Search results for: defective interfering genes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1057

Search results for: defective interfering genes

37 Expression of Fibrogenesis Markers after Mesenchymal Stem Cells Therapy for Experimental Liver Cirrhosis

Authors: Tatsiana Ihnatovich, Darya Nizheharodava, Mikalai Halabarodzka, Tatsiana Savitskaya, Marina Zafranskaya

Abstract:

Liver fibrosis is a complex of histological changes resulting from chronic liver disease accompanied by an excessive production and deposition of extracellular matrix components in the hepatic parenchyma. Liver fibrosis is a serious medical and social problem. Hepatic stellate cells (HSCs) make a significant contribution to the extracellular matrix deposition due to liver injury. Mesenchymal stem cells (MSCs) have a pronounced anti-inflammatory, regenerative and immunomodulatory effect; they are able to differentiate into hepatocytes and induce apoptosis of activated HSCs that opens the prospect of their use for preventing the excessive fibro-formation and the development of liver cirrhosis. The aim of the study is to evaluate the effect of MSCs therapy on the expression of fibrogenesis markers genes in liver tissue and HSCs cultures of rats with experimental liver cirrhosis (ELC). Materials and methods: ELC was induced by the common bile duct ligation (CBDL) in female Wistar rats (n = 19) with an average body weight of 250 (220 ÷ 270) g. Animals from the control group (n = 10) were sham-operated. On the 56th day after the CBDL, the rats of the experimental (n = 12) and the control (n = 5) groups received intraportal MSCs in concentration of 1×106 cells/animal (previously obtained from rat’s bone marrow) or saline, respectively. The animals were taken out of the experiment on the 21st day. HSCs were isolated by sequential liver perfusion in situ with following disaggregation, enzymatic treatment and centrifugation of cell suspension on a two-stage density gradient. The expression of collagen type I (Col1a1) and type III (Col3a1), matrix metalloproteinase type 2 (MMP2) and type 9 (MMP9), tissue inhibitor of matrix metalloproteinases type 1 (TIMP1), transforming growth factor β type 1 (TGFβ1) and type 3 (TGFβ3) was determined by real-time polymerase chain reaction. Statistical analysis was performed using Statistica 10.0. Results: In ELC rats compared to sham-operated animals, a significant increase of all studied markers expression was observed. The administration of MSCs led to a significant decrease of all detectable markers in the experimental group compared to rats without cell therapy. In ELC rats, an increased MMP9/TIMP1 ratio after cell therapy was also detected. The infusion of MSCs in the sham-operated animals did not lead to any changes. In the HSCs from ELC animals, the expression of Col1a1 and Col3a1 exceeded the similar parameters of the control group (p <0.05) and statistically decreased after the MSCs administration. The correlation between Col3a1 (Rs = 0.51, p <0.05), TGFβ1 (Rs = 0.6, p <0.01), and TGFβ3 (Rs = 0.75, p <0.001) expression in HSCs cultures and liver tissue has been found. Conclusion: Intraportal administration of MSCs to rats with ELC leads to a decreased Col1a1 and Col3a1, MMP2 and MMP9, TIMP1, TGFβ1 and TGFβ3 expression. The correlation between the expression of Col3a1, TGFβ1 and TGFβ3 in liver tissue and in HSCs cultures indicates the involvement of activated HSCs in the fibrogenesis that allows considering HSCs to be the main cell therapy target in ELC.

Keywords: cell therapy, experimental liver cirrhosis, hepatic stellate cells, mesenchymal stem cells

Procedia PDF Downloads 140
36 Clinical Presentation and Immune Response to Intramammary Infection of Holstein-Friesian Heifers with Isolates from Two Staphylococcus aureus Lineages

Authors: Dagmara A. Niedziela, Mark P. Murphy, Orla M. Keane, Finola C. Leonard

Abstract:

Staphylococcus aureus is the most frequent cause of clinical and subclinical bovine mastitis in Ireland. Mastitis caused by S. aureus is often chronic and tends to recur after antibiotic treatment. This may be due to several virulence factors, including attributes that enable the bacterium to internalize into bovine mammary epithelial cells, where it may evade antibiotic treatment, or evade the host immune response. Four bovine-adapted lineages (CC71, CC97, CC151 and ST136) were identified among a collection of Irish S. aureus mastitis isolates. Genotypic variation of mastitis-causing strains may contribute to different presentations of the disease, including differences in milk somatic cell count (SCC), the main method of mastitis detection. The objective of this study was to investigate the influence of bacterial strain and lineage on host immune response, by employing cell culture methods in vitro as well as an in vivo infection model. Twelve bovine adapted S. aureus strains were examined for internalization into bovine mammary epithelial cells (bMEC) and their ability to induce an immune response from bMEC (using qPCR and ELISA). In vitro studies found differences in a variety of virulence traits between the lineages. Strains from lineages CC97 and CC71 internalized more efficiently into bovine mammary epithelial cells (bMEC) than CC151 and ST136. CC97 strains also induced immune genes in bMEC more strongly than strains from the other 3 lineages. One strain each of CC151 and CC97 that differed in their ability to cause an immune response in bMEC were selected on the basis of the above in vitro experiments. Fourteen first-lactation Holstein-Friesian cows were purchased from 2 farms on the basis of low SCC (less than 50 000 cells/ml) and infection free status. Seven cows were infected with 1.73 x 102 c.f.u. of the CC97 strain (Group 1) and another seven with 5.83 x 102 c.f.u. of the CC151 strain (Group 2). The contralateral quarter of each cow was inoculated with PBS (vehicle). Clinical signs of infection (temperature, milk and udder appearance, milk yield) were monitored for 30 days. Blood and milk samples were taken to determine bacterial counts in milk, SCC, white blood cell populations and cytokines. Differences in disease presentation in vivo between groups were observed, with two animals from Group 2 developing clinical mastitis and requiring antibiotic treatment, while one animal from Group 1 did not develop an infection for the duration of the study. Fever (temperature > 39.5⁰C) was observed in 3 animals from Group 2 and in none from Group 1. Significant differences in SCC and bacterial load between groups were observed in the initial stages of infection (week 1). Data is also being collected on cytokines and chemokines secreted during the course of infection. The results of this study suggest that a strain from lineage CC151 may cause more severe clinical mastitis, while a strain from lineage CC97 may cause mild, subclinical mastitis. Diversity between strains of S. aureus may therefore influence the clinical presentation of mastitis, which in turn may influence disease detection and treatment needs.

Keywords: Bovine mastitis, host immune response, host-pathogen interactions, Staphylococcus aureus

Procedia PDF Downloads 129
35 The Effect of Metabolites of Fusarium solani on the Activity of the PR-Proteins (Chitinase, β-1,3-Glucanase and Peroxidases) of Potato Tubers

Authors: A. K. Tursunova, O. V. Chebonenko, A. Zh. Amirkulova, A. O. Abaildayev, O. A. Sapko, Y. M. Dyo, A. Sh. Utarbaeva

Abstract:

Fusarium solani and its variants cause root and stem rot of plants. Dry rot is the most common disease of potato tubers during storage. The causative agents of fusariosis in contact with plants behave as antagonists, growth stimulants or parasites. The diversity of host-parasite relationships is explained by the parasite’s ability to produce a wide spectrum of biologically active compounds including toxins, enzymes, oligosaccharides, antibiotic substances, enniatins and gibberellins. Many of these metabolites contribute to the creation of compatible relations; others behave as elicitors, inducing various protective responses in plants. An important part of the strategy for developing plant resistance against pathogens is the activation of protein synthesis to produce protective ‘pathogenesis-related’ proteins. The family of PR-proteins known to confer the most protective response is chitinases (EC 3.2.1.14, Cht) and β-1,3-glucanases (EC 3.2.1.39, Glu). PR-proteins also include a large multigene family of peroxidases (EC 1.11.1.7, Pod), and increased activity of Pod and expression of the Pod genes leads to the development of resistance to a broad class of pathogens. Despite intensive research on the role of PR-proteins, the question of their participation in the mechanisms of formation of the F.solani–S.tuberosum pathosуstem is not sufficiently studied. Our aim was to investigate the effect of different classes of F. solani metabolites on the activity of chitinase, β-1,3-glucanases and peroxidases in tubers of Solanum tuberosum. Metabolite culture filtrate (CF) and cytoplasmic components were fractionated by extraction of the mycelium with organic solvents, salting out techniques, dialysis, column chromatography and ultrafiltration. Protein, lipid, carbohydrate and polyphenolic fractions of fungal metabolites were derived. Using enzymatic hydrolysis we obtained oligo glycans from fungal cell walls with different molecular weights. The activity of the metabolites was tested using potato tuber discs (d = 16mm, h = 5mm). The activity of PR-proteins of tubers was analyzed in a time course of 2–24 hours. The involvement of the analysed metabolites in the modulation of both early non-specific and late related to pathogenesis reactions was demonstrated. The most effective inducer was isolated from the CF (fraction of total phenolic compounds including naphtazarins). Induction of PR-activity by this fraction was: chitinase - 340-360%, glucanase - 435-450%, soluble forms of peroxidase - 400-560%, related forms of peroxidase - 215-237%. High-inducing activity was observed by the chloroform and acetonitrile extracts of the mycelium (induction of chitinase and glucanase activity was 176-240%, of soluble and bound forms of peroxidase - 190-400%). The fraction of oligo glycans mycelium cell walls of 1.2 kDa induced chitinase and β-1,3-glucanase to 239-320%; soluble forms and related peroxidase to 198-426%. Oligo glycans cell walls of 5-10 kDa had a weak suppressor effect - chitinase (21-25%) and glucanase (25-28%) activity; had no effect on soluble forms of peroxidase, but induced to 250-270% activity related forms. The CF polysaccharides of 8.5 kDa and 3.1 kDa inhibited synchronously the glucanase and chitinase specific response in step (after 24 hours at 42-50%) and the step response induced nonspecific peroxidase activity: soluble forms 4.8 -5.2 times, associated forms 1.4-1.6 times.

Keywords: fusarium solani, PR-proteins, peroxidase, solanum tuberosum

Procedia PDF Downloads 178
34 The Porcine Reproductive and Respiratory Syndrome Virus Genotype 2 (PRRSV-2)-derived Oncolytic Protein Reprograms Tumor-Associated Macrophages

Authors: Farrah Putri Salmanida, Mei-Li Wu, Rika Wahyuningtyas, Wen-Bin Chung, Hso-Chi Chaung, Ko-Tung Chang

Abstract:

Within the field of immunotherapy, oncolytic virotherapy (OVT) employs dual approaches that directly eliminate tumor cells while preserving healthy ones and indirectly reprogram the tumor microenvironment (TME) to elicit antitumor responses. Within the TME, tumor associated macrophages (TAMs) manifest characteristics akin to those of anti-inflammatory M2 macrophages, thus earning the designation of M2-like TAMs. In prior research, two antigens denoted as A1 (g6Ld10T) and A3 (ORF6L5), derived from a complete sequence of ORF5 with partial sequence of ORF6 in Porcine Reproductive and Respiratory Syndrome Virus Genotype 2 (PRRSV-2), demonstrated the capacity to repolarize M2-type porcine alveolar macrophages (PAMs) into M1 phenotypes. In this study, we sought for utilizing OVT strategies by introducing A1 or A3 on TAMs to endow them with the anti-tumor traits of M1 macrophages while retaining their capacity to target cancer cells. Upon exposing human THP-1-derived M2 macrophages to a cross-species test with 2 µg/ml of either A1 or A3 for 24 hours, real time PCR revealed that A3, but not A1, treated cells exhibited upregulated gene expressions of M1 markers (CCR7, IL-1ß, CCL2, Cox2, CD80). These cells reacted to virus-derived antigen, as evidenced by increased expression of pattern-recognition receptors TLR3, TLR7, and TLR9, subsequently providing feedback in the form of type I interferon responses like IFNAR1, IFN-ß, IRF3, IRF7, OAS1, Mx1, and ISG15. Through an MTT assay, only after 15 µg/ml of A3 treatment could the cell viability decrease, with a predicted IC50 of 16.96 µg/ml. Interestingly, A3 caused dose-dependent toxicity to a rat C6 glial cancer cell line even at doses as low as 2.5 µg/ml and reached its IC50 at 9.419 µg/ml. Using Annexin V/7AAD staining and PCR test, we deduced that a significant proportion of C6 cells were undergoing the early apoptosis phase predominantly through the intrinsic apoptosis cascade involving Bcl-2 family proteins. Following this stage, we conducted a test on A3’s repolarization ability, which revealed a significant rise in M1 gene expression markers, such as TNF, CD80, and IL-1ß, in M2-like TAMs generated in vitro from murine RAW264.7 macrophages grown with conditioned medium of 4T1 breast cancer cells. This was corroborated by the results of transcriptome analysis, which revealed that the primary subset among the top 10 to top 30 significantly upregulated differentially expressed genes (DEGs) dominantly consisted of M1 macrophages profiles, including Ccl3, Ccl4, Csf3, TNF, Bcl6b, Stc1, and Dusp2. Our findings unveiled the remarkable potential of the PRRSV-derived antigen A3 to repolarize macrophages while also being capable of selectively inducing apoptosis in cancerous cells. While further in vivo study is needed for A3, it holds promise as an adjuvant by its dual effects in cancer therapy modalities.

