Search results for: current track velocities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9433

Search results for: current track velocities

9403 Application of the Shallow Seismic Refraction Technique to Characterize the Foundation Rocks at the Proposed Tushka New City Site, South Egypt

Authors: Abdelnasser Mohamed, R. Fat-Helbary, H. El Khashab, K. EL Faragawy

Abstract:

Tushka New City is one of the proposed new cities in South Egypt. It is located in the eastern part of the western Desert of Egypt between latitude 22.878º and 22.909º N and longitude 31.525º and 31.635º E, about 60 kilometers far from Abu Simble City. The main target of the present study is the investigation of the shallow subsurface structure conditions and the dynamic characteristics of subsurface rocks using the shallow seismic refraction technique. Forty seismic profiles were conducted to calculate the P- and S-waves velocity at the study area. P- and SH-waves velocities can be used to obtain the geotechnical parameters and also SH-wave can be used to study the vibration characteristics of the near surface layers, which are important for earthquakes resistant structure design. The output results of the current study indicated that the P-waves velocity ranged from 450 to 1800 m/sec and from 1550 to 3000 m/sec for the surface and bedrock layer respectively. The SH-waves velocity ranged from 300 to 1100 m/sec and from 1000 to 1800 m/sec for the surface and bedrock layer respectively. The thickness of the surface layer and the depth to the bedrock layer were determined along each profile. The bulk density ρ of soil layers that used in this study was calculated for all layers at each profile in the study area. In conclusion, the area is mainly composed of compacted sandstone with high wave velocities, which is considered as a good foundation rock. The south western part of the study area has minimum values of the computed P- and SH-waves velocities, minimum values of the bulk density and the maximum value of the mean thickness of the surface layer.

Keywords: seismic refraction, Tushak new city, P-waves, SH-waves

Procedia PDF Downloads 358
9402 Determination of the Local Elastic Moduli of Shungite by Laser Ultrasonic Spectroscopy

Authors: Elena B. Cherepetskaya, Alexander A.Karabutov, Vladimir A. Makarov, Elena A. Mironova, Ivan A. Shibaev

Abstract:

In our study, the object of laser ultrasonic testing was plane-parallel plate of shungit (length 41 mm, width 31 mm, height 15 mm, medium exchange density 2247 kg/m3). We used laser-ultrasonic defectoscope with wideband opto-acoustic transducer in our investigation of the velocities of longitudinal and shear elastic ultrasound waves. The duration of arising elastic pulses was less than 100 ns. Under known material thickness, the values of the velocities were determined by the time delay of the pulses reflected from the bottom surface of the sample with respect to reference pulses. The accuracy of measurement was 0.3% in the case of longitudinal wave velocity and 0.5% in the case of shear wave velocity (scanning pitch along the surface was 2 mm). On the base of found velocities of elastic waves, local elastic moduli of shungit (Young modulus, shear modulus and Poisson's ratio) were uniquely determined.

Keywords: laser ultrasonic testing , local elastic moduli, shear wave velocity, shungit

Procedia PDF Downloads 275
9401 Investigating the Dynamic Response of the Ballast

Authors: Osama Brinji, Wing Kong Chiu, Graham Tew

Abstract:

Understanding the stability of rail ballast is one of the most important aspects in the railways. An unstable track may cause some issues such as unnecessary vibration and ultimately loss of track quality. The track foundation plays an important role in the stabilization of the railway. The dynamic response of rail ballast in the vicinity of the rail sleeper can affect the stability of the rail track and this has not been studied in detail. A review of literature showed that most of the works focused on the area under the concrete sleeper. Although there are some theories about the shear (longitudinal) effect of the rail ballast, these have not properly been studied and hence are not well understood. The stability of a rail track will depend on the compactness of the ballast in its vicinity. This paper will try to determine the dynamic response of the ballast to identify its resonant behaviour. This preliminary research is one of several studies that examine the vibration response of the granular materials. The main aim is to use this information for future design of sleepers to ensure that any dynamic response of the sleeper will not compromise the state of compactness of the ballast. This paper will report on the dependence of damping and the natural frequency of the ballast as a function of depth and distance from the point of excitation introduced through a concrete block. The concrete block is used to simulate a sleeper and the ballast is simulated with gravel. In spite of these approximations, the results presented in the paper will show an agreement with theories and the assumptions that are used in study the mechanical behaviour of the rail ballast.

