Search results for: corrosion inhibitors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1020

Search results for: corrosion inhibitors

660 ECOSURF EH3 - A Taq DNA Polymerase Enhancer

Authors: Kimberley Phoena Fan, Yu Zhang

Abstract:

ECOSURF™ EH-3 Surfactant (EH3) is a nonionic surfactant and has superior wetting and excellent oil removal properties. It is biodegradable with low toxicity and meets or exceeds US EPA Design for the Environment Criteria, and is widely used as a home cleaner, commercial and industrial degreaser. We have recently found that EH3 also possesses a special function which is characterized as an enhancer to Taq DNA polymerase and ameliorator to reduce the effects of PCR inhibitors, i.e., blood, urea, Guanidinium thiocyanate, Humic acids, polyphenol, and Polysaccharides. This is a new kind of PCR enhancer that does not work on relieving secondary structures of GC-rich templates. We have compared EH3’s effects on Taq DNA Polymerase along with other well-known enhancers, such as DMSO, betaine, and BSA, using GC rich or deficient template and found that, unlike DMSO and Betaine, the EH3 boosting effect on PCR reaction is not through reducing Tm. The results show the same increase of PCR products regardless of the GC contents or secondary structures. The mechanism of EH3 enhancing PCR is through its direct interaction with or stimulation of the DNA polymerase and making the enzymes more resistant to inhibitors in the presence of EH3. This phenomenon has first been observed for EH3, a new type of PCR enzyme enhancer. Subsequent research also shows that a series of similar surfactants boost Taq DNA polymerase as well.

Keywords: EH3, DNA, polymerase, enhancer, raw biological samples

Procedia PDF Downloads 101
659 Effect of Temperature on Corrosion Fatigue Cracking Behavior of Inconel 625 in Steam and Supercritical Water

Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang

Abstract:

Inconel 625 is a nickel-based alloy having outstanding corrosion resistance and developed for use at service temperatures ranging from cryogenic to 980°C. It got a wide range of applications in nuclear, petrochemical, chemical, marine, aeronautical, and aerospace industries. Currently, it is one of the candidate materials to be used as a structural material in ultra-supercritical (USC) power plants. In the high-temperature corrosive medium environment, metallic materials are susceptible to corrosion fatigue (CF). CF is an interaction between cyclic stress and corrosive medium environment that acts on a susceptible material and results in initiation and propagation of cracks. For the application of Inconel 625 as a structural material in USC power plants, CF behavior must be evaluated in steam and supercritical water (SCW) environment. Fatigue crack growth rate (FCGR) curves obtained from CF experiments are required to predict residual life of metallic materials used in power plants. In this study, FCGR tests of Inconel 625 were obtained by using compact tension specimen at 550-650 °C in steam (8 MPa) and SCW (25 MPa). The dissolved oxygen level was kept constant at 8000 ppb for the test conducted in steam and SCW. The tests were performed under sine wave loading waveform, 1 Hz loading frequency, stress ratio of 0.6 and maximum stress intensity factor of 32 MPa√m. Crack growth rate (CGR) was detected by using direct current potential drop technique. Results showed that CGR increased with an increase in temperature in the tested environmental conditions. The mechanism concerning the influence of temperature on FCGR are further discussed.

Keywords: corrosion fatigue, crack growth rate, nickel-based alloy, temperature

Procedia PDF Downloads 107
658 Corrosion Resistance Performance of Epoxy/Polyamidoamine Coating Due to Incorporation of Nano Aluminium Powder

Authors: Asiful Hossain Seikh, Mohammad Asif Alam, Ubair Abdus Samad, Jabair A. Mohammed, S. M. Al-Zahrani, El-Sayed M. Sherif

Abstract:

In this current investigation, aliphatic amine-cured diglycidyl ether of bisphenol-A (DGEBA) based epoxy coating was mixed with certain weight % hardener polyaminoamide (1:2) and was coated on carbon steel panels with and without 1% nano crystalline Al powder. The corrosion behavior of the coated samples were investigated by exposing them in the salt spray chamber, for 500 hours. According to ASTM-B-117, the bath was kept at 35 °C and 5% NaCl containing mist was sprayed at 1.3 bars pressure. Composition of coatings was confirmed using Fourier-transform infrared spectroscopy (FTIR). Electrochemical characterization of the coated samples was also performed using potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS) technique. All the experiments were done in 3.5% NaCl solution. The nano Al coated sample shows good corrosion resistance property compared to bare Al sample. In fact after salt spray exposure no pitting or local damage was observed for nano coated sample and the coating gloss was negligibly affected. The surface morphology of coated and corroded samples was studied using scanning electron microscopy (SEM).