Keywords: cancer cell apoptosis, interferon responses, macrophage repolarization, recombinant protein

Procedia PDF Downloads 29
33 A Wasp Parasitoids of Genus Cotesia (Hymenoptera: Braconidae) Naturally Parasitizing Pectinophora gossypiella (Saunders) on Transgenic Cotton in Indian Punjab

Authors: Vijay Kumar, G. K. Grewal, Prasad S. Burange

Abstract:

India is one of the largest cultivators of cotton in the world. Among the various constraints, insect pests are posing a major hurdle to the success of cotton cultivation. Various bollworms, including the pink bollworm, Pectinophora gossypiella (Saunders), cause serious losses in India, China, Pakistan, Egypt, Brazil, tropical America, and Africa, etc. Bt cotton cultivars having Cry genes were introduced in India in 2002 (Cry1Ac) and 2006 (Cry1Ac+ Cry2Ab) for control of American, spotted, and pink bollworms. Pink bollworm (PBW) larvae infest flowers, squares, and bolls. Larva burrows into flowers and bolls to feed on pollen and seeds, respectively. It has a shorter lifecycle and more generations per year, so it develops resistance more quickly than other bollworms. Further, it has cryptic feeding sites, i.e., flowers and bolls/seeds, so it is not exposed to harsh environmental fluctuations and insecticidal applications. The cry toxin concentration is low in its feeding sites, i.e., seeds and flowers of cotton. The use of insecticide and Bt cotton is the primary control measure that has been successful in limiting the damage of PBW. But with the passage of time, it has developed resistance against insecticides and Bt cotton. However, the use of insecticides increases chemical control costs while causing secondary pest problems and environmental pollution. Extensive research has indicated that monitoring and control measures such as biological, cultural, chemical, and host plant resistance methods can be integrated for effective PBW management. The potential of various biological control organisms needs to be explored. The impact of transgenic cotton on non-target organisms, particularly natural enemies, which play an important role in pest control, is still being debated. According to some authors, Bt crops have a negative impact on natural enemies, particularly parasitoids. An experiment was carried out in the Integrated Pest Management Laboratory of the Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India, to study the natural parasitization of PBW on Bt cotton in 2022. A large population of larvae of PBW were kept individually in plastic containers and fed with cotton bolls until the emergence of a parasitoid cocoon. The first cocoon of the parasitoid was observed on October 25, 2022. Symptoms of parasitization were never seen on larvae. Larvae stopped feeding and became inactive before the emergence of parasitoids for pupation. Grub makes its way out of larvae by making a hole in the integument, and immediately after coming out, it spins the cocoon. The adult parasitoid emerged from the cocoon after eight days. The parasitoids that emerged from the cocoon were identified as Cotesia (Braconidae: Hymenoptera) based on the features of the adult. Out of 475 larvae of PBW, 87 were parasitized, with 18.31% of parasitization. Out of these, 6.73% were first instar, 10.52% were second instar, and 1.05% were third instar larvae of PBW. No parasitization was observed in fourth instar larvae. Parasitoids were observed during the fag end of cropping season and mostly on the earlier instars. It is concluded that the potential of Cotesia may be explored as a biological control agent against PBW, which is safer to human beings, environment and non-taraltoget organisms.

Keywords: biocontrol, Bt cotton, Cotesia, Pectinophora gossypiella

Procedia PDF Downloads 56
32 Assessing Brain Targeting Efficiency of Ionisable Lipid Nanoparticles Encapsulating Cas9 mRNA/gGFP Following Different Routes of Administration in Mice

Authors: Meiling Yu, Nadia Rouatbi, Khuloud T. Al-Jamal

Abstract:

Background: Treatment of neurological disorders with modern medical and surgical approaches remains difficult. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. The treatment of brain diseases with gene therapy requires the gene-editing tool to be delivered efficiently to the central nervous system. In this study, we explored the efficiency of different delivery routes, namely intravenous (i.v.), intra-cranial (i.c.), and intra-nasal (i.n.), to deliver stable nucleic acid-lipid particles (SNALPs) containing gene-editing tools namely Cas9 mRNA and sgRNA encoding for GFP as a reporter protein. We hypothesise that SNALPs can reach the brain and perform gene-editing to different extents depending on the administration route. Intranasal administration (i.n.) offers an attractive and non-invasive way to access the brain circumventing the blood–brain barrier. Successful delivery of gene-editing tools to the brain offers a great opportunity for therapeutic target validation and nucleic acids therapeutics delivery to improve treatment options for a range of neurodegenerative diseases. In this study, we utilised Rosa26-Cas9 knock-in mice, expressing GFP, to study brain distribution and gene-editing efficiency of SNALPs after i.v.; i.c. and i.n. routes of administration. Methods: Single guide RNA (sgRNA) against GFP has been designed and validated by in vitro nuclease assay. SNALPs were formulated and characterised using dynamic light scattering. The encapsulation efficiency of nucleic acids (NA) was measured by RiboGreen™ assay. SNALPs were incubated in serum to assess their ability to protect NA from degradation. Rosa26-Cas9 knock-in mice were i.v., i.n., or i.c. administered with SNALPs to test in vivo gene-editing (GFP knockout) efficiency. SNALPs were given as three doses of 0.64 mg/kg sgGFP following i.v. and i.n. or a single dose of 0.25 mg/kg sgGFP following i.c.. knockout efficiency was assessed after seven days using Sanger Sequencing and Inference of CRISPR Edits (ICE) analysis. In vivo, the biodistribution of DiR labelled SNALPs (SNALPs-DiR) was assessed at 24h post-administration using IVIS Lumina Series III. Results: Serum-stable SNALPs produced were 130-140 nm in diameter with ~90% nucleic acid loading efficiency. SNALPs could reach and stay in the brain for up to 24h following i.v.; i.n. and i.c. administration. Decreasing GFP expression (around 50% after i.v. and i.c. and 20% following i.n.) was confirmed by optical imaging. Despite the small number of mice used, ICE analysis confirmed GFP knockout in mice brains. Additional studies are currently taking place to increase mice numbers. Conclusion: Results confirmed efficient gene knockout achieved by SNALPs in Rosa26-Cas9 knock-in mice expressing GFP following different routes of administrations in the following order i.v.= i.c.> i.n. Each of the administration routes has its pros and cons. The next stages of the project involve assessing gene-editing efficiency in wild-type mice and replacing GFP as a model target with therapeutic target genes implicated in Motor Neuron Disease pathology.

Keywords: CRISPR, nanoparticles, brain diseases, administration routes

Procedia PDF Downloads 63
31 Accessing Motional Quotient for All Round Development

Authors: Zongping Wang, Chengjun Cui, Jiacun Wang

Abstract:

The concept of intelligence has been widely used to access an individual's cognitive abilities to learn, form concepts, understand, apply logic, and reason. According to the multiple intelligence theory, there are eight distinguished types of intelligence. One of them is the bodily-kinaesthetic intelligence that links to the capacity of an individual controlling his body and working with objects. Motor intelligence, on the other hand, reflects the capacity to understand, perceive and solve functional problems by motor behavior. Both bodily-kinaesthetic intelligence and motor intelligence refer directly or indirectly to bodily capacity. Inspired by these two intelligence concepts, this paper introduces motional intelligence (MI). MI is two-fold. (1) Body strength, which is the capacity of various organ functions manifested by muscle activity under the control of the central nervous system during physical exercises. It can be measured by the magnitude of muscle contraction force, the frequency of repeating a movement, the time to finish a movement of body position, the duration to maintain muscles in a working status, etc. Body strength reflects the objective of MI. (2) Level of psychiatric willingness to physical events. It is a subjective thing and determined by an individual’s self-consciousness to physical events and resistance to fatigue. As such, we call it subjective MI. Subjective MI can be improved through education and proper social events. The improvement of subjective MI can lead to that of objective MI. A quantitative score of an individual’s MI is motional quotient (MQ). MQ is affected by several factors, including genetics, physical training, diet and lifestyle, family and social environment, and personal awareness of the importance of physical exercise. Genes determine one’s body strength potential. Physical training, in general, makes people stronger, faster and swifter. Diet and lifestyle have a direct impact on health. Family and social environment largely affect one’s passion for physical activities, so does personal awareness of the importance of physical exercise. The key to the success of the MQ study is developing an acceptable and efficient system that can be used to assess MQ objectively and quantitatively. We should apply different accessing systems to different groups of people according to their ages and genders. Field test, laboratory test and questionnaire are among essential components of MQ assessment. A scientific interpretation of MQ score is part of an MQ assessment system as it will help an individual to improve his MQ. IQ (intelligence quotient) and EQ (emotional quotient) and their test have been studied intensively. We argue that IQ and EQ study alone is not sufficient for an individual’s all round development. The significance of MQ study is that it offsets IQ and EQ study. MQ reflects an individual’s mental level as well as bodily level of intelligence in physical activities. It is well-known that the American Springfield College seal includes the Luther Gulick triangle with the words “spirit,” “mind,” and “body” written within it. MQ, together with IQ and EQ, echoes this education philosophy. Since its inception in 2012, the MQ research has spread rapidly in China. By now, six prestigious universities in China have established research centers on MQ and its assessment.