Keywords: ballast, dynamic response, sleeper, stability

Procedia PDF Downloads 471
9400 Investigating Convective Boiling Heat Transfer Characteristics of R-1234ze and R-134a Refrigerants in a Microfin and Smooth Tube

Authors: Kaggwa Abdul, Chi-Chuan Wang

Abstract:

This research is based on R-1234ze that is considered to substitute R-134a due to its low global warming potential in a microfin tube with outer diameter 9.52 mm, number of fins 70, and fin height 0.17 mm. In comparison, a smooth tube with similar geometries was used to study pressure drop and heat transfer coefficients related to the two fluids. The microfin tube was brazed inside a stainless steel tube and heated electrically. T-type thermocouples used to measure the temperature distribution during the phase change process. The experimental saturation temperatures and refrigerant mass velocities varied from 10 – 20°C and 50 – 300 kg/m2s respectively. The vapor quality from 0.1 to 0.9, and heat flux ranged from 5 – 11kW/m2. The results showed that heat transfer performance of R-134a in both microfin and smooth tube was better than R-1234ze especially at mass velocities above G = 50 kg/m2s. However, at low mass velocities below G = 100 kg/m2s R-1234ze yield better heat transfer coefficients than R-134a. The pressure gradient of R-1234ze was markedly higher than that of R-134a at all mass flow rates.

Keywords: R-1234ze and R-134a, horizontal flow boiling, pressure drop, heat transfer coefficients, micro-fin and smooth tubes

Procedia PDF Downloads 262
9399 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System

Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu

Abstract:

The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.

Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter

Procedia PDF Downloads 224
9398 Semi-Automated Tracking of Vibrissal Movements in Free-Moving Rodents Captured by High-Speed Videos

Authors: Hyun June Kim, Tailong Shi, Seden Akdagli, Sam Most, Yuling Yan

Abstract:

Quantitative analysis of mouse whisker movement can be used to study functional recovery and regeneration of facial nerve after an injury. However, it is challenging to accurately track mouse whisker movements, and most whisker tracking methods require manual intervention, e.g. fixing the head of the mouse during a study. Here we describe a semi-automated image processing method that is applied to high-speed video recordings of free-moving mice to track whisker movements. We first track the head movement of a mouse by delineating the lower head contour frame-by-frame to locate and determine the orientation of its head. Then, a region of interest is identified for each frame, with subsequent application of the Hough transform to track individual whisker movements on each side of the head. Our approach is used to examine the functional recovery of damaged facial nerves in mice over a course of 21 days.

Keywords: mystacial macrovibrissae, whisker tracking, head tracking, facial nerve recovery

Procedia PDF Downloads 560
9397 Design of a Robot with a Transformable Track System in Tackling Motion Barrier

Authors: Kai-Yi Cho, Fa-Shian Chang, Lih-Tyng Hwang, Chih-Feng Liu, Jeng-Nan Lee, Shun-Min Wang, Jhu-Wei Ji

Abstract:

This paper presents a ground robot which has the tracked transformative structures of the motion mechanism. The robot has a good ability to adapt to the terrain, due to the front end of the track can be deformed, it can more easily pass the more complex area, such as to climb stairs and ramp areas. Usually in the disaster area, where the terrain is generally broken and complicated, there will be many slopes, broken walls, rubble, and obstacles, then if you want the robot through this area, you need to have a good off-road performance for possible complex terrain, this robot with the transformative tracked mechanism has a strong adaptability, it can overcome the limitation of the terrains to be a good rescue robot. Also, the robot has a good flexibility in the shape of contact with the ground; that can adapt the varied terrain by the deformable track, thus able to pass the different terrains, that was verified through the experiments on a test-platform and a field test. The prototype of the robot system has been developed, and experiments are carried out to verify the validity of the proposed design.

Keywords: tracked robot, rescue robot, transformation mechanism, deformable track, hull design

Procedia PDF Downloads 302
9396 Flow over an Exponentially Stretching Sheet with Hall and Cross-Diffusion Effects

Authors: Srinivasacharya Darbhasayanam, Jagadeeshwar Pashikanti

Abstract:

This paper analyzes the Soret and Dufour effects on mixed convection flow, heat and mass transfer from an exponentially stretching surface in a viscous fluid with Hall Effect. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations. The nonlinear coupled ordinary differential equations are reduced to a system of linear differential equations using the successive linearization method and then solved the resulting linear system using the Chebyshev pseudo spectral method. The numerical results for the velocity components, temperature and concentration are presented graphically. The obtained results are compared with the previously published results, and are found to be in excellent agreement. It is observed from the present analysis that the primary and secondary velocities and concentration are found to be increasing, and temperature is decreasing with the increase in the values of the Soret parameter. An increase in the Dufour parameter increases both the primary and secondary velocities and temperature and decreases the concentration.