Keywords: epoxy, nano aluminium, potentiodynamic polarization, salt spray, electrochemical impedence spectroscopy

Procedia PDF Downloads 119
657 Computational Analysis of Potential Inhibitors Selected Based on Structural Similarity for the Src SH2 Domain

Authors: W. P. Hu, J. V. Kumar, Jeffrey J. P. Tsai

Abstract:

The inhibition of SH2 domain regulated protein-protein interactions is an attractive target for developing an effective chemotherapeutic approach in the treatment of disease. Molecular simulation is a useful tool for developing new drugs and for studying molecular recognition. In this study, we searched potential drug compounds for the inhibition of SH2 domain by performing structural similarity search in PubChem Compound Database. A total of 37 compounds were screened from the database, and then we used the LibDock docking program to evaluate the inhibition effect. The best three compounds (AP22408, CID 71463546 and CID 9917321) were chosen for MD simulations after the LibDock docking. Our results show that the compound CID 9917321 can produce a more stable protein-ligand complex compared to other two currently known inhibitors of Src SH2 domain. The compound CID 9917321 may be useful for the inhibition of SH2 domain based on these computational results. Subsequently experiments are needed to verify the effect of compound CID 9917321 on the SH2 domain in the future studies.

Keywords: nonpeptide inhibitor, Src SH2 domain, LibDock, molecular dynamics simulation

Procedia PDF Downloads 240
656 Relative Importance of Different Mitochondrial Components in Maintaining the Barrier Integrity of Retinal Endothelial Cells: Implications for Vascular-associated Retinal Diseases

Authors: Shaimaa Eltanani, Thangal Yumnamcha, Ahmed S. Ibrahim

Abstract:

Purpose: Mitochondria dysfunction is central to breaking the barrier integrity of retinal endothelial cells (RECs) in various blinding eye diseases such as diabetic retinopathy and retinopathy of prematurity. Therefore, we aimed to dissect the role of different mitochondrial components, specifically, those of oxidative phosphorylation (OxPhos), in maintaining the barrier function of RECs. Methods: Electric cell-substrate impedance sensing (ECIS) technology was used to assess in real-time the role of different mitochondrial components in the total impedance (Z) of human RECs (HRECs) and its components; the capacitance (C) and the total resistance (R). HRECs were treated with specific mitochondrial inhibitors that target different steps in OxPhos: Rotenone for complex I; Oligomycin for ATP synthase; and FCCP for uncoupling OxPhos. Furthermore, data were modeled to investigate the effects of these inhibitors on the three parameters that govern the total resistance of cells: cell-cell interactions (Rb), cell-matrix interactions (α), and cell membrane permeability (Cm). Results: Rotenone (1 µM) produced the greatest reduction in the Z, followed by FCCP (1 µM), whereas no reduction in the Z was observed after the treatment with Oligomycin (1 µM). Following this further, we deconvoluted the effect of these inhibitors on Rb, α, and Cm. Firstly, rotenone (1 µM) completely abolished the resistance contribution of Rb, as the Rb became zero immediately after the treatment. Secondly, FCCP (1 µM) eliminated the resistance contribution of Rb only after 2.5 hours and increased Cm without considerable effect on α. Lastly, Oligomycin had the lowest impact among these inhibitors on Rb, which became similar to the control group at the end of the experiment without noticeable effects on Cm or α. Conclusion: These results demonstrate differential roles for complex I, complex V, and coupling of OxPhos in maintaining the barrier functionality of HRECs, in which complex I being the most important component in regulating the barrier functionality and the spreading behavior of HRECs. Such differences can be used in investigating gene expression as well as for screening selective agents that improve the functionality of complex I to be used in the therapeutic approach for treating REC-related retinal diseases.