Keywords: motional Intelligence, motional quotient, multiple intelligence, motor intelligence, all round development

Procedia PDF Downloads 116
30 Effect of Salinity and Heavy Metal Toxicity on Gene Expression, and Morphological Characteristics in Stevia rebaudiana Plants

Authors: Umara Nissar Rafiqi, Irum Gul, Nazima Nasrullah, Monica Saifi, Malik Z. Abdin

Abstract:

Background: Stevia rebaudiana, a member of Asteraceae family is an important medicinal plant and produces a commercially used non-caloric natural sweetener, which is also an alternate herbal cure for diabetes. Steviol glycosides are the main sweetening compounds present in these plants. Secondary metabolites are crucial to the adaption of plants to the environment and its overcoming stress conditions. In agricultural procedures, the abiotic stresses like salinity, high metal toxicity and drought, in particular, are responsible for the majority of the reduction that differentiates yield potential from harvestable yield. Salt stress and heavy metal toxicity lead to increased production of reactive oxygen species (ROS). To avoid oxidative damage due to ROS and osmotic stress, plants have a system of anti-oxidant enzymes along with several stress induced enzymes. This helps in scavenging the ROS and relieve the osmotic stress in different cell compartments. However, whether stress induced toxicity modulates the activity of these enzymes in Stevia rebaudiana is poorly understood. Aim: The present study focussed on the effect of salinity, heavy metal toxicity (lead and mercury) on physiological traits and transcriptional profiling of Stevia rebaudiana. Method: Stevia rebaudiana plants were collected from the Central Institute of Medicinal and Aromatic plants (CIMAP), Patnagar, India and maintained under controlled conditions in a greenhouse at Hamdard University, Delhi, India. The plants were subjected to different concentrations of salt (0, 25, 50 and 75 mM respectively) and heavy metals, lead and mercury (0, 100, 200 and 300 µM respectively). The physiological traits such as shoot length, root numbers, leaf growth were evaluated. The samples were collected at different developmental stages and analysed for transcription profiling by RT-PCR. Transcriptional studies in stevia rebaudiana involves important antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), cytochrome P450 monooxygenase (CYP) and stress induced aquaporin (AQU), auxin repressed protein (ARP-1), Ndhc gene. The data was analysed using GraphPad Prism and expressed as mean ± SD. Result: Low salinity and lower metal toxicity did not affect the fresh weight of the plant. However, this was substantially decreased by 55% at high salinity and heavy metal treatment. With increasing salinity and heavy metal toxicity, the values of all studied physiological traits were significantly decreased. Chlorosis in treated plants was also observed which could be due to changes in Fe:Zn ratio. At low concentrations (upto 25 mM) of NaCl and heavy metals, we did not observe any significant difference in the gene expressions of treated plants compared to control plants. Interestingly, at high salt concentration and high metal toxicity, a significant increase in the expression profile of stress induced genes was observed in treated plants compared to control (p < 0.005). Conclusion: Stevia rebaudiana is tolerant to lower salt and heavy metal concentration. This study also suggests that with the increase in concentrations of salt and heavy metals, harvest yield of S. rebaudiana was hampered.

Keywords: Stevia rebaudiana, natural sweetener, salinity, heavy metal toxicity

Procedia PDF Downloads 169
29 Absolute Quantification of the Bexsero Vaccine Component Factor H Binding Protein (fHbp) by Selected Reaction Monitoring: The Contribution of Mass Spectrometry in Vaccinology

Authors: Massimiliano Biagini, Marco Spinsanti, Gabriella De Angelis, Sara Tomei, Ilaria Ferlenghi, Maria Scarselli, Alessia Biolchi, Alessandro Muzzi, Brunella Brunelli, Silvana Savino, Marzia M. Giuliani, Isabel Delany, Paolo Costantino, Rino Rappuoli, Vega Masignani, Nathalie Norais

Abstract:

The gram-negative bacterium Neisseria meningitidis serogroup B (MenB) is an exclusively human pathogen representing the major cause of meningitides and severe sepsis in infants and children but also in young adults. This pathogen is usually present in the 30% of healthy population that act as a reservoir, spreading it through saliva and respiratory fluids during coughing, sneezing, kissing. Among surface-exposed protein components of this diplococcus, factor H binding protein is a lipoprotein proved to be a protective antigen used as a component of the recently licensed Bexsero vaccine. fHbp is a highly variable meningococcal protein: to reflect its remarkable sequence variability, it has been classified in three variants (or two subfamilies), and with poor cross-protection among the different variants. Furthermore, the level of fHbp expression varies significantly among strains, and this has also been considered an important factor for predicting MenB strain susceptibility to anti-fHbp antisera. Different methods have been used to assess fHbp expression on meningococcal strains, however, all these methods use anti-fHbp antibodies, and for this reason, the results are affected by the different affinity that antibodies can have to different antigenic variants. To overcome the limitations of an antibody-based quantification, we developed a quantitative Mass Spectrometry (MS) approach. Selected Reaction Monitoring (SRM) recently emerged as a powerful MS tool for detecting and quantifying proteins in complex mixtures. SRM is based on the targeted detection of ProteoTypicPeptides (PTPs), which are unique signatures of a protein that can be easily detected and quantified by MS. This approach, proven to be highly sensitive, quantitatively accurate and highly reproducible, was used to quantify the absolute amount of fHbp antigen in total extracts derived from 105 clinical isolates, evenly distributed among the three main variant groups and selected to be representative of the fHbp circulating subvariants around the world. We extended the study at the genetic level investigating the correlation between the differential level of expression and polymorphisms present within the genes and their promoter sequences. The implications of fHbp expression on the susceptibility of the strain to killing by anti-fHbp antisera are also presented. To date this is the first comprehensive fHbp expression profiling in a large panel of Neisseria meningitidis clinical isolates driven by an antibody-independent MS-based methodology, opening the door to new applications in vaccine coverage prediction and reinforcing the molecular understanding of released vaccines.

Keywords: quantitative mass spectrometry, Neisseria meningitidis, vaccines, bexsero, molecular epidemiology

Procedia PDF Downloads 277
28 Surveillance of Artemisinin Resistance Markers and Their Impact on Treatment Outcomes in Malaria Patients in an Endemic Area of South-Western Nigeria

Authors: Abiodun Amusan, Olugbenga Akinola, Kazeem Akano, María Hernández-Castañeda, Jenna Dick, Akintunde Sowunmi, Geoffrey Hart, Grace Gbotosho

Abstract:

Introduction: Artemisinin-based Combination Therapy (ACTs) is the cornerstone malaria treatment option in most malaria-endemic countries. Unfortunately, the malaria control effort is constantly being threatened by resistance of Plasmodium falciparum to ACTs. The recent evidence of artemisinin resistance in East Africa and its possibility of spreading to other African regions portends an imminent health catastrophe. This study aimed at evaluating the occurrence, prevalence, and influence of artemisinin-resistance markers on treatment outcomes in Ibadan before and after post-adoption of artemisinin combination therapy (ACTs) in Nigeria in 2005. Method: The study involved day zero dry blood spot (DBS) obtained from malaria patients during retrospective (2000-2005) and prospective (2021) studies. A cohort in the prospective study received oral dihydroartemisinin-piperaquine and underwent a 42-day follow-up to observe treatment outcomes. Genomic DNA was extracted from the DBS samples using a QIAamp blood extraction kit. Fragments of P. falciparum kelch13 (Pfkelch13), P. falciparum coronin (Pfcoronin), P. falciparum multidrug resistance 2 (PfMDR2), and P. falciparum chloroquine resistance transporter (PfCRT) genes were amplified and sequenced on a sanger sequencing platform to identify artemisinin resistance-associated mutations. Mutations were identified by aligning sequenced data with reference sequences obtained from the National Center for Biotechnology Information. Data were analyzed using descriptive statistics and student t-tests. Results: Mean parasite clearance time (PCT) and fever clearance time (FCT) were 2.1 ± 0.6 days (95% CI: 1.97-2.24) and 1.3 ± 0.7 days (95% CI: 1.1-1.6) respectively. Four mutations, K189T [34/53(64.2%)], R255K [2/53(3.8%)], K189N [1/53(1.9%)] and N217H [1/53(1.9%)] were identified within the N-terminal (Coiled-coil containing) domain of Pfkelch13. No artemisinin resistance-associated mutation usually found within the β-propeller domain of the Pfkelch13 gene was found in these analyzed samples. However, K189T and R255K mutations showed a significant correlation with longer parasite clearance time in the patients (P<0.002). The observed Pfkelch13 gene changes did not influence the baseline mean parasitemia (P = 0.44). P76S [17/100 (17%)] and V62M [1/100 (1%)] changes were identified in the Pfcoronin gene fragment without any influence on the parasitological parameters. No change was observed in the PfMDR2 gene, while no artemisinin resistance-associated mutation was found in the PfCRT gene. Furthermore, a sample each in the retrospective study contained the Pfkelch13 K189T and Pfcoronin P76S mutations. Conclusion: The study revealed absence of genetic-based evidence of artemisinin resistance in the study population at the time of study. The high frequency of K189T Pfkelch13 mutation and its correlation with increased parasite clearance time in this study may depict geographical variation of resistance mediators and imminent artemisinin resistance, respectively. The study also revealed an inherent potential of parasites to harbour drug-resistant genotypes before the introduction of ACTs in Nigeria.

Keywords: artemisinin resistance, plasmodium falciparum, Pfkelch13 mutations, Pfcoronin

Procedia PDF Downloads 14
27 The Immunology Evolutionary Relationship between Signal Transducer and Activator of Transcription Genes from Three Different Shrimp Species in Response to White Spot Syndrome Virus Infection

Authors: T. C. C. Soo, S. Bhassu

Abstract:

Unlike the common presence of both innate and adaptive immunity in vertebrates, crustaceans, in particular, shrimps, have been discovered to possess only innate immunity. This further emphasizes the importance of innate immunity within shrimps in pathogenic resistance. Under the study of pathogenic immune challenge, different shrimp species actually exhibit varying degrees of immune resistance towards the same pathogen. Furthermore, even within the same shrimp species, different batches of challenged shrimps can have different strengths of immune defence. Several important pathways are activated within shrimps during pathogenic infection. One of them is JAK-STAT pathway that is activated during bacterial, viral and fungal infections by which STAT(Signal Transducer and Activator of Transcription) gene is the core element of the pathway. Based on theory of Central Dogma, the genomic information is transmitted in the order of DNA, RNA and protein. This study is focused in uncovering the important evolutionary patterns present within the DNA (non-coding region) and RNA (coding region). The three shrimp species involved are Macrobrachium rosenbergii, Penaeus monodon and Litopenaeus vannamei which all possess commercial significance. The shrimp species were challenged with a famous penaeid shrimp virus called white spot syndrome virus (WSSV) which can cause serious lethality. Tissue samples were collected during time intervals of 0h, 3h, 6h, 12h, 24h, 36h and 48h. The DNA and RNA samples were then extracted using conventional kits from the hepatopancreas tissue samples. PCR technique together with designed STAT gene conserved primers were utilized for identification of the STAT coding sequences using RNA-converted cDNA samples and subsequent characterization using various bioinformatics approaches including Ramachandran plot, ProtParam and SWISS-MODEL. The varying levels of immune STAT gene activation for the three shrimp species during WSSV infection were confirmed using qRT-PCR technique. For one sample, three biological replicates with three technical replicates each were used for qRT-PCR. On the other hand, DNA samples were important for uncovering the structural variations within the genomic region of STAT gene which would greatly assist in understanding the STAT protein functional variations. The partially-overlapping primers technique was used for the genomic region sequencing. The evolutionary inferences and event predictions were then conducted through the Bayesian Inference method using all the acquired coding and non-coding sequences. This was supplemented by the construction of conventional phylogenetic trees using Maximum likelihood method. The results showed that adaptive evolution caused STAT gene sequence mutations between different shrimp species which led to evolutionary divergence event. Subsequently, the divergent sites were correlated to the differing expressions of STAT gene. Ultimately, this study assists in knowing the shrimp species innate immune variability and selection of disease resistant shrimps for breeding purpose. The deeper understanding of STAT gene evolution from the perspective of both purifying and adaptive approaches not only can provide better immunological insight among shrimp species, but also can be used as a good reference for immunological studies in humans or other model organisms.