Keywords: Exponentially stretching sheet, Hall current, Heat and Mass transfer, Soret and Dufour Effects

Procedia PDF Downloads 184
9395 Tectono-Thermal Evolution of Ningwu-Jingle Basin in North China Craton: Constraints from Apatite (U–Th-Sm)/He and Fission Track Thermochronology

Authors: Zhibin Lei, Minghui Yang

Abstract:

Ningwu-Jingle basin is a structural syncline which has undergone a complex tectono-thermal history since Cretaceous. It stretches along the strike of the northern Lvliang Mountains which are the most important mountains in the middle and west of North China Craton. The Mesozoic units make up of the core of Ningwu-Jingle Basin, with pre-Mesozoic units making up of its flanks. The available low-temperature thermochronology implies that Ningwu-Jingle Basin has experienced two stages of uplifting: 94±7Ma to 111±8Ma (Albian to Cenomanian) and 62±4 to 75±5Ma (Danian to Maastrichtian). In order to constrain its tectono-thermal history in the Cenozoic, both apatite (U-Th-Sm)/He and fission track dating analysis are applied on 3 Middle Jurassic and 3 Upper Triassic sandstone samples. The central fission track ages range from 74.4±8.8Ma to 66.0±8.0Ma (Campanian to Maastrichtian) which matches well with previous data. The central He ages range from 20.1±1.2Ma to 49.1±3.0Ma (Ypresian to Burdigalian). Inverse thermal modeling is established based on both apatite fission track data and (U-Th-Sm)/He data. The thermal history obtained reveals that all 6 sandstone samples cross the high-temperature limit of fission track partial annealing zone by the uppermost Cretaceous and that of He partial retention zone by the uppermost Eocene to the early Oligocene. The result indicates that the middle and west of North China Craton is not stable in the Cenozoic.

Keywords: apatite fission track thermochronology, apatite (u–th)/he thermochronology, Ningwu-Jingle basin, North China craton, tectono-thermal history

Procedia PDF Downloads 228
9394 Reinforcement Learning for Self Driving Racing Car Games

Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh

Abstract:

This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.

Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming

Procedia PDF Downloads 2
9393 Hybrid Reusable Launch Vehicle for Space Application A Naval Approach

Authors: Rajasekar Elangopandian, Anand Shanmugam

Abstract:

In order to reduce the cost of launching satellite and payloads to the orbit this project envisages some immense combined technology. This new technology in space odyssey contains literally four concepts. The first mode in this innovation is flight mission characteristics which, says how the mission will induct. The conventional technique of magnetic levitation will help us to produce the initial thrust. The name states reusable launch vehicle shows its viability of reuseness. The flight consists miniature rocket which produces the required thrust and the two JATO (jet assisted takeoff) boosters which gives the initial boost for the vehicle. The vehicle ostensibly looks like an airplane design and will be located on the super conducting rail track. When the high power electric current given to the rail track, the vehicle starts floating as per the principle of magnetic levitation. If the flight reaches the particular takeoff distance the two boosters gets starts and will give the 48KN thrust each. Obviously it`ll follow the vertical path up to the atmosphere end/start to space. As soon as it gets its speed the two boosters will cutoff. Once it reaches the space the inbuilt spacecraft keep the satellite in the desired orbit. When the work finishes, the apogee motors gives the initial kick to the vehicle to come in to the earth’s atmosphere with 22N thrust and automatically comes to the ground by following the free fall, the help of gravitational force. After the flying region it makes the spiral flight mode then gets landing where the super conducting levitated rail track located. It will catch up the vehicle and keep it by changing the poles of magnets and varying the current. Initial cost for making this vehicle might be high but for the frequent usage this will reduce the launch cost exactly half than the now-a-days technology. The incorporation of such a mechanism gives `hybrid` and the reusability gives `reusable launch vehicle` and ultimately Hybrid reusable launch vehicle.

Keywords: the two JATO (jet assisted takeoff) boosters, magnetic levitation, 48KN thrust each, 22N thrust and automatically comes to the ground

Procedia PDF Downloads 400
9392 Subsurface Elastic Properties Determination for Site Characterization Using Seismic Refraction Tomography at the Pwalugu Dam Area

Authors: Van-Dycke Sarpong Asare, Vincent Adongo

Abstract:

Field measurement of subsurface seismic p-wave velocities was undertaken through seismic refraction tomography. The aim of this work is to obtain a model of the shallow subsurface material elastic properties relevant for geotechnical site characterization. The survey area is at Pwalugu in Northern Ghana, where a multipurpose dam, for electricity generation, irrigation, and potable water delivery, is being planned. A 24-channel seismograph and 24, 10 Hz electromagnetic geophones, deployed 5 m apart constituted the acquisition hardware. Eleven (2-D) seismic refraction profiles, nine of which ran almost perpendicular and two parallel to the White Volta at Pwalugu, were acquired. The refraction tomograms of the thirteen profiles revealed a subsurface model consisting of one minor and one major acoustic impedance boundaries – the top dry/loose sand and the variably weathered sandstone contact, and the overburden-sandstones bedrock contact respectively. The p-wave velocities and by inference, with a priori values of poison ratios, the s-wave velocities, assisted in characterizing the geotechnical conditions of the proposed site and also in evaluating the dynamic properties such as the maximum shear modulus, the bulk modulus, and the Young modulus.

