract:

The research investigated the arrangement of some geological features under Ilesa employing aeromagnetic data. The obtained data was subjected to various data filtering and processing techniques, which are Total Horizontal Derivative (THD), Depth Continuation and Analytical Signal Amplitude using Geosoft Oasis Montaj 6.4.2 software. The Reduced to the Equator –Total Magnetic Intensity (TRE-TMI) outcomes reveal significant magnetic anomalies, with high magnitude (55.1 to 155 nT) predominantly at the Northwest half of the area. Intermediate magnetic susceptibility, ranging between 6.0 to 55.1 nT, dominates the eastern part, separated by depressions and uplifts. The southern part of the area exhibits a magnetic field of low intensity, ranging from -76.6 to 6.0 nT. The lineaments exhibit varying lengths ranging from 2.5 and 16.0 km. Analyzing the Rose Diagram and the analytical signal amplitude indicates structural styles mainly of E-W and NE-SW orientations, particularly evident in the western, SW and NE regions with an amplitude of 0.0318nT/m. The identified faults in the area demonstrate orientations of NNW-SSE, NNE-SSW and WNW-ESE, situated at depths ranging from 500 to 750 m. Considering the divergence magnetic susceptibility, structural style or orientation of the lineaments, identified fault and their depth, these lithological features could serve as a valuable foundation for assessing ground motion, particularly in the presence of sufficient seismic energy.

Keywords: lineament, aeromagnetic, anomaly, fault, magnetic

Procedia PDF Downloads 36
2125 The Potential for Cyclotron and Generator-produced Positron Emission Tomography Radiopharmaceuticals: An Overview

Authors: Ng Yen, Shafii Khamis, Rehir Bin Dahalan

Abstract:

Cyclotrons in the energy range 10-30 MeV are widely used for the production of clincally relevant radiosiotopes used in positron emission tomography (PET) nuclear imaging. Positron emmision tomography is a powerful nuclear imaging tool that produces high quality 3-dimentional images of functional processes of body. The advantage of PET among all other imaging devices is that it allows the study of an impressive array of discrete biochemical and physiologic processes, within a single imaging session. The number of PET scanner increases every year globally due to high clinical demand. However, not all PET centers can afford a cyclotron, due to the expense associated with operation of an in-house cyclotron. Therefore, current research has also focused on the development of parent/daughter generators that can reliably provide PET nuclides. These generators (68Ge/68Ga generator, 62Zn/62Cu, 82Sr/82Rb, etc) can provide even short-lived radionuclides at any time on demand, without the need of an ‘in-house cyclotron’. The parent isotope is produced at a cyclotron/reactor facility, and can be shipped to remote clinical sites (regionally/overseas), where the daughter isotope is eluted, a model similar to the 99Mo/99mTc generator system. The specific aim for this presentation is to talk about the potential for both of the cyclotron and generator-produced PET radiopharmaceuticals used in clinical imaging.

Keywords: positron emission tomography, radiopharmaceutical, cyclotron, generator

Procedia PDF Downloads 459
2124 Microstructure Analysis and Multiple Photoluminescence in High Temperature Electronic Conducting InZrZnO Thin Films

Authors: P. Jayaram, Prasoon Prasannan, N. K. Deepak, P. P. Pradyumnan

Abstract:

Indium and Zirconium co doped zinc oxide (InZrZnO) thin films are prepared by chemical spray pyrolysis method on pre-heated quartz substrates. The films are subjected to vacuum annealing at 400ᵒC for three hours in an appropriate air (10-5mbar) ambience after deposition. X-ray diffraction, Scanning electron microscopy, energy dispersive spectra and photoluminescence are used to characterize the films. Temperature dependent electrical measurements are conducted on the films and the films exhibit exceptional conductivity at higher temperatures. XRD analysis shows that all the films prepared in this work have hexagonal wurtzite structure. The average crystallite sizes of the films were calculated using Scherrer’s formula, and uniform deformation model (UDM) of Williamson-Hall method is used to establish the micro-strain values. The dislocation density is determined from the Williamson and Smallman’s formula. Intense, broad and strongly coupled multiple photoluminescence were observed from photoluminescence spectra. PL indicated relatively high concentration defective oxygen and Zn vacancies in the film composition. Strongly coupled ultraviolet near blue emissions authenticate that the dopants are capable of inducing modulated free excitonic (FX), donor accepter pair (DAP) and longitudinal optical phonon emissions in thin films.