Keywords: gene evolution, JAK-STAT pathway, immunology, STAT gene

Procedia PDF Downloads 116
26 Possible Involvement of DNA-methyltransferase and Histone Deacetylase in the Regulation of Virulence Potential of Acanthamoeba castellanii

Authors: Yi H. Wong, Li L. Chan, Chee O. Leong, Stephen Ambu, Joon W. Mak, Priyadashi S. Sahu

Abstract:

Background: Acanthamoeba is a free-living opportunistic protist which is ubiquitously distributed in the environment. Virulent Acanthamoeba can cause fatal encephalitis in immunocompromised patients and potential blinding keratitis in immunocompetent contact lens wearers. Approximately 24 species have been identified but only the A. castellanii, A. polyphaga and A. culbertsoni are commonly associated with human infections. Until to date, the precise molecular basis for Acanthamoeba pathogenesis remains unclear. Previous studies reported that Acanthamoeba virulence can be diminished through prolonged axenic culture but revived through serial mouse passages. As no clear explanation on this reversible pathogenesis is established, hereby, we postulate that the epigenetic regulators, DNA-methyltransferases (DNMT) and histone-deacetylases (HDAC), could possibly be involved in granting the virulence plasticity of Acanthamoeba spp. Methods: Four rounds of mouse passages were conducted to revive the virulence potential of the virulence-attenuated Acanthamoeba castellanii strain (ATCC 50492). Briefly, each mouse (n=6/group) was inoculated intraperitoneally with Acanthamoebae cells (2x 105 trophozoites/mouse) and incubated for 2 months. Acanthamoebae cells were isolated from infected mouse organs by culture method and subjected to subsequent mouse passage. In vitro cytopathic, encystment and gelatinolytic assays were conducted to evaluate the virulence characteristics of Acanthamoebae isolates for each passage. PCR primers which targeted on the 2 members (DNMT1 and DNMT2) and 5 members (HDAC1 to 5) of the DNMT and HDAC gene families respectively were custom designed. Quantitative real-time PCR (qPCR) was performed to detect and quantify the relative expression of the two gene families in each Acanthamoeba isolates. Beta-tubulin of A. castellanii (Genbank accession no: XP_004353728) was included as housekeeping gene for data normalisation. PCR mixtures were also analyzed by electrophoresis for amplicons detection. All statistical analyses were performed using the paired one-tailed Student’s t test. Results: Our pathogenicity tests showed that the virulence-reactivated Acanthamoeba had a higher degree of cytopathic effect on vero cells, a better resistance to encystment challenge and a higher gelatinolytic activity which was catalysed by serine protease. qPCR assay showed that DNMT1 expression was significantly higher in the virulence-reactivated compared to the virulence-attenuated Acanthamoeba strain (p ≤ 0.01). The specificity of primers which targeted on DNMT1 was confirmed by sequence analysis of PCR amplicons, which showed a 97% similarity to the published DNA-methyltransferase gene of A. castellanii (GenBank accession no: XM_004332804.1). Out of the five primer pairs which targeted on the HDAC family genes, only HDAC4 expression was significantly difference between the two variant strains. In contrast to DNMT1, HDAC4 expression was much higher in the virulence-attenuated Acanthamoeba strain. Conclusion: Our mouse passages had successfully restored the virulence of the attenuated strain. Our findings suggested that DNA-methyltransferase (DNMT1) and histone deacetylase (HDAC4) expressions are associated with virulence potential of Acanthamoeba spp.

Keywords: acanthamoeba, DNA-methyltransferase, histone deacetylase, virulence-associated proteins

Procedia PDF Downloads 259
25 Bacterial Exposure and Microbial Activity in Dental Clinics during Cleaning Procedures

Authors: Atin Adhikari, Sushma Kurella, Pratik Banerjee, Nabanita Mukherjee, Yamini M. Chandana Gollapudi, Bushra Shah

Abstract:

Different sharp instruments, drilling machines, and high speed rotary instruments are routinely used in dental clinics during dental cleaning. Therefore, these cleaning procedures release a lot of oral microorganisms including bacteria in clinic air and may cause significant occupational bioaerosol exposure risks for dentists, dental hygienists, patients, and dental clinic employees. Two major goals of this study were to quantify volumetric airborne concentrations of bacteria and to assess overall microbial activity in this type of occupational environment. The study was conducted in several dental clinics of southern Georgia and 15 dental cleaning procedures were targeted for sampling of airborne bacteria and testing of overall microbial activity in settled dusts over clinic floors. For air sampling, a Biostage viable cascade impactor was utilized, which comprises an inlet cone, precision-drilled 400-hole impactor stage, and a base that holds an agar plate (Tryptic soy agar). A high-flow Quick-Take-30 pump connected to this impactor pulls microorganisms in air at 28.3 L/min flow rate through the holes (jets) where they are collected on the agar surface for approx. five minutes. After sampling, agar plates containing the samples were placed in an ice chest with blue ice and plates were incubated at 30±2°C for 24 to 72 h. Colonies were counted and converted to airborne concentrations (CFU/m3) followed by positive hole corrections. Most abundant bacterial colonies (selected by visual screening) were identified by PCR amplicon sequencing of 16S rRNA genes. For understanding overall microbial activity in clinic floors and estimating a general cleanliness of the clinic surfaces during or after dental cleaning procedures, ATP levels were determined in swabbed dust samples collected from 10 cm2 floor surfaces. Concentration of ATP may indicate both the cell viability and the metabolic status of settled microorganisms in this situation. An ATP measuring kit was used, which utilized standard luciferin-luciferase fluorescence reaction and a luminometer, which quantified ATP levels as relative light units (RLU). Three air and dust samples were collected during each cleaning procedure (at the beginning, during cleaning, and immediately after the procedure was completed (n = 45). Concentrations at the beginning, during, and after dental cleaning procedures were 671±525, 917±1203, and 899±823 CFU/m3, respectively for airborne bacteria and 91±101, 243±129, and 139±77 RLU/sample, respectively for ATP levels. The concentrations of bacteria were significantly higher than typical indoor residential environments. Although an increasing trend for airborne bacteria was observed during cleaning, the data collected at three different time points were not significantly different (ANOVA: p = 0.38) probably due to high standard deviations of data. The ATP levels, however, demonstrated a significant difference (ANOVA: p <0.05) in this scenario indicating significant change in microbial activity on floor surfaces during dental cleaning. The most common bacterial genera identified were: Neisseria sp., Streptococcus sp., Chryseobacterium sp., Paenisporosarcina sp., and Vibrio sp. in terms of frequencies of occurrences, respectively. The study concluded that bacterial exposure in dental clinics could be a notable occupational biohazard, and appropriate respiratory protections for the employees are urgently needed.

Keywords: bioaerosols, hospital hygiene, indoor air quality, occupational biohazards

Procedia PDF Downloads 288
24 The Application of Whole-Cell Luminescent Biosensors for Assessing Bactericidal Properties of Medicinal Plants

Authors: Yuliya Y. Gavrichenko

Abstract:

Background and Aims: The increasing bacterial resistance to almost all the available antibiotics has encouraged scientists to search for alternative sources of antibacterial agents. Nowadays, it is known that many plant secondary metabolites have diverse biological activity. These compounds can be potentially active against human bacterial and viral infections. Extended research has been carried out to explore the use of the luminescent bacterial test as a rapid, accurate and inexpensive method to assess the antibacterial properties and to predict the biological activity spectra for plant origin substances. Method: Botanical material of fifteen species was collected from their natural and cultural habitats on the Crimean peninsula. The aqueous extracts of following plants were tested: Robinia pseudoacacia L., Sideritis comosa, Cotinus coggygria Scop., Thymus serpyllum L., Juglans regia L., Securigera varia L., Achillea millefolium L., Phlomis taurica, Corylus avellana L., Sambucus nigra L., Helichrysum arenarium L., Glycyrrhiza glabra L., Elytrigia repens L., Echium vulgare L., Conium maculatum L. The test was carried out using luminous strains of marine bacteria Photobacterium leiognathi, which was isolated from the Sea of Azov as well as four Escherichia coli MG1655 recombinant strains harbouring Vibrio fischeri luxCDABE genes. Results: The bactericidal capacity of plant extracts showed significant differences in the study. Cotinus coggygria, Phlomis taurica, Juglans regia L. proved to be the most toxic to P. leiognathi. (EC50 = 0.33 g dried plant/l). Glycyrrhiza glabra L., Robinia pseudoacacia L., Sideritis comosa and Helichrysum arenarium L. had moderate inhibitory effects (EC50 = 3.3 g dried plant/l). The rest of the aqueous extracts have decreased the luminescence of no more than 50% at the lowest concentration (16.5 g dried plant/l). Antibacterial activity of herbal extracts against constitutively luminescent E. coli MG1655 (pXen7-lux) strain was observed at approximately the same level as for P. leiognathi. Cotinus coggygria and Conium maculatum L. extracts have increased light emission in the mutant E. coli MG1655 (pFabA-lux) strain which is associated with cell membranes damage. Sideritis comosa, Phlomis taurica, Juglans regia induced SOS response in E. coli (pColD-lux) strain. Glycyrrhiza glabra L. induced protein damage response in E. coli MG1655 (pIbpA-lux) strain. Conclusion: The received results have shown that the plants’ extracts had nonspecific antimicrobial effects against both E. coli (pXen7-lux) and P. leiognathi biosensors. Mutagenic, cytotoxic and protein damage effects have been observed. In general, the bioluminescent inhibition test result correlated with the traditional use of screened plants. It leads to the following conclusion that whole-cell luminescent biosensors could be the indicator of overall plants antibacterial capacity. The results of the investigation have shown a possibility of bioluminescent method in medicine and pharmacy as an approach to research the antibacterial properties of medicinal plants.

Keywords: antibacterial property, bioluminescence, medicinal plants, whole-cell biosensors

Procedia PDF Downloads 95
23 The Preliminary Exposition of Soil Biological Activity, Microbial Diversity and Morpho-Physiological Indexes of Cucumber under Interactive Effect of Allelopathic Garlic Stalk: A Short-Term Dynamic Response in Replanted Alkaline Soil

Authors: Ahmad Ali, Muhammad Imran Ghani, Haiyan Ding, Zhihui Cheng, Muhammad Iqbal

Abstract:

Background and Aims: In recent years, protected cultivation trend, especially in the northern parts of China, spread dynamically where production area, structure, and crops diversity have expanded gradually under plastic greenhouse vegetable cropping (PGVC) system. Under this growing system, continuous monoculture with excessive synthetic fertilizers inputs are common cultivation practices frequently adopted by commercial producers. Such long-term cumulative wild exercise year after year sponsor the continuous cropping obstacles in PGVC soil, which have greatly threatened the regional soil eco-sustainability and further impose the continuous assault on soil ecological diversity leading to the exhaustion of agriculture productivity. The aim of this study was to develop new allelopathic insights by exploiting available biological resources in the favor of sustainable PGVC to illuminate the continuous obstacle factors in plastic greenhouse. Method: A greenhouse study was executed under plastic tunnel located at the Horticulture Experimental Station of the College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, one of the prominent regions for intensive commercial PGVC in China. Post-harvest garlic residues (stalk, leaves) mechanically smashed, homogenized into powder size and incorporated at the ratio of 1:100; 3:100; 5:100 as a soil amendment in a replanted soil that have been used for continuous cucumber monoculture for 7 years (annually double cropping system in a greenhouse). Results: Incorporated C-rich garlic stalk significantly influenced the soil condition through various ways; organic matter decomposition and mineralization, moderately adjusted the soil pH, enhanced the soil nutrient availability, increased enzymatic activities, and promoted 20% more cucumber yield in short-time. Using Illumina MiSeq sequencing analysis of bacterial 16S rRNA and fungal 18S rDNA genes, the current study revealed that addition of garlic stalk/residue could also improve the microbial abundance and community composition in extensively exploited soil, and contributed in soil functionality, caused prosper changes in soil characteristics, reinforced to good crop yield. Conclusion: Our study provided evidence that addition of garlic stalk as soil fertility amendment is a feasible, cost-effective and efficient resource utilization way for renovation of degraded soil health, ameliorate soil quality components and improve ecological environment in short duration. Our study may provide a better scientific understanding for efficient crop residue management typically from allelopathic source.