Keywords: tomography, characterization, consolidated, Pwalugu and seismograph

Procedia PDF Downloads 99
9391 A Unification and Relativistic Correction for Boltzmann’s Law

Authors: Lloyd G. Allred

Abstract:

The distribution of velocities of particles in plasma is a well understood discipline of plasma physics. Boltzmann’s law and the Maxwell-Boltzmann distribution describe the distribution of velocity of a particle in plasma as a function of mass and temperature. Particles with the same mass tend to have the same velocity. By expressing the same law in terms of energy alone, the author obtains a distribution independent of mass. In summary, for particles in plasma, the energies tend to equalize, independent of the masses of the individual particles. For high-energy plasma, the original law predicts velocities greater than the speed of light. If one uses Einstein’s formula for energy (E=mc2), then a relativistic correction is not required.

Keywords: cosmology, EMP, plasma physics, relativity

Procedia PDF Downloads 194
9390 Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot

Authors: Raouf Fareh, Maarouf Saad, Sofiane Khadraoui, Tamer Rabie

Abstract:

This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach.

Keywords: mobile robot, trajectory tracking, Lyapunov, stability

Procedia PDF Downloads 350
9389 Evaluation of Internal Friction Angle in Overconsolidated Granular Soil Deposits Using P- and S-Wave Seismic Velocities

Authors: Ehsan Pegah, Huabei Liu

Abstract:

Determination of the internal friction angle (φ) in natural soil deposits is an important issue in geotechnical engineering. The main objective of this study was to examine the evaluation of this parameter in overconsolidated granular soil deposits by using the P-wave velocity and the anisotropic components of S-wave velocity (i.e., both the vertical component (SV) and the horizontal component (SH) of S-wave). To this end, seventeen pairs of P-wave and S-wave seismic refraction profiles were carried out at three different granular sites in Iran using non-invasive seismic wave methods. The acquired shot gathers were processed, from which the P-wave, SV-wave and SH-wave velocities were derived. The reference values of φ and overconsolidation ratio (OCR) in the soil deposits were measured through laboratory tests. By assuming cross-anisotropy of the soils, the P-wave and S-wave velocities were utilized to develop an equation for calculating the coefficient of lateral earth pressure at-rest (K₀) based on the theory of elasticity for a cross-anisotropic medium. In addition, to develop an equation for OCR estimation in granular geomaterials in terms of SH/SV velocity ratios, a general regression analysis was performed on the resulting information from this research incorporated with the respective data published in the literature. The calculated K₀ values coupled with the estimated OCR values were finally employed in the Mayne and Kulhawy formula to evaluate φ in granular soil deposits. The results showed that reliable values of φ could be estimated based on the seismic wave velocities. The findings of this study may be used as the appropriate approaches for economic and non-invasive determination of in-situ φ in granular soil deposits using the surface seismic surveys.

Keywords: angle of internal friction, overconsolidation ratio, granular soils, P-wave velocity, SV-wave velocity, SH-wave velocity

Procedia PDF Downloads 130
9388 Heat Transfer and Trajectory Models for a Cloud of Spray over a Marine Vessel

Authors: S. R. Dehghani, G. F. Naterer, Y. S. Muzychka

Abstract:

Wave-impact sea spray creates many droplets which form a spray cloud traveling over marine objects same as marine vessels and offshore structures. In cold climates such as Arctic reigns, sea spray icing, which is ice accretion on cold substrates, is strongly dependent on the wave-impact sea spray. The rate of cooling of droplets affects the process of icing that can yield to dry or wet ice accretion. Trajectories of droplets determine the potential places for ice accretion. Combining two models of trajectories and heat transfer for droplets can predict the risk of ice accretion reasonably. The majority of the cooling of droplets is because of droplet evaporations. In this study, a combined model using trajectory and heat transfer evaluate the situation of a cloud of spray from the generation to impingement. The model uses some known geometry and initial information from the previous case studies. The 3D model is solved numerically using a standard numerical scheme. Droplets are generated in various size ranges from 7 mm to 0.07 mm which is a suggested range for sea spray icing. The initial temperature of droplets is considered to be the sea water temperature. Wind velocities are assumed same as that of the field observations. Evaluations are conducted using some important heading angles and wind velocities. The characteristic of size-velocity dependence is used to establish a relation between initial sizes and velocities of droplets. Time intervals are chosen properly to maintain a stable and fast numerical solution. A statistical process is conducted to evaluate the probability of expected occurrences. The medium size droplets can reach the highest heights. Very small and very large droplets are limited to lower heights. Results show that higher initial velocities create the most expanded cloud of spray. Wind velocities affect the extent of the spray cloud. The rate of droplet cooling at the start of spray formation is higher than the rest of the process. This is because of higher relative velocities and also higher temperature differences. The amount of water delivery and overall temperature for some sample surfaces over a marine vessel are calculated. Comparing results and some field observations show that the model works accurately. This model is suggested as a primary model for ice accretion on marine vessels.