Keywords: PL, SEM, TCOs, thin films, XRD

Procedia PDF Downloads 211
2123 Impact of Landuse Change on Surface Temperature in Ibadan, Nigeria

Authors: Abegunde Linda, Adedeji Oluwatola

Abstract:

It has become increasingly evident that large developments influence the climate within the immediate region and there are concerns that rising temperatures over developed areas could have negative impact and increase living discomfort within city boundaries. Temperature trends in Ibadan city have received minor attention, yet the area has experienced heavy urban expansion between 1972 and 2014. This research aims at examining the impact of landuse change on temperature knowing that the built environment absorbs and stores solar energy, the temperature in cities can be several degrees higher than in adjacent rural areas. This is known as the urban heat island (UHI) effect. The Landsat imagery were used to examine the landuse change for a time period of 42years (1972-2014) and Land surface temperature (LST) was obtained by converting the thermal band to a surface temperature map and zonal statistic analyses was further used to examine the relationship between landuse and temperature emission. The results showed that the settlement area increased by 200km2 while the area covered by vegetation also reduced to about 42.6% during the study period. The spatial and temporal trends of temperature are related to the gradual change in urban landcover and the settlement area has the highest emission of land surface temperature. This research provides useful insight into the temporal behavior of the Ibadan city.

Keywords: landuse, LST, remote sensing, UHI

Procedia PDF Downloads 245
2122 Flow-Through Supercritical Installation for Producing Biodiesel Fuel

Authors: Y. A. Shapovalov, F. M. Gumerov, M. K. Nauryzbaev, S. V. Mazanov, R. A. Usmanov, A. V. Klinov, L. K. Safiullina, S. A. Soshin

Abstract:

A flow-through installation was created and manufactured for the transesterification of triglycerides of fatty acids and production of biodiesel fuel under supercritical fluid conditions. Transesterification of rapeseed oil with ethanol was carried out according to two parameters: temperature and the ratio of alcohol/oil mixture at the constant pressure of 19 MPa. The kinetics of the yield of fatty acids ethyl esters (FAEE) was determined in the temperature range of 320-380 °C at the alcohol/oil molar ratio of 6:1-20:1. The content of the formed FAEE was determined by the method of correlation of the resulting biodiesel fuel by its kinematic viscosity. The maximum FAEE yield (about 90%) was obtained within 30 min at the ethanol/oil molar ratio of 12:1 and a temperature of 380 °C. When studying of transesterification of triglycerides, a kinetic model of an isothermal flow reactor was used. The reaction order implemented in the flow reactor has been determined. The first order of the reaction was confirmed by data on the conversion of FAEE during the reaction at different temperatures and the molar ratios of the initial reagents (ethanol/oil). Using the Arrhenius equation, the values of the effective constants of the transesterification reaction rate were calculated at different reaction temperatures. In addition, based on the experimental data, the activation energy and the pre-exponential factor of the transesterification reaction were determined.