Keywords: garlic stalk, microbial community dynamics, plant growth, soil amendment, soil-plant system

Procedia PDF Downloads 100
22 Transcriptional Differences in B cell Subpopulations over the Course of Preclinical Autoimmunity Development

Authors: Aleksandra Bylinska, Samantha Slight-Webb, Kevin Thomas, Miles Smith, Susan Macwana, Nicolas Dominguez, Eliza Chakravarty, Joan T. Merrill, Judith A. James, Joel M. Guthridge

Abstract:

Background: Systemic Lupus Erythematosus (SLE) is an interferon-related autoimmune disease characterized by B cell dysfunction. One of the main hallmarks is a loss of tolerance to self-antigens leading to increased levels of autoantibodies against nuclear components (ANAs). However, up to 20% of healthy ANA+ individuals will not develop clinical illness. SLE is more prevalent among women and minority populations (African, Asian American and Hispanics). Moreover, African Americans have a stronger interferon (IFN) signature and develop more severe symptoms. The exact mechanisms involved in ethnicity-dependent B cell dysregulation and the progression of autoimmune disease from ANA+ healthy individuals to clinical disease remains unclear. Methods: Peripheral blood mononuclear cells (PBMCs) from African (AA) and European American (EA) ANA- (n=12), ANA+ (n=12) and SLE (n=12) individuals were assessed by multimodal scRNA-Seq/CITE-Seq methods to examine differential gene signatures in specific B cell subsets. Library preparation was done with a 10X Genomics Chromium according to established protocols and sequenced on Illumina NextSeq. The data were further analyzed for distinct cluster identification and differential gene signatures in the Seurat package in R and pathways analysis was performed using Ingenuity Pathways Analysis (IPA). Results: Comparing all subjects, 14 distinct B cell clusters were identified using a community detection algorithm and visualized with Uniform Manifold Approximation Projection (UMAP). The proportion of each of those clusters varied by disease status and ethnicity. Transitional B cells trended higher in ANA+ healthy individuals, especially in AA. Ribonucleoprotein high population (HNRNPH1 elevated, heterogeneous nuclear ribonucleoprotein, RNP-Hi) of proliferating Naïve B cells were more prevalent in SLE patients, specifically in EA. Interferon-induced protein high population (IFIT-Hi) of Naive B cells are increased in EA ANA- individuals. The proportion of memory B cells and plasma cells clusters tend to be expanded in SLE patients. As anticipated, we observed a higher signature of cytokine-related pathways, especially interferon, in SLE individuals. Pathway analysis among AA individuals revealed an NRF2-mediated Oxidative Stress response signature in the transitional B cell cluster, not seen in EA individuals. TNFR1/2 and Sirtuin Signaling pathway genes were higher in AA IFIT-Hi Naive B cells, whereas they were not detected in EA individuals. Interferon signaling was observed in B cells in both ethnicities. Oxidative phosphorylation was found in age-related B cells (ABCs) for both ethnicities, whereas Death Receptor Signaling was found only in EA patients in these cells. Interferon-related transcription factors were elevated in ABCs and IFIT-Hi Naive B cells in SLE subjects of both ethnicities. Conclusions: ANA+ healthy individuals have altered gene expression pathways in B cells that might drive apoptosis and subsequent clinical autoimmune pathogenesis. Increases in certain regulatory pathways may delay progression to SLE. Further, AA individuals have more elevated activation pathways that may make them more susceptible to SLE.

Keywords:

Procedia PDF Downloads 149
21 Molecular Characterization and Arsenic Mobilization Properties of a Novel Strain IIIJ3-1 Isolated from Arsenic Contaminated Aquifers of Brahmaputra River Basin, India

Authors: Soma Ghosh, Balaram Mohapatra, Pinaki Sar, Abhijeet Mukherjee

Abstract:

Microbial role in arsenic (As) mobilization in the groundwater aquifers of Brahmaputra river basin (BRB) in India, severely threatened by high concentrations of As, remains largely unknown. The present study, therefore, is a molecular and ecophysiological characterization of an indigenous bacterium strain IIIJ3-1 isolated from As contaminated groundwater of BRB and application of this strain in several microcosm set ups differing in their organic carbon (OC) source and terminal electron acceptors (TEA), to understand its role in As dissolution under aerobic and anaerobic conditions. Strain IIIJ3-1 was found to be a new facultative anaerobic, gram-positive, endospore-forming strain capable of arsenite (As3+) oxidation and dissimilatory arsenate (As5+) reduction. The bacterium exhibited low genomic (G+C)% content (45 mol%). Although, its 16S rRNA gene sequence revealed a maximum similarity of 99% with Bacillus cereus ATCC 14579(T) but the DNA-DNA relatedness of their genomic DNAs was only 49.9%, which remains well below the value recommended to delimit different species. Abundance of fatty acids iC17:0, iC15:0 and menaquinone (MK) 7 though corroborates its taxonomic affiliation with B. cereus sensu-lato group, presence of hydroxy fatty acids (HFAs), C18:2, MK5 and MK6 marked its uniqueness. Besides being highly As resistant (MTC=10mM As3+, 350mM As5+), metabolically diverse, efficient aerobic As3+ oxidizer; it exhibited near complete dissimilatory reduction of As5+ (1 mM). Utilization of various carbon sources with As5+ as TEA revealed lactate to serve as the best electron donor. Aerobic biotransformation assay yielded a lower Km for As3+ oxidation than As5+ reduction. Arsenic homeostasis was found to be conferred by the presence of arr, arsB, aioB, and acr3(1) genes. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) analysis of this bacterium revealed reduction in cell size upon exposure to As and formation of As-rich electron opaque dots following growth with As3+. Incubation of this strain with sediment (sterilised) collected from BRB aquifers under varying OC, TEA and redox conditions revealed that the strain caused highest As mobilization from solid to aqueous phase under anaerobic condition with lactate and nitrate as electron donor and acceptor, respectively. Co-release of highest concentrations of oxalic acid, a well known bioweathering agent, considerable fold increase in viable cell counts and SEM-EDX and X-ray diffraction analysis of the sediment after incubation under this condition indicated that As release is consequent to microbial bioweathering of the minerals. Co-release of other elements statistically proves decoupled release of As with Fe and Zn. Principle component analysis also revealed prominent role of nitrate under aerobic and/or anaerobic condition in As release by strain IIIJ3-1. This study, therefore, is the first to isolate, characterize and reveal As mobilization property of a strain belonging to the Bacillus cereus sensu lato group isolated from highly As contaminated aquifers of Brahmaputra River Basin.

Keywords: anaerobic microcosm, arsenic rich electron opaque dots, Arsenic release, Bacillus strain IIIJ3-1

Procedia PDF Downloads 105
20 Use of Zikani’s Ribosome Modulating Agents for Treating Recessive Dystrophic & Junctional Epidermolysis Bullosa with Nonsense Mutations

Authors: Mei Chen, Yingping Hou, Michelle Hao, Soheil Aghamohammadzadeh, Esteban Terzo, Roger Clark, Vijay Modur

Abstract:

Background: Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a genetic skin condition characterized by skin tearing and unremitting blistering upon minimal trauma. Repeated blistering, fibrosis, and scarring lead to aggressive squamous cell carcinoma later in life. RDEB is caused by mutations in the COL7A1 gene encoding collagen type VII (C7), the major component of anchoring fibrils mediating epidermis-dermis adherence. Nonsense mutations in the COL7A1 gene of a subset of RDEB patients leads to premature termination codons (PTC). Similarly, most Junctional Epidermolysis Bullosa (JEB) cases are caused by nonsense mutations in the LAMB3 gene encoding the β3 subunit of laminin 332. Currently, there is an unmet need for the treatment of RDEB and JEB. Zikani Therapeutics has discovered an array of macrocyclic compounds with ring structures similar to macrolide antibiotics that can facilitate readthrough activity of nonsense mutations in the COL7A1 and LAMB3 genes by acting as Ribosome Modulating Agents (RMAs). The medicinal chemistry synthetic advancements of these macrocyclic compounds have allowed targeting the human ribosome while preserving the structural elements responsible for the safety and pharmacokinetic profile of clinically used macrolide antibiotics. Methods: C7 expression was used as a measure of readthrough activity by immunoblot assays in two primary human fibroblasts from RDEB patients (R578X/R578X and R163X/R1683X-COL7A1). Similarly, immunoblot assays in C325X/c.629-12T > A-LAMB3 keratinocytes were used to measure readthrough activity for JEB. The relative readthrough activity of each compound was measured relative to Gentamicin. An imaging-based fibroblast migration assay was used as an assessment of C7 functionality in RDEB-fibroblasts over 16-20 hrs. The incubation period for the above experiments was 48 hrs for RDEB fibroblasts and 72 hours for JEB keratinocytes. Results: 9 RMAs demonstrated increased protein expression in both patient RDEB fibroblasts. The highest readthrough activity at tested concentrations without cytotoxicities increased protein expression up to 179% of Gentamicin (400 µg/ml), with favored readthrough activity in R163X/R1683X-COL7A1 fibroblasts. Concurrent with protein expression, fibroblast hypermotility phenotype observed in RDEB was rescued by reducing motility by ~35% to WT levels (the same level as 690 µM Gentamicin treated cells). Laminin β3 expression was also shown to be increased by 6 RMAs in keratinocytes to 33-83% of (400 µg/ml) Gentamicin. Conclusions: To date, 9 RMAs have been identified that enhance the expression of functional C7 in a mutation-dependent manner in two different RDEB patient fibroblast backgrounds (R578X/R578X and R163X/R1683X-COL7A1). A further 6 RMAs have been identified that enhance the readthrough of C325X-LAMB3 in JEB patient keratinocytes. Based on the clinical trial conducted by us with topical gentamycin in 2017, Zikani’s RMAs achieve clinically significant levels of read-through for the treatment of recessive dystrophic and Junctional Epidermolysis Bullosa.

Keywords: epidermolysis bullosa, nonsense mutation, readthrough, ribosome modulation

Procedia PDF Downloads 76
19 Molecular Characterization of Chicken B Cell Marker (ChB6) in Native Chicken of Poonch Region from International Borders of India and Pakistan

Authors: Mandeep Singh Azad.Dibyendu Chakraborty, Vikas Vohra

Abstract:

Introduction: Poonch is one of the remotest districts of the Jammu and Kashmir (UT) and situated on international borders. This native poultry population in these areas is quite hardy and thrives well in adverse climatic conditions. Till date, no local breed from this area (Jammu Province) has been characterized thus present study was undertaken with the main objectives of molecular characterization of ChB6 gene in local native chicken of Poonch region located at international borders between India and Pakistan. The chicken B-cell marker (ChB6) gene has been proposed as a candidate gene in regulating B-cell development. Material and Method: RNA was isolated by Blood RNA Purification Kit (HiPura) and Trizol method from whole blood samples. Positive PCR products with size 1110 bp were selected for further purification, sequencing and analysis. The amplified PCR product was sequenced by Sangers dideoxy chain termination method. The obtained sequence of ChB6 gene of Poonchi chicken were compared by MEGAX software. BioEdit software was used to construct phylogenic tree, and Neighbor Joining method was used to infer evolutionary history. In order to compute evolutionary distance Maximum Composite Likelihood method was used. Results: The positively amplified samples of ChB6 genes were then subjected to Sanger sequencing with “Primer Walking. The sequences were then analyzed using MEGA X and BioEdit software. The sequence results were compared with other reported sequence from different breed of chicken and with other species obtained from the NCBI (National Center for Biotechnology Information). ClustalW method using MEGA X software was used for multiple sequence alignment. The sequence results of ChB6 gene of Poonchi chicken was compared with Centrocercus urophasianus, G. gallus mRNA for B6.1 protein, G. gallus mRNA for B6.2, G. gallus mRNA for B6.3, Gallus gallus B6.1, Halichoeres bivittatus, Miniopterus fuliginosus Ferringtonia patagonica, Tympanuchus phasianellus. The genetic distances were 0.2720, 0.0000, 0.0245, 0.0212, 0.0147, 1.6461, 2.2394, 2.0070 and 0.2363 for ChB6 gene of Poonchi chicken sequence with other sequences in the present study respectively. Sequencing results showed variations between different species. It was observed that AT content were higher then GC content for ChB6 gene. The lower AT content suggests less thermostable. It was observed that there was no sequence difference within the Poonchi population for ChB6 gene. The high homology within chicken population indicates the conservation of ChB6 gene. The maximum difference was observed with Miniopterus fuliginosus (Eastern bent-wing bat) followed by Ferringtonia patagonica and Halichoeres bivittatus. Conclusion: Genetic variation is the essential component for genetic improvement. The results of immune related gene Chb6 shows between population genetic variability. Therefore, further association studies of this gene with some prevalent diseases in large population would be helpful to identify disease resistant/ susceptible genotypes in the indigenous chicken population.