Keywords: evaporation, sea spray, marine icing, numerical solution, trajectory

Procedia PDF Downloads 194
9387 Development of Web-Based Iceberg Detection Using Deep Learning

Authors: A. Kavya Sri, K. Sai Vineela, R. Vanitha, S. Rohith

Abstract:

Large pieces of ice that break from the glaciers are known as icebergs. The threat that icebergs pose to navigation, production of offshore oil and gas services, and underwater pipelines makes their detection crucial. In this project, an automated iceberg tracking method using deep learning techniques and satellite images of icebergs is to be developed. With a temporal resolution of 12 days and a spatial resolution of 20 m, Sentinel-1 (SAR) images can be used to track iceberg drift over the Southern Ocean. In contrast to multispectral images, SAR images are used for analysis in meteorological conditions. This project develops a web-based graphical user interface to detect and track icebergs using sentinel-1 images. To track the movement of the icebergs by using temporal images based on their latitude and longitude values and by comparing the center and area of all detected icebergs. Testing the accuracy is done by precision and recall measures.

Keywords: synthetic aperture radar (SAR), icebergs, deep learning, spatial resolution, temporal resolution

Procedia PDF Downloads 56
9386 Simulation of Single-Track Laser Melting on IN718 using Material Point Method

Authors: S. Kadiyala, M. Berzins, D. Juba, W. Keyrouz

Abstract:

This paper describes the Material Point Method (MPM) for simulating a single-track laser melting process on an IN718 solid plate. MPM, known for simulating challenging multiphysics problems, is used to model the intricate thermal, mechanical, and fluid interactions during the laser sintering process. This study analyzes the formation of single tracks, exploring the impact of varying laser parameters such as speed, power, and spot diameter on the melt pool and track formation. The focus is on MPM’s ability to accurately simulate and capture the transient thermo-mechanical and phase change phenomena, which are critical in predicting the cooling rates before and after solidification of the laser track and the final melt pool geometry. The simulation results are rigorously compared with experimental data (AMB2022 benchmarks), demonstrating the effectiveness of MPM in replicating the physical processes in laser sintering. This research highlights the potential of MPM in advancing the understanding and simulation of melt pool physics in metal additive manufacturing, paving the way for optimized process parameters and improved material performance.

Keywords: dditive manufacturing simulation, material point method, phase change, melt pool physics

Procedia PDF Downloads 35
9385 Gender, Tutoring, and Track in Egyptian Education

Authors: Eman Shady, Ray Langsten

Abstract:

In Egypt, girls have traditionally been educationally disadvantaged. This disadvantage, however, has been focused on the failure to enter school. Increasingly it is recognized that girls who ever-enroll are at least as likely to complete primary and secondary education as boys. Still the belief persists that girls, especially those from poor families, will be disadvantaged in terms of school expenditures and the transitions to secondary and higher education. We use data from the 2005-06 Egypt Household Education Survey to examine expenditures on tutoring during the final year of preparatory school, and the transition to specific tracks of secondary education. Tests during the last year of preparatory largely determine a student’s educational future. Results show that girls, even girls from poor families, are not disadvantaged in terms of expenditures, whether for tutoring, fees or general expenses. Moreover, girls are more likely than boys to advance to general secondary education, the track that leads to higher education.

Keywords: gender, tutoring, track, Egypt

Procedia PDF Downloads 362
9384 Railway Ballast Volumes Automated Estimation Based on LiDAR Data

Authors: Bahar Salavati Vie Le Sage, Ismaïl Ben Hariz, Flavien Viguier, Sirine Noura Kahil, Audrey Jacquin, Maxime Convert

Abstract:

The ballast layer plays a key role in railroad maintenance and the geometry of the track structure. Ballast also holds the track in place as the trains roll over it. Track ballast is packed between the sleepers and on the sides of railway tracks. An imbalance in ballast volume on the tracks can lead to safety issues as well as a quick degradation of the overall quality of the railway segment. If there is a lack of ballast in the track bed during the summer, there is a risk that the rails will expand and buckle slightly due to the high temperatures. Furthermore, the knowledge of the ballast quantities that will be excavated during renewal works is important for efficient ballast management. The volume of excavated ballast per meter of track can be calculated based on excavation depth, excavation width, volume of track skeleton (sleeper and rail) and sleeper spacing. Since 2012, SNCF has been collecting 3D points cloud data covering its entire railway network by using 3D laser scanning technology (LiDAR). This vast amount of data represents a modelization of the entire railway infrastructure, allowing to conduct various simulations for maintenance purposes. This paper aims to present an automated method for ballast volume estimation based on the processing of LiDAR data. The estimation of abnormal volumes in ballast on the tracks is performed by analyzing the cross-section of the track. Further, since the amount of ballast required varies depending on the track configuration, the knowledge of the ballast profile is required. Prior to track rehabilitation, excess ballast is often present in the ballast shoulders. Based on 3D laser scans, a Digital Terrain Model (DTM) was generated and automatic extraction of the ballast profiles from this data is carried out. The surplus in ballast is then estimated by performing a comparison between this ballast profile obtained empirically, and a geometric modelization of the theoretical ballast profile thresholds as dictated by maintenance standards. Ideally, this excess should be removed prior to renewal works and recycled to optimize the output of the ballast renewal machine. Based on these parameters, an application has been developed to allow the automatic measurement of ballast profiles. We evaluated the method on a 108 kilometers segment of railroad LiDAR scans, and the results show that the proposed algorithm detects ballast surplus that amounts to values close to the total quantities of spoil ballast excavated.

Keywords: ballast, railroad, LiDAR , cloud point, track ballast, 3D point

Procedia PDF Downloads 65
9383 Feasibility Study of Tidal Current of the Bay of Bengal to Generate Electricity as a Renewable Energy

Authors: Myisha Ahmad, G. M. Jahid Hasan

Abstract:

Electricity is the pinnacle of human civilization. At present, the growing concerns over significant climate change have intensified the importance of the use of renewable energy technologies for electricity generation. The interest is primarily due to better energy security, smaller environmental impact and providing a sustainable alternative compared to the conventional energy sources. Solar power, wind, biomass, tidal power, and wave power are some of the most reliable sources of renewable energy. Ocean approximately holds 2×10³ TW of energy and has the largest renewable energy resource on the planet. Ocean energy has many forms namely, encompassing tides, ocean circulation, surface waves, salinity and thermal gradients. Ocean tide in particular, associates both potential and kinetic energy. The study is focused on the latter concept that deals with tidal current energy conversion technologies. Tidal streams or marine currents generate kinetic energy that can be extracted by marine current energy devices and converted into transmittable energy form. The principle of technology development is very comparable to that of wind turbines. Conversion of marine tidal resources into substantial electrical power offers immense opportunities to countries endowed with such resources and this work is aimed at addressing such prospects of Bangladesh. The study analyzed the extracted current velocities from numerical model works at several locations in the Bay of Bengal. Based on current magnitudes, directions and available technologies the most fitted locations were adopted and possible annual generation capacity was estimated. The paper also examines the future prospects of tidal current energy along the Bay of Bengal and establishes a constructive approach that could be adopted in future project developments.

Keywords: bay of Bengal, energy potential, renewable energy, tidal current

Procedia PDF Downloads 335
9382 Hydraulic Characteristics of the Tidal River Dongcheon in Busan City

Authors: Young Man Cho, Sang Hyun Kim

Abstract:

Even though various management practices such as sediment dredging were attempted to improve water quality of Dongcheon located in Busan, the environmental condition of this stream was deteriorated. Therefore, Busan metropolitan city had pumped and diverted sea water to upstream of Dongcheon for several years. This study explored hydraulic characteristics of Dongcheon to configure the best management practice for ecological restoration and water quality improvement of a man-made urban stream. Intensive field investigation indicates that average flow velocities at depths of 20% and 80% from the water surface ranged 5 to 10 cm/s and 2 to 5 cm/s, respectively. Concentrations of dissolved oxygen for all depths were less than 0.25 mg/l during low tidal period. Even though density difference can be found along stream depth, density current seems rarely generated in Dongcheon. Short period of high tidal portion and shallow depths are responsible for well-mixing nature of Doncheon.