Keywords: human retinal endothelial cells (hrecs), rotenone, oligomycin, fccp, oxidative phosphorylation, oxphos, capacitance, impedance, ecis modeling, rb resistance, α resistance, and barrier integrity

Procedia PDF Downloads 70
655 Corrosion Inhibition of Brass in Phosphoric Acid Solution by 2-(5-Methyl-2-Nitro-1H-Imidazol-1-Yl) Ethyl Benzoate

Authors: R. Khrifou, M. Galai, R. Touir, M. Ebn Touhami, Y. Ramli

Abstract:

A 2-(5-methyl-2-Nitro-1H-imidazol-1-yl)ethyl benzoate (IMDZ-B) was synthesized and characterized using elemental analyses, NMR, and Fourier transform infrared (FTIR) techniques. Its effect on brass corrosion in 1.0 M H₃PO₄ solution was investigated by using electrochemical measurements coupled with X-ray diffraction analysis (XRD), Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX). The polarization measurements showed that the IMDZ-B acts as a mixed-type inhibitor. Indeed, it is found that the IMDZ-B compound is a very good inhibitor, and its inhibition efficiency increases with concentration to reach a maximum of 99.5 % at 10-³ M. In addition, the obtained electrochemical parameters from impedance indicated that the IMDZ-B molecules act by adsorption on metallic surfaces. This adsorption was found to obey Langmuir’s adsorption isotherm. However, the temperature effect on the performance of IMDZ-B was also studied. It is found that the IMDZ-B takes its performance at high temperatures. In addition, the obtained kinetic and thermodynamic parameters showed that the IMDZ-B molecules act via two adsorption modes, physisorption and chemisorptions, and its process is endothermic and spontaneous. Finally, the XRD and SEM/EDX analyses confirmed the electrochemical obtained results.

Keywords: low concentration, anti-corrosion brass, IMDZ-B product, phosphoric acid solution, electrochemical, SEM\EDAX analysis

Procedia PDF Downloads 26
654 Preparation and Performance Evaluation of Green Chlorine-Free Coagulants

Authors: Huihui Zhang, Zhongzhi Zhang

Abstract:

Coagulation/flocculation is regarded a simple and effective wastewater treatment technology. Chlorine-containing coagulants may release chloride ions into the wastewater, causing corrosion. A green chlorine-free coagulant of polyaluminum ferric silicate (PSAF) was prepared by the copolymerization method to treat oily refractory wastewaters. Results showed that the highest removal efficiency of turbidity and chemical oxygen demand (COD) achieved 97.4% and 93.0% at a dosage of 700 mg/L, respectively. After PSAF coagulation, the chloride ion concentration was also almost the same as that in the raw wastewater. Thus, the chlorine-free coagulant is highly efficient and does not introduce additional chloride ions into the wastewater, avoiding corrosion.

Keywords: coagulation, chloride-free coagulant, oily refractory wastewater, coagulation performance

Procedia PDF Downloads 180
653 Effect of Solution Heat Treatment on Intergranular Corrosion Resistance of Welded Stainless Steel AISI 321

Authors: Amir Mahmoudi

Abstract:

In this investigation, AISI321 steel after welding by Shilded Metal Arc Welding (SMAW) was solution heat treated in various temperatures and times, and then was sensitizied. Results indicated, increasing of temperature in solution heat treatment raises the sensitization and creates the cavity structure in grain boundaries. Besides, in order to examine the effect of time on solution heat treatment, all samples were solution heat treated at different times and fixed temperature (1050°C). By increasing the time, more chrome carbides were created due to dissolution of delta ferrite phase and reproduce titanium carbides. Additionally, the best process for solution heat treatment for this steel was suggested.

Keywords: stainless steel, solution heat treatment, intergranular corrosion, DLEPR

Procedia PDF Downloads 497
652 Stress Corrosion Crackings Test of Candidate Materials in Support of the Development of the European Small Modular Supercritical Water Cooled Rector Concept

Authors: Radek Novotny, Michal Novak, Daniela Marusakova, Monika Sipova, Hugo Fuentes, Peter Borst

Abstract:

This research has been conducted within the European HORIZON 2020 project ECC-SMART. The main objective is to assess whether it is feasible to design and develop a small modular reactor (SMR) that would be cooled by supercritical water (SCW). One of the main objectives for material research concerns the corrosion of the candidate cladding materials. The experimental part has been conducted in support of the qualification procedure of the future SCW-SMR constructional materials. The last objective was to identify the gaps in current norms and guidelines. Apart from corrosion, resistance testing of candidate materials stresses corrosion cracking susceptibility tests have been performed in supercritical water. This paper describes part of these tests, in particular, those slow strain rate tensile loading applied for tangential ring shape specimens of two candidate materials, Alloy 800H and 310S stainless steel. These ring tensile tests are one the methods used for tensile testing of nuclear cladding. Here full circular heads with dimensions roughly equal to the inner diameter of the sample and the gage sections are placed in the parallel direction to the applied load. Slow strain rate tensile tests have been conducted in 380 or 500oC supercritical water applying two different elongation rates, 1x10-6 and 1x10-7 s-1. The effect of temperature and dissolved oxygen content on the SCC susceptibility of Alloy 800H and 310S stainless steel was investigated when two different temperatures and concentrations of dissolved oxygen were applied in supercritical water. The post-fracture analysis includes fractographic analysis of the fracture surfaces using SEM as well as cross-sectional analysis on the occurrence of secondary cracks. Assessment of the effect of environment and dissolved oxygen content was by comparing to the results of the reference tests performed in air and N2 gas overpressure. The effect of high temperature on creep and its role in the initiation of SCC was assessed as well. It has been concluded that the applied test method could be very useful for the investigation of stress corrosion cracking susceptibility of candidate cladding materials in supercritical water.