Keywords: ChB6, sequencing, ClustalW, genetic distance, poonchi chicken, SNP

Procedia PDF Downloads 36
18 Blood Thicker Than Water: A Case Report on Familial Ovarian Cancer

Authors: Joanna Marie A. Paulino-Morente, Vaneza Valentina L. Penolio, Grace Sabado

Abstract:

Ovarian cancer is extremely hard to diagnose in its early stages, and those afflicted at the time of diagnosis are typically asymptomatic and in the late stages of the disease, with metastasis to other organs. Ovarian cancers often occur sporadically, with only 5% associated with hereditary mutations. Mutations in the BRCA1 and BRCA2 tumor suppressor genes have been found to be responsible for the majority of hereditary ovarian cancers. One type of ovarian tumor is Malignant Mixed Mullerian Tumor (MMMT), which is a very rare and aggressive type, accounting for only 1% of all ovarian cancers. Reported is a case of a 43-year-old G3P3 (3003), who came into our institution due to a 2-month history of difficulty of breathing. Family history reveals that her eldest and younger sisters both died of ovarian malignancy, with her younger sister having a histopathology report of endometrioid ovarian carcinoma, left ovary stage IIIb. She still has 2 asymptomatic sisters. Physical examination pointed to pleural effusion of right lung, and presence of bilateral ovarian new growth, which had a Sassone score of 13. Admitting Diagnosis was G3P3 (3003), Ovarian New Growth, bilateral, Malignant; Pleural effusion secondary to malignancy. BRCA was requested to establish a hereditary mutation; however, the patient had no funds. Once the patient was stabilized, TAHBSO with surgical staging was performed. Intraoperatively, the pelvic cavity was occupied by firm, irregularly shaped ovaries, with a colorectal metastasis. Microscopic sections from both ovaries and the colorectal metastasis had pleomorphic tumor cells lined by cuboidal to columnar epithelium exhibiting glandular complexity, displaying nuclear atypia and increased nuclear-cytoplasmic ratio, which are infiltrating the stroma, consistent with the features of Malignant Mixed Mullerian Tumor, since MMMT is composed histologically of malignant epithelial and sarcomatous elements. In conclusion, discussed is the clinic-pathological feature of a patient with primary ovarian Malignant Mixed Mullerian Tumor, a rare malignancy comprising only 1% of all ovarian neoplasms. Also, by understanding the hereditary ovarian cancer syndromes and its relation to this patient, it cannot be overemphasized that a comprehensive family history is really fundamental for early diagnosis. The familial association of the disease, given that the patient has two sisters who were diagnosed with an advanced stage of ovarian cancer and succumbed to the disease at a much earlier age than what is reported in the general population, points to a possible hereditary syndrome which occurs in only 5% of ovarian neoplasms. In a low-resource setting, being in a third world country, the following will be recommended for monitoring and/or screening women who are at high risk for developing ovarian cancer, such as the remaining sisters of the patient: 1) Physical examination focusing on the breast, abdomen, and rectal area every 6 months. 2) Transvaginal sonography every 6 months. 3) Mammography annually. 4) CA125 for postmenopausal women. 5) Genetic testing for BRCA1 and BRCA2 will be reserved for those who are financially capable.

Keywords: BRCA, hereditary breast-ovarian cancer syndrome, malignant mixed mullerian tumor, ovarian cancer

Procedia PDF Downloads 261
17 Analysis of Potential Associations of Single Nucleotide Polymorphisms in Patients with Schizophrenia Spectrum Disorders

Authors: Tatiana Butkova, Nikolai Kibrik, Kristina Malsagova, Alexander Izotov, Alexander Stepanov, Anna Kaysheva

Abstract:

Relevance. The genetic risk of developing schizophrenia is determined by two factors: single nucleotide polymorphisms and gene copy number variations. The search for serological markers for early diagnosis of schizophrenia is driven by the fact that the first five years of the disease are accompanied by significant biological, psychological, and social changes. It is during this period that pathological processes are most amenable to correction. The aim of this study was to analyze single nucleotide polymorphisms (SNPs) that are hypothesized to potentially influence the onset and development of the endogenous process. Materials and Methods It was analyzed 73 single nucleotide polymorphism variants. The study included 48 patients undergoing inpatient treatment at "Psychiatric Clinical Hospital No. 1" in Moscow, comprising 23 females and 25 males. Inclusion criteria: - Patients aged 18 and above. - Diagnosis according to ICD-10: F20.0, F20.2, F20.8, F21.8, F25.1, F25.2. - Voluntary informed consent from patients. Exclusion criteria included: - The presence of concurrent somatic or neurological pathology, neuroinfections, epilepsy, organic central nervous system damage of any etiology, and regular use of medication. - Substance abuse and alcohol dependence. - Women who were pregnant or breastfeeding. Clinical and psychopathological assessment was complemented by psychometric evaluation using the PANSS scale at the beginning and end of treatment. The duration of observation during therapy was 4-6 weeks. Total DNA extraction was performed using QIAamp DNA. Blood samples were processed on Illumina HiScan and genotyped for 652,297 markers on the Infinium Global Chips Screening Array-24v2.0 using the IMPUTE2 program with parameters Ne=20,000 and k=90. Additional filtration was performed based on INFO>0.5 and genotype probability>0.5. Quality control of the obtained DNA was conducted using agarose gel electrophoresis, with each tested sample having a volume of 100 µL. Results. It was observed that several SNPs exhibited gender dependence. We identified groups of single nucleotide polymorphisms with a membership of 80% or more in either the female or male gender. These SNPs included rs2661319, rs2842030, rs4606, rs11868035, rs518147, rs5993883, and rs6269.Another noteworthy finding was the limited combination of SNPs sufficient to manifest clinical symptoms leading to hospitalization. Among all 48 patients, each of whom was analyzed for deviations in 73 SNPs, it was discovered that the combination of involved SNPs in the manifestation of pronounced clinical symptoms of schizophrenia was 19±3 out of 73 possible. In study, the frequency of occurrence of single nucleotide polymorphisms also varied. The most frequently observed SNPs were rs4849127 (in 90% of cases), rs1150226 (86%), rs1414334 (75%), rs10170310 (73%), rs2857657, and rs4436578 (71%). Conclusion. Thus, the results of this study provide additional evidence that these genes may be associated with the development of schizophrenia spectrum disorders. However, it's impossible cannot rule out the hypothesis that these polymorphisms may be in linkage disequilibrium with other functionally significant polymorphisms that may actually be involved in schizophrenia spectrum disorders. It has been shown that missense SNPs by themselves are likely not causative of the disease but are in strong linkage disequilibrium with non-functional SNPs that may indeed contribute to disease predisposition.

Keywords: gene polymorphisms, genotyping, single nucleotide polymorphisms, schizophrenia.

Procedia PDF Downloads 40
16 LncRNA-miRNA-mRNA Networks Associated with BCR-ABL T315I Mutation in Chronic Myeloid Leukemia

Authors: Adenike Adesanya, Nonthaphat Wong, Xiang-Yun Lan, Shea Ping Yip, Chien-Ling Huang

Abstract:

Background: The most challenging mutation of the oncokinase BCR-ABL protein T315I, which is commonly known as the “gatekeeper” mutation and is notorious for its strong resistance to almost all tyrosine kinase inhibitors (TKIs), especially imatinib. Therefore, this study aims to identify T315I-dependent downstream microRNA (miRNA) pathways associated with drug resistance in chronic myeloid leukemia (CML) for prognostic and therapeutic purposes. Methods: T315I-carrying K562 cell clones (K562-T315I) were generated by the CRISPR-Cas9 system. Imatinib-treated K562-T315I cells were subjected to small RNA library preparation and next-generation sequencing. Putative lncRNA-miRNA-mRNA networks were analyzed with (i) DESeq2 to extract differentially expressed miRNAs, using Padj value of 0.05 as cut-off, (ii) STarMir to obtain potential miRNA response element (MRE) binding sites of selected miRNAs on lncRNA H19, (iii) miRDB, miRTarbase, and TargetScan to predict mRNA targets of selected miRNAs, (iv) IntaRNA to obtain putative interactions between H19 and the predicted mRNAs, (v) Cytoscape to visualize putative networks, and (vi) several pathway analysis platforms – Enrichr, PANTHER and ShinyGO for pathway enrichment analysis. Moreover, mitochondria isolation and transcript quantification were adopted to determine the new mechanism involved in T315I-mediated resistance of CML treatment. Results: Verification of the CRISPR-mediated mutagenesis with digital droplet PCR detected the mutation abundance of ≥80%. Further validation showed the viability of ≥90% by cell viability assay, and intense phosphorylated CRKL protein band being detected with no observable change for BCR-ABL and c-ABL protein expressions by Western blot. As reported by several investigations into hematological malignancies, we determined a 7-fold increase of H19 expression in K562-T315I cells. After imatinib treatment, a 9-fold increment was observed. DESeq2 revealed 171 miRNAs were differentially expressed K562-T315I, 112 out of these miRNAs were identified to have MRE binding regions on H19, and 26 out of the 112 miRNAs were significantly downregulated. Adopting the seed-sequence analysis of these identified miRNAs, we obtained 167 mRNAs. 6 hub miRNAs (hsa-let-7b-5p, hsa-let-7e-5p, hsa-miR-125a-5p, hsa-miR-129-5p, and hsa-miR-372-3p) and 25 predicted genes were identified after constructing hub miRNA-target gene network. These targets demonstrated putative interactions with H19 lncRNA and were mostly enriched in pathways related to cell proliferation, senescence, gene silencing, and pluripotency of stem cells. Further experimental findings have also shown the up-regulation of mitochondrial transcript and lncRNA MALAT1 contributing to the lncRNA-miRNA-mRNA networks induced by BCR-ABL T315I mutation. Conclusions: Our results have indicated that lncRNA-miRNA regulators play a crucial role not only in leukemogenesis but also in drug resistance, considering the significant dysregulation and interactions in the K562-T315I cell model generated by CRISPR-Cas9. In silico analysis has further shown that lncRNAs H19 and MALAT1 bear several complementary miRNA sites. This implies that they could serve as a sponge, hence sequestering the activity of the target miRNAs.

Keywords: chronic myeloid leukemia, imatinib resistance, lncRNA-miRNA-mRNA, T315I mutation

Procedia PDF Downloads 125
15 Metabolic Changes during Reprogramming of Wheat and Triticale Microspores

Authors: Natalia Hordynska, Magdalena Szechynska-Hebda, Miroslaw Sobczak, Elzbieta Rozanska, Joanna Troczynska, Zofia Banaszak, Maria Wedzony

Abstract:

Albinism is a common problem encountered in wheat and triticale breeding programs, which require in vitro culture steps e.g. generation of doubled haploids via androgenesis process. Genetic factor is a major determinant of albinism, however, environmental conditions such as temperature and media composition influence the frequency of albino plant formation. Cold incubation of wheat and triticale spikes induced a switch from gametophytic to sporophytic development. Further, androgenic structures formed from anthers of the genotypes susceptible to androgenesis or treated with cold stress, had a pool of structurally primitive plastids, with small starch granules or swollen thylakoids. High temperature was a factor inducing andro-genesis of wheat and triticale, but at the same time, it was a factor favoring the formation of albino plants. In genotypes susceptible to albinism or after heat stress conditions, cells formed from anthers were vacuolated, and plastids were eliminated. Partial or complete loss of chlorophyll pigments and incomplete differentiation of chloroplast membranes result in formation of tissues or whole plant unable to perform photosynthesis. Indeed, susceptibility to the andro-genesis process was associated with an increase of total concentration of photosynthetic pigments in anthers, spikes and regenerated plants. The proper balance of the synthesis of various pigments, was the starting point for their proper incorporation into photosynthetic membranes. In contrast, genotypes resistant to the androgenesis process and those treated with heat, contained 100 times lower content of photosynthetic pigments. In particular, the synthesis of violaxanthin, zeaxanthin, lutein and chlorophyll b was limited. Furthermore, deregulation of starch and lipids synthesis, which led to the formation of very complex starch granules and an increased number of oleosomes, respectively, correlated with the reduction of the efficiency of androgenesis. The content of other sugars varied depending on the genotype and the type of stress. The highest content of various sugars was found for genotypes susceptible to andro-genesis, and highly reduced for genotypes resistant to androgenesis. The most important sugars seem to be glucose and fructose. They are involved in sugar sensing and signaling pathways, which affect the expression of various genes and regulate plant development. Sucrose, on the other hand, seems to have minor effect at each stage of the androgenesis. The sugar metabolism was related to metabolic activity of microspores. The genotypes susceptible to androgenesis process had much faster mitochondrium- and chloroplast-dependent energy conversion and higher heat production by tissues. Thus, the effectiveness of metabolic processes, their balance and the flexibility under the stress was a factor determining the direction of microspore development, and in the later stages of the androgenesis process, a factor supporting the induction of androgenic structures, chloroplast formation and the regeneration of green plants. The work was financed by Ministry of Agriculture and Rural Development within Program: ‘Biological Progress in Plant Production’, project no HOR.hn.802.15.2018.