Keywords: hydraulic, tidal river, density current, sea water

Procedia PDF Downloads 191
9381 US Track And Field System: Examining Micro-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport

Authors: Peter Smolianov, Steven Dion, Christopher Schoen, Jaclyn Norberg, Nicholas Stone, Soufiane Rafi

Abstract:

This study assessed the micro-level elements of track and field development in the US against a model for integrating high-performance sport with mass participation. This investigation is important for the country’s international sport performance, which declined relative to other countries and wellbeing, which in its turn deteriorated as over half of the US population became overweight. A questionnaire was designed for the following elements of the model: talent identification and development as well as advanced athlete support. Survey questions were validated by 12 experts, including academics, executives from sport governing bodies, coaches, and administrators. To determine the areas for improvement, the questionnaires were completed by 102 US track and field coaches representing the country’s regions and coaching levels. Possible advancements were further identified through semi-structured discussions with 10 US track and field administrators. The study found that talent search and development is a critically important area for improvement: 49 percent of respondents had overall negative perceptions, and only 16 percent were positive regarding these US track and field practices. Both quantitative survey results and open responses revealed that the key reason for the inadequate athlete development was a shortage of well-educated and properly paid coaches: 77 percent of respondents indicated that coach expertise is never or rarely high across all participant ages and levels. More than 40 percent of the respondents were uncertain of or not familiar with world’s best talent identification and development practices, particularly methods of introducing children to track and field from outside the sport’s participation base. Millions more could be attracted to the sport by adopting best international practices. First, physical education should be offered a minimum three times a week in all school grades, and track and field together with other healthy sports, should be taught at school to all children. Second, multi-sport events, including track and field disciplines, should be organized for everyone within and among all schools, cities and regions. Three, Australian and Eastern European methods of talent search at schools should be utilized and tailored to the US conditions. Four, comprehensive long term athlete development guidelines should be used for the advancement of the American Development Model, particularly track and field tests and guidelines as part of both school education and high-performance athlete development for every age group from six to over 70 years old. These world’s best practices are to improve the country’s international performance while increasing national sport participation and positively influencing public health.

Keywords: high performance, mass participation, sport development, track and field, USA

Procedia PDF Downloads 112
9380 Field Investigating the Effects of Lateral Support Elements on Lateral Resistance of Ballasted Tracks with Sharp Curves

Authors: Milad Alizadeh Galdiani, Jabbar Ali Zakeri

Abstract:

Lateral movement of CWR ballasted track occurs in sharp curves because of the lack of adequate lateral resistance. Several strategies have been proposed and used for increase the lateral resistance of ballasted tracks, but still there are some problems in tracks with small radius curves. In this paper, a new method has been presented for increase the lateral resistance. This method is using the lateral supports as numerical and field studies. In this paper, the field and laboratory tests have been conducted by using the single tie pressure test (STPT) and track panel loading test (LTPT). Then, their results were compared with the numerical results. The results of numerical and field tests showed that the lateral stiffness of ballasted tracks significantly increased when there were lateral supports in ballasted tracks. Also, the track structure had a bilinear behavior.

Keywords: ballasted railway, Lateral resistance, railway buckling, field and numerical studies

Procedia PDF Downloads 294
9379 Molecular Clustering and Velocity Increase in Converging-Diverging Nozzle in Molecular Dynamics Simulation

Authors: Jeoungsu Na, Jaehawn Lee, Changil Hong, Suhee Kim

Abstract:

A molecular dynamics simulation in a converging-diverging nozzle was performed to study molecular collisions and their influence to average flow velocity according to a variety of vacuum levels. The static pressures and the dynamic pressure exerted by the molecule collision on the selected walls were compared to figure out the intensity variances of the directional flows. With pressure differences constant between the entrance and the exit of the nozzle, the numerical experiment was performed for molecular velocities and directional flows. The result shows that the velocities increased at the nozzle exit as the vacuum level gets higher in that area because less molecular collisions.

Keywords: cavitation, molecular collision, nozzle, vacuum, velocity increase

Procedia PDF Downloads 407
9378 Computational Investigation of Gas-Solid Flow in High Pressure High Temperature Filter

Authors: M. H. Alhajeri, Hamad M. Alhajeri, A. H. Alenezi

Abstract:

This paper reports a Computational Fluid Dynamics (CFD) investigation for a high-temperature high-pressure filtration (ceramic candle filter). However, parallel flow to the filter is considered in this study. Different face (filtration) velocities are examined using the CFD code, FLUENT. Different sizes of particles are tracked through the domain to find the height at which the particles will impinge on the filter surface. Furthermore, particle distribution around the filter (or filter cake) is studied to design efficient cleaning mechanisms. Gravity effect to the particles with various inlet velocities and pressure drop are both considered. In the CFD study, it is found that the gravity influence should not be ignored if the particle sizes exceed 1 micron.