Keywords: biodiesel, fatty acid esters, supercritical fluid technology, transesterification

Procedia PDF Downloads 80
2121 Distribution System Modelling: A Holistic Approach for Harmonic Studies

Authors: Stanislav Babaev, Vladimir Cuk, Sjef Cobben, Jan Desmet

Abstract:

The procedures for performing harmonic studies for medium-voltage distribution feeders have become relatively mature topics since the early 1980s. The efforts of various electric power engineers and researchers were mainly focused on handling large harmonic non-linear loads connected scarcely at several buses of medium-voltage feeders. In order to assess the impact of these loads on the voltage quality of the distribution system, specific modeling and simulation strategies were proposed. These methodologies could deliver a reasonable estimation accuracy given the requirements of least computational efforts and reduced complexity. To uphold these requirements, certain analysis assumptions have been made, which became de facto standards for establishing guidelines for harmonic analysis. Among others, typical assumptions include balanced conditions of the study and the negligible impact of impedance frequency characteristics of various power system components. In latter, skin and proximity effects are usually omitted, and resistance and reactance values are modeled based on the theoretical equations. Further, the simplifications of the modelling routine have led to the commonly accepted practice of neglecting phase angle diversity effects. This is mainly associated with developed load models, which only in a handful of cases are representing the complete harmonic behavior of a certain device as well as accounting on the harmonic interaction between grid harmonic voltages and harmonic currents. While these modelling practices were proven to be reasonably effective for medium-voltage levels, similar approaches have been adopted for low-voltage distribution systems. Given modern conditions and massive increase in usage of residential electronic devices, recent and ongoing boom of electric vehicles, and large-scale installing of distributed solar power, the harmonics in current low-voltage grids are characterized by high degree of variability and demonstrate sufficient diversity leading to a certain level of cancellation effects. It is obvious, that new modelling algorithms overcoming previously made assumptions have to be accepted. In this work, a simulation approach aimed to deal with some of the typical assumptions is proposed. A practical low-voltage feeder is modeled in PowerFactory. In order to demonstrate the importance of diversity effect and harmonic interaction, previously developed measurement-based models of photovoltaic inverter and battery charger are used as loads. The Python-based script aiming to supply varying voltage background distortion profile and the associated current harmonic response of loads is used as the core of unbalanced simulation. Furthermore, the impact of uncertainty of feeder frequency-impedance characteristics on total harmonic distortion levels is shown along with scenarios involving linear resistive loads, which further alter the impedance of the system. The comparative analysis demonstrates sufficient differences with cases when all the assumptions are in place, and results indicate that new modelling and simulation procedures need to be adopted for low-voltage distribution systems with high penetration of non-linear loads and renewable generation.

Keywords: electric power system, harmonic distortion, power quality, public low-voltage network, harmonic modelling

Procedia PDF Downloads 132
2120 Configuration Design and Optimization of the Movable Leg-Foot Lunar Soft-Landing Device

Authors: Shan Jia, Jinbao Chen, Jinhua Zhou, Jiacheng Qian

Abstract:

Lunar exploration is a necessary foundation for deep-space exploration. For the functional limitations of the fixed landers which are widely used currently and are to expand the detection range by the use of wheeled rovers with unavoidable path-repeatability, a movable lunar soft-landing device based on cantilever type buffer mechanism and leg-foot type walking mechanism is presented. Firstly, a 20 DoFs quadruped configuration based on pushrod is proposed. The configuration is of the bionic characteristics such as hip, knee and ankle joints, and can make the kinematics of the whole mechanism unchanged before and after buffering. Secondly, the multi-function main/auxiliary buffers based on crumple-energy absorption and screw-nut mechanism, as well as the telescopic device which could be used to protect the plantar force sensors during the buffer process are designed. Finally, the kinematic model of the whole mechanism is established, and the configuration optimization of the whole mechanism is completed based on the performance requirements of slope adaptation and obstacle crossing. This research can provide a technical solution integrating soft-landing, large-scale inspection and material-transfer for future lunar exploration and even mars exploration, and can also serve as the technical basis for developing the reusable landers.

Keywords: configuration design, lunar soft-landing device, movable, optimization

Procedia PDF Downloads 123
2119 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation

Authors: Joseph C. Chen, Venkata Mohan Kudapa

Abstract:

Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.

Keywords: surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations

Procedia PDF Downloads 116