Keywords: androgenesis, chloroplast, metabolism, temperature stress

Procedia PDF Downloads 235
14 Isolation of Bacterial Species with Potential Capacity for Siloxane Removal in Biogas Upgrading

Authors: Ellana Boada, Eric Santos-Clotas, Alba Cabrera-Codony, Maria Martin, Lluis Baneras, Frederic Gich

Abstract:

Volatile methylsiloxanes (VMS) are a group of manmade silicone compounds widely used in household and industrial applications that end up on the biogas produced through the anaerobic digestion of organic matter in landfills and wastewater treatment plants. The presence of VMS during the biogas energy conversion can cause damage on the engines, reducing the efficiency of this renewable energy source. Non regenerative adsorption onto activated carbon is the most widely used technology to remove siloxanes from biogas, while new trends point out that biotechnology offers a low-cost and environmentally friendly alternative to conventional technologies. The first objective of this research was to enrich, isolate and identify bacterial species able to grow using siloxane molecules as a sole carbon source: anoxic wastewater sludge was used as initial inoculum in liquid anoxic enrichments, adding D4 (as representative siloxane compound) previously adsorbed on activated carbon. After several months of acclimatization, liquid enrichments were plated onto solid media containing D4 and thirty-four bacterial isolates were obtained. 16S rRNA gene sequencing allowed the identification of strains belonging to the following species: Ciceribacter lividus, Alicycliphilus denitrificans, Pseudomonas aeruginosa and Pseudomonas citronellolis which are described to be capable to degrade toxic volatile organic compounds. Kinetic assays with 8 representative strains revealed higher cell growth in the presence of D4 compared to the control. Our second objective was to characterize the community composition and diversity of the microbial community present in the enrichments and to elucidate whether the isolated strains were representative members of the community or not. DNA samples were extracted, the 16S rRNA gene was amplified (515F & 806R primer pair), and the microbiome analyzed from sequences obtained with a MiSeq PE250 platform. Results showed that the retrieved isolates only represented a minor fraction of the microorganisms present in the enrichment samples, which were represented by Alpha, Beta, and Gamma proteobacteria as dominant groups in the category class thus suggesting that other microbial species and/or consortia may be important for D4 biodegradation. These results highlight the need of additional protocols for the isolation of relevant D4 degraders. Currently, we are developing molecular tools targeting key genes involved in siloxane biodegradation to identify and quantify the capacity of the isolates to metabolize D4 in batch cultures supplied with a synthetic gas stream of air containing 60 mg m⁻³ of D4 together with other volatile organic compounds found in the biogas mixture (i.e. toluene, hexane and limonene). The isolates were used as inoculum in a biotrickling filter containing lava rocks and activated carbon to assess their capacity for siloxane removal. Preliminary results of biotrickling filter performance showed 35% of siloxane biodegradation in a contact time of 14 minutes, denoting that biological siloxane removal is a promising technology for biogas upgrading.

Keywords: bacterial cultivation, biogas upgrading, microbiome, siloxanes

Procedia PDF Downloads 224
13 In vivo Evaluation of LAB Probiotic Potential with the Zebrafish Animal Model

Authors: Iñaki Iturria, Pasquale Russo, Montserrat Nacher-Vázquez, Giuseppe Spano, Paloma López, Miguel Angel Pardo

Abstract:

Introduction: It is known that some Lactic Acid Bacteria (LAB) present an interesting probiotic effect. Probiotic bacteria stimulate host resistance to microbial pathogens and thereby aid in immune response, and modulate the host's immune responses to antigens with a potential to down-regulate hypersensitivity reactions. Therefore, probiotic therapy is valuable against intestinal infections and may be beneficial in the treatment of Inflammatory Bowel Disease (IBD). Several in vitro tests are available to evaluate the probiotic potential of a LAB strain. However, an in vivo model is required to understand the interaction between the host immune system and the bacteria. During the last few years, zebrafish (Danio rerio) has gained interest as a promising vertebrate model in this field. This organism has been extensively used to study the interaction between the host and the microbiota, as well as the host immune response under several microbial infections. In this work, we report on the use of the zebrafish model to investigate in vivo the colonizing ability and the immunomodulatory effect of probiotic LAB. Methods: Lactobacillus strains belonging to different LAB species were fluorescently tagged and used to colonize germ-free zebrafish larvae gastrointestinal tract (GIT). Some of the strains had a well-documented probiotic effect (L. acidophilus LA5); while others presented an exopolysaccharide (EPS) producing phenotype, thus allowing evaluating the influence of EPS in the colonization and immunomodulatory effect. Bacteria colonization was monitored for 72 h by direct observation in real time using fluorescent microscopy. CFU count per larva was also evaluated at different times. The immunomodulatory effect was assessed analysing the differential expression of several innate immune system genes (MyD88, NF-κB, Tlr4, Il1β and Il10) by qRT- PCR. The anti-inflammatory effect was evaluated using a chemical enterocolitis zebrafish model. The protective effect against a pathogen was also studied. To that end, a challenge test was developed using a fluorescently tagged pathogen (Vibrio anguillarum-GFP+). The progression of the infection was monitored up to 3 days using a fluorescent stereomicroscope. Mortality rates and CFU counts were also registered. Results and conclusions: Larvae exposed to EPS-producing bacteria showed a higher fluorescence and CFU count than those colonized with no-EPS phenotype LAB. In the same way, qRT-PCR results revealed an immunomodulatory effect on the host after the administration of the strains with probiotic activity. A downregulation of proinflammatory cytoquines as well as other cellular mediators of inflammation was observed. The anti-inflammatory effect was found to be particularly marked following exposure to LA% strain, as well as EPS producing strains. Furthermore, the challenge test revealed a protective effect of probiotic administration. As a matter of fact, larvae fed with probiotics showed a decrease in the mortality rate ranging from 20 to 35%. Discussion: In this work, we developed a promising model, based on the use of gnotobiotic zebrafish coupled with a bacterial fluorescent tagging in order to evaluate the probiotic potential of different LAB strains. We have successfully used this system to monitor in real time the colonization and persistence of exogenous LAB within the gut of zebrafish larvae, to evaluate their immunomodulatory effect and for in vivo competition assays. This approach could bring further insights into the complex microbial-host interactions at intestinal level.

Keywords: gnotobiotic, immune system, lactic acid bacteria, probiotics, zebrafish

Procedia PDF Downloads 294
12 Biosynthesis of a Nanoparticle-Antibody Phthalocyanine Photosensitizer for Use in Targeted Photodynamic Therapy of Cervical Cancer

Authors: Elvin P. Chizenga, Heidi Abrahamse

Abstract:

Cancer cell resistance to therapy is the main cause of treatment failures and the poor prognosis of cancer convalescence. The progression of cervical cancer to other parts of the genitourinary system and the reported recurrence rates are overwhelming. Current treatments, including surgery, chemo and radiation have been inefficient in eradicating the tumor cells. These treatments are also associated with poor prognosis and reduced quality of life, including fertility loss. This has inspired the need for the development of new treatment modalities to eradicate cervical cancer successfully. Photodynamic Therapy (PDT) is a modern treatment modality that induces cell death by photochemical interactions of light and a photosensitizer, which in the presence of molecular oxygen, yields a set of chemical reactions that generate Reactive Oxygen Species (ROS) and other free radical species causing cell damage. Enhancing PDT using modified drug delivery can increase the concentration of the photosensitizer in the tumor cells, and this has the potential to maximize its therapeutic efficacy. In cervical cancer, all infected cells constitutively express genes of the E6 and E7 HPV viral oncoproteins, resulting in high concentrations of E6 and E7 in the cytoplasm. This provides an opportunity for active targeting of cervical cancer cells using immune-mediated drug delivery to maximize therapeutic efficacy. The use of nanoparticles in PDT has also proven effective in enhancing therapeutic efficacy. Gold nanoparticles (AuNps) in particular, are explored for their use in biomedicine due to their biocompatibility, low toxicity, and enhancement of drug uptake by tumor cells. In this present study, a biomolecule comprising of AuNPs, anti-E6 monoclonal antibodies, and Aluminium Phthalocyanine photosensitizer was synthesized for use in targeted PDT of cervical cancer. The AuNp-Anti-E6-Sulfonated Aluminium Phthalocyanine mix (AlPcSmix) photosensitizing biomolecule was synthesized by coupling AuNps and anti-E6 monoclonal antibodies to the AlPcSmix via Polyethylene Glycol (PEG) chemical links. The final product was characterized using Transmission Electron Microscope (TEM), Zeta Potential, Uv-Vis Spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), and X-ray diffraction (XRD), to confirm its chemical structure and functionality. To observe its therapeutic role in treating cervical cancer, cervical cancer cells, HeLa cells were seeded in 3.4 cm² diameter culture dishes at a concentration of 5x10⁵ cells/ml, in vitro. The cells were treated with varying concentrations of the photosensitizing biomolecule and irradiated using a 673.2 nm wavelength of laser light. Post irradiation cellular responses were performed to observe changes in morphology, viability, proliferation, cytotoxicity, and cell death pathways induced. Dose-Dependent response of the cells to treatment was demonstrated as significant morphologic changes, increased cytotoxicity, and decreased cell viability and proliferation This study presented a synthetic biomolecule for targeted PDT of cervical cancer. The study suggested that PDT using this AuNp- Anti-E6- AlPcSmix photosensitizing biomolecule is a very effective treatment method for the eradication of cervical cancer cells, in vitro. Further studies in vivo need to be conducted to support the use of this biomolecule in treating cervical cancer in clinical settings.