Keywords: fluid flow, CFD, filtration, HTHP

Procedia PDF Downloads 158
9377 Entropy Analysis in a Bubble Column Based on Ultrafast X-Ray Tomography Data

Authors: Stoyan Nedeltchev, Markus Schubert

Abstract:

By means of the ultrafast X-ray tomography facility, data were obtained at different superficial gas velocities UG in a bubble column (0.1 m in ID) operated with an air-deionized water system at ambient conditions. Raw reconstructed images were treated by both the information entropy (IE) and the reconstruction entropy (RE) algorithms in order to identify the main transition velocities in a bubble column. The IE values exhibited two well-pronounced minima at UG=0.025 m/s and UG=0.085 m/s identifying the boundaries of the homogeneous, transition and heterogeneous regimes. The RE extracted from the central region of the column’s cross-section exhibited only one characteristic peak at UG=0.03 m/s, which was attributed to the transition from the homogeneous to the heterogeneous flow regime. This result implies that the transition regime is non-existent in the core of the column.

Keywords: bubble column, ultrafast X-ray tomography, information entropy, reconstruction entropy

Procedia PDF Downloads 365
9376 Evaluation of Geotechnical Parameters at Nubian Habitations in Kurkur Area, Aswan, Egypt

Authors: R. E. Fat-Helbary, A. A. Abdel-latief, M. S. Arfa, Alaa Mostafa

Abstract:

The Egyptian Government proposed a general plan, aiming at constructing new settlements for Nubian in south Aswan in different places around Nasser Lake, one of these settlements in Kurkur area. The Nubian habitations in Wadi Kurkur are located around 30 km southwest of Aswan City. This area are affecting by near distance earthquakes from Kalabsha faults system. The shallow seismic refraction technique was conducted at the study area, to evaluate the soil and rock material quality and geotechnical parameters, in addition to the detection of the subsurface ground model under the study area. The P and S-wave velocities were calculated. The surface layer has P-wave, velocity ranges from 900 m/sec to 1625 m/sec and S-wave velocity ranges from 650 m/sec to 1400 m/sec. On the other hand the bedrock has P-wave velocity ranges from 1300 m/sec to 1980 m/sec and S-wave velocity ranges from 1050 m/sec to1725 m/sec. Measuring Vp and Vs velocities together with bulk density are calculated and used to extract the mechanical properties and geotechnical parameters of the foundation material at the study area. Output of this study is very important for solving the problems, which associated with the construction of various civil engineering purposes, for land use planning and for earthquakes resistant structure design.

Keywords: shallow seismic refraction technique, Kurkur area, p and s-wave velocities, geotechnical parameters, bulk density, Kalabsha faults

Procedia PDF Downloads 394
9375 Morphology of Indian Female Athletes of Different Track and Field Events

Authors: Anju Luthra, Rajender Lal, Dhananjoy Shaw

Abstract:

Participation in games and sports in the contemporary times has become more competing with the developed scientific knowledge, skills and methods, along with the equipment and applied research in the field. In spite of India being a large country having vast resources and potential, its performance in the world of sports on the whole needs sincere attention for better achievements. Beside numerous factors responsible for the dismal performance of a sportsperson, the physique and body composition, including the size, shape and form are known to play a significant role. The present investigation was undertaken to study the specific morphological characteristics of Indian female Track and Field athletes. A total of 300 athletes were randomly selected as sample for the purpose of the study from the six events having 50 athletes in each event including 100m., 400m., Shot Put, Discus Throw, Long Jump and High Jump. The study included body weight, body fat percentage, lean body weight, endomorphy, mesomorphy and ectomorphy as variables. The data were computed statistically by using Mean, Standard Deviation and Analysis of Variance. The post-hoc analysis was conducted where the F-ratio was found to be significant at .05 level. The study concluded that there is a significant difference with regard to the selected variables among the Indian female athletes of different track and field events.

Keywords: Indian female athletes, body composition, morphology, somatotypes, track and field

Procedia PDF Downloads 102
9374 Rail Degradation Modelling Using ARMAX: A Case Study Applied to Melbourne Tram System

Authors: M. Karimpour, N. Elkhoury, L. Hitihamillage, S. Moridpour, R. Hesami

Abstract:

There is a necessity among rail transportation authorities for a superior understanding of the rail track degradation overtime and the factors influencing rail degradation. They need an accurate technique to identify the time when rail tracks fail or need maintenance. In turn, this will help to increase the level of safety and comfort of the passengers and the vehicles as well as improve the cost effectiveness of maintenance activities. An accurate model can play a key role in prediction of the long-term behaviour of railroad tracks. An accurate model can decrease the cost of maintenance. In this research, the rail track degradation is predicted using an autoregressive moving average with exogenous input (ARMAX). An ARMAX has been implemented on Melbourne tram data to estimate the values for the tram track degradation. Gauge values and rail usage in Million Gross Tone (MGT) are the main parameters used in the model. The developed model can accurately predict the future status of the tram tracks.

Keywords: ARMAX, dynamic systems, MGT, prediction, rail degradation

Procedia PDF Downloads 224