Keywords: anti-E6 monoclonal antibody, cervical cancer, gold nanoparticles, photodynamic therapy

Procedia PDF Downloads 99
11 Understanding Different Facets of Chromosome Abnormalities: A 17-year Cytogenetic Study and Indian Perspectives

Authors: Lakshmi Rao Kandukuri, Mamata Deenadayal, Suma Prasad, Bipin Sethi, Srinadh Buragadda, Lalji Singh

Abstract:

Worldwide; at least 7.6 million children are born annually with severe genetic or congenital malformations and among them 90% of these are born in mid and low-income countries. Precise prevalence data are difficult to collect, especially in developing countries, owing to the great diversity of conditions and also because many cases remain undiagnosed. The genetic and congenital disorder is the second most common cause of infant and childhood mortality and occurs with a prevalence of 25-60 per 1000 births. The higher prevalence of genetic diseases in a particular community may, however, be due to some social or cultural factors. Such factors include the tradition of consanguineous marriage, which results in a higher rate of autosomal recessive conditions including congenital malformations, stillbirths, or mental retardation. Genetic diseases can vary in severity, from being fatal before birth to requiring continuous management; their onset covers all life stages from infancy to old age. Those presenting at birth are particularly burdensome and may cause early death or life-long chronic morbidity. Genetic testing for several genetic diseases identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. Several hundred genetic tests are currently in use and more are being developed. Chromosomal abnormalities are the major cause of human suffering, which are implicated in mental retardation, congenital malformations, dysmorphic features, primary and secondary amenorrhea, reproductive wastage, infertility neoplastic diseases. Cytogenetic evaluation of patients is helpful in the counselling and management of affected individuals and families. We present here especially chromosomal abnormalities which form a major part of genetic disease burden in India. Different programmes on chromosome research and human reproductive genetics primarily relate to infertility since this is a major public health problem in our country, affecting 10-15 percent of couples. Prenatal diagnosis of chromosomal abnormalities in high-risk pregnancies helps in detecting chromosomally abnormal foetuses. Such couples are counselled regarding the continuation of pregnancy. In addition to the basic research, the team is providing chromosome diagnostic services that include conventional and advanced techniques for identifying various genetic defects. Other than routine chromosome diagnosis for infertility, also include patients with short stature, hypogonadism, undescended testis, microcephaly, delayed developmental milestones, familial, and isolated mental retardation, and cerebral palsy. Thus, chromosome diagnostics has found its applicability not only in disease prevention and management but also in guiding the clinicians in certain aspects of treatment. It would be appropriate to affirm that chromosomes are the images of life and they unequivocally mirror the states of human health. The importance of genetic counseling is increasing with the advancement in the field of genetics. The genetic counseling can help families to cope with emotional, psychological, and medical consequences of genetic diseases.

Keywords: India, chromosome abnormalities, genetic disorders, cytogenetic study

Procedia PDF Downloads 280
10 Glucose Uptake Rate of Insulin-Resistant Human Liver Carcinoma Cells (IR/HepG2) by Flavonoids from Enicostema littorale via IR/IRS1/AKT Pathway

Authors: Priyanka Mokashi, Aparna Khanna, Nancy Pandita

Abstract:

Diabetes mellitus is a chronic metabolic disorder which will be the 7th leading cause of death by 2030. The current line of treatment for the diabetes mellitus is oral antidiabetic drugs (biguanides, sulfonylureas, meglitinides, thiazolidinediones and alpha-glycosidase inhibitors) and insulin therapy depending upon the type 1 or type 2 diabetes mellitus. But, these treatments have their disadvantages, ranging from the developing of resistance to the drugs and adverse effects caused by them. Alternative to these synthetic agents, natural products provides a new insight for the development of more efficient and safe drugs due to their therapeutic values. Enicostema littorale blume (A. Raynal) is a traditional Indian plant belongs to the Gentianaceae family. It is widely distributed in Asia, Africa, and South America. There are few reports on Swrtiamarin, major component of this plant for its antidiabetic activity. However, the antidiabetic activity of flavonoids from E. littorale and their mechanism of action have not yet been elucidated. Flavonoids have a positive relationship with disease prevention and can act on various molecular targets and regulate different signaling pathways in pancreatic β-cells, adipocytes, hepatocytes and skeletal myofibers. They may exert beneficial effects in diabetes by (i) improving hyperglycemia through regulation of glucose metabolism in hepatocytes; (ii) enhancing insulin secretion and reducing apoptosis and promoting proliferation of pancreatic β-cells; (iii) increasing glucose uptake in hepatocytes, skeletal muscle and white adipose tissue (iv) reducing insulin resistance, inflammation and oxidative stress. Therefore, we have isolated four flavonoid rich fractions, Fraction A (FA), Fraction B (FB), Fraction C (FC), Fraction D (FD) from crude alcoholic hot (AH) extract from E. littorale, identified by LC/MS. Total eight flavonoids were identified on the basis of fragmentation pattern. Flavonoid FA showed the presence of swertisin, isovitexin, and saponarin; FB showed genkwanin, quercetin, isovitexin, FC showed apigenin, swertisin, quercetin, 5-O-glucosylswertisin and 5-O-glucosylisoswertisin whereas FD showed the presence of swertisin. Further, these fractions were assessed for their antidiabetic activity on stimulating glucose uptake in insulin-resistant HepG2 cell line model (IR/HepG2). The results showed that FD containing C-glycoside Swertisin has significantly increased the glucose uptake rate of IR/HepG2 cells at the concentration of 10 µg/ml as compared to positive control Metformin (0.5mM) which was determined by glucose oxidase- peroxidase method. It has been reported that enhancement of glucose uptake of cells occurs due the translocation of Glut4 vesicles to cell membrane through IR/IRS1/AKT pathway. Therefore, we have studied expressions of three genes IRS1, AKT and Glut4 by real-time PCR to evaluate whether they follow the same pathway or not. It was seen that the glucose uptake rate has increased in FD treated IR/HepG2 cells due to the activation of insulin receptor substrate-1 (IRS1) followed by protein kinase B (AKT) through phosphoinositide 3-kinase (PI3K) leading to translocation of Glut 4 vesicles to cell membrane, thereby enhancing glucose uptake and insulin sensitivity of insulin resistant HepG2 cells. Hence, the up-regulation indicated the mechanism of action through which FD (Swertisin) acts as antidiabetic candidate in the treatment of type 2 diabetes mellitus.

Keywords: E. littorale, glucose transporter, glucose uptake rate, insulin resistance

Procedia PDF Downloads 287
9 Establishment of Farmed Fish Welfare Biomarkers Using an Omics Approach

Authors: Pedro M. Rodrigues, Claudia Raposo, Denise Schrama, Marco Cerqueira

Abstract:

Farmed fish welfare is a very recent concept, widely discussed among the scientific community. Consumers’ interest regarding farmed animal welfare standards has significantly increased in the last years posing a huge challenge to producers in order to maintain an equilibrium between good welfare principles and productivity, while simultaneously achieve public acceptance. The major bottleneck of standard aquaculture is to impair considerably fish welfare throughout the production cycle and with this, the quality of fish protein. Welfare assessment in farmed fish is undertaken through the evaluation of fish stress responses. Primary and secondary stress responses include release of cortisol and glucose and lactate to the blood stream, respectively, which are currently the most commonly used indicators of stress exposure. However, the reliability of these indicators is highly dubious, due to a high variability of fish responses to an acute stress and the adaptation of the animal to a repetitive chronic stress. Our objective is to use comparative proteomics to identify and validate a fingerprint of proteins that can present an more reliable alternative to the already established welfare indicators. In this way, the culture conditions will improve and there will be a higher perception of mechanisms and metabolic pathway involved in the produced organism’s welfare. Due to its high economical importance in Portuguese aquaculture Gilthead seabream will be the elected species for this study. Protein extracts from Gilthead Seabream fish muscle, liver and plasma, reared for a 3 month period under optimized culture conditions (control) and induced stress conditions (Handling, high densities, and Hipoxia) are collected and used to identify a putative fish welfare protein markers fingerprint using a proteomics approach. Three tanks per condition and 3 biological replicates per tank are used for each analisys. Briefly, proteins from target tissue/fluid are extracted using standard established protocols. Protein extracts are then separated using 2D-DIGE (Difference gel electrophoresis). Proteins differentially expressed between control and induced stress conditions will be identified by mass spectrometry (LC-Ms/Ms) using NCBInr (taxonomic level - Actinopterygii) databank and Mascot search engine. The statistical analysis is performed using the R software environment, having used a one-tailed Mann-Whitney U-test (p < 0.05) to assess which proteins were differentially expressed in a statistically significant way. Validation of these proteins will be done by comparison of the RT-qPCR (Quantitative reverse transcription polymerase chain reaction) expressed genes pattern with the proteomic profile. Cortisol, glucose, and lactate are also measured in order to confirm or refute the reliability of these indicators. The identified liver proteins under handling and high densities induced stress conditions are responsible and involved in several metabolic pathways like primary metabolism (i.e. glycolysis, gluconeogenesis), ammonia metabolism, cytoskeleton proteins, signalizing proteins, lipid transport. Validition of these proteins as well as identical analysis in muscle and plasma are underway. Proteomics is a promising high-throughput technique that can be successfully applied to identify putative welfare protein biomarkers in farmed fish.

Keywords: aquaculture, fish welfare, proteomics, welfare biomarkers

Procedia PDF Downloads 107
8 Complete Genome Sequence Analysis of Pasteurella multocida Subspecies multocida Serotype A Strain PMTB2.1

Authors: Shagufta Jabeen, Faez J. Firdaus Abdullah, Zunita Zakaria, Nurulfiza M. Isa, Yung C. Tan, Wai Y. Yee, Abdul R. Omar

Abstract:

Pasteurella multocida (PM) is an important veterinary opportunistic pathogen particularly associated with septicemic pasteurellosis, pneumonic pasteurellosis and hemorrhagic septicemia in cattle and buffaloes. P. multocida serotype A has been reported to cause fatal pneumonia and septicemia. Pasteurella multocida subspecies multocida of serotype A Malaysian isolate PMTB2.1 was first isolated from buffaloes died of septicemia. In this study, the genome of P. multocida strain PMTB2.1 was sequenced using third-generation sequencing technology, PacBio RS2 system and analyzed bioinformatically via de novo analysis followed by in-depth analysis based on comparative genomics. Bioinformatics analysis based on de novo assembly of PacBio raw reads generated 3 contigs followed by gap filling of aligned contigs with PCR sequencing, generated a single contiguous circular chromosome with a genomic size of 2,315,138 bp and a GC content of approximately 40.32% (Accession number CP007205). The PMTB2.1 genome comprised of 2,176 protein-coding sequences, 6 rRNA operons and 56 tRNA and 4 ncRNAs sequences. The comparative genome sequence analysis of PMTB2.1 with nine complete genomes which include Actinobacillus pleuropneumoniae, Haemophilus parasuis, Escherichia coli and five P. multocida complete genome sequences including, PM70, PM36950, PMHN06, PM3480, PMHB01 and PMTB2.1 was carried out based on OrthoMCL analysis and Venn diagram. The analysis showed that 282 CDs (13%) are unique to PMTB2.1and 1,125 CDs with orthologs in all. This reflects overall close relationship of these bacteria and supports the classification in the Gamma subdivision of the Proteobacteria. In addition, genomic distance analysis among all nine genomes indicated that PMTB2.1 is closely related with other five Pasteurella species with genomic distance less than 0.13. Synteny analysis shows subtle differences in genetic structures among different P.multocida indicating the dynamics of frequent gene transfer events among different P. multocida strains. However, PM3480 and PM70 exhibited exceptionally large structural variation since they were swine and chicken isolates. Furthermore, genomic structure of PMTB2.1 is more resembling that of PM36950 with a genomic size difference of approximately 34,380 kb (smaller than PM36950) and strain-specific Integrative and Conjugative Elements (ICE) which was found only in PM36950 is absent in PMTB2.1. Meanwhile, two intact prophages sequences of approximately 62 kb were found to be present only in PMTB2.1. One of phage is similar to transposable phage SfMu. The phylogenomic tree was constructed and rooted with E. coli, A. pleuropneumoniae and H. parasuis based on OrthoMCL analysis. The genomes of P. multocida strain PMTB2.1 were clustered with bovine isolates of P. multocida strain PM36950 and PMHB01 and were separated from avian isolate PM70 and swine isolates PM3480 and PMHN06 and are distant from Actinobacillus and Haemophilus. Previous studies based on Single Nucleotide Polymorphism (SNPs) and Multilocus Sequence Typing (MLST) unable to show a clear phylogenetic relatedness between Pasteurella multocida and the different host. In conclusion, this study has provided insight on the genomic structure of PMTB2.1 in terms of potential genes that can function as virulence factors for future study in elucidating the mechanisms behind the ability of the bacteria in causing diseases in susceptible animals.

Keywords: comparative genomics, DNA sequencing, phage, phylogenomics

Procedia PDF Downloads 154