Keywords: stress corrosion cracking, ring tensile tests, super-critical water, alloy 800H, 310S stainless steel

Procedia PDF Downloads 57
651 Effects of Fe Addition and Process Parameters on the Wear and Corrosion Characteristics of Icosahedral Al-Cu-Fe Coatings on Ti-6Al-4V Alloy

Authors: Olawale S. Fatoba, Stephen A. Akinlabi, Esther T. Akinlabi, Rezvan Gharehbaghi

Abstract:

The performance of material surface under wear and corrosion environments cannot be fulfilled by the conventional surface modifications and coatings. Therefore, different industrial sectors need an alternative technique for enhanced surface properties. Titanium and its alloys possess poor tribological properties which limit their use in certain industries. This paper focuses on the effect of hybrid coatings Al-Cu-Fe on a grade five titanium alloy using laser metal deposition (LMD) process. Icosahedral Al-Cu-Fe as quasicrystals is a relatively new class of materials which exhibit unusual atomic structure and useful physical and chemical properties. A 3kW continuous wave ytterbium laser system (YLS) attached to a KUKA robot which controls the movement of the cladding process was utilized for the fabrication of the coatings. The titanium cladded surfaces were investigated for its hardness, corrosion and tribological behaviour at different laser processing conditions. The samples were cut to corrosion coupons, and immersed into 3.65% NaCl solution at 28oC using Electrochemical Impedance Spectroscopy (EIS) and Linear Polarization (LP) techniques. The cross-sectional view of the samples was analysed. It was found that the geometrical properties of the deposits such as width, height and the Heat Affected Zone (HAZ) of each sample remarkably increased with increasing laser power due to the laser-material interaction. It was observed that there are higher number of aluminum and titanium presented in the formation of the composite. The indentation testing reveals that for both scanning speed of 0.8 m/min and 1m/min, the mean hardness value decreases with increasing laser power. The low coefficient of friction, excellent wear resistance and high microhardness were attributed to the formation of hard intermetallic compounds (TiCu, Ti2Cu, Ti3Al, Al3Ti) produced through the in situ metallurgical reactions during the LMD process. The load-bearing capability of the substrate was improved due to the excellent wear resistance of the coatings. The cladded layer showed a uniform crack free surface due to optimized laser process parameters which led to the refinement of the coatings.

Keywords: Al-Cu-Fe coating, corrosion, intermetallics, laser metal deposition, Ti-6Al-4V alloy, wear resistance

Procedia PDF Downloads 145
650 Hybrid Stainless Steel Girder for Bridge Construction

Authors: Tetsuya Yabuki, Yasunori Arizumi, Tetsuhiro Shimozato, Samy Guezouli, Hiroaki Matsusita, Masayuki Tai

Abstract:

The main object of this paper is to present the research results of the development of a hybrid stainless steel girder system for bridge construction undertaken at University of Ryukyu. In order to prevent the corrosion damage and reduce the fabrication costs, a hybrid stainless steel girder in bridge construction is developed, the stainless steel girder of which is stiffened and braced by structural carbon steel materials. It is verified analytically and experimentally that the ultimate strength of the hybrid stainless steel girder is equal to or greater than that of conventional carbon steel girder. The benefit of the life-cycle cost of the hybrid stainless steel girder is also shown.

Keywords: smart structure, hybrid stainless steel members, ultimate strength, steel bridge, corrosion prevention

Procedia PDF Downloads 338
649 Formation of Stable Aqueous Dispersions of Polyaniline-Silica Particles for Application in Anticorrosive Coatings on Steel

Authors: K. Kamburova, N. Boshkova, N. Boshkov, T. Radeva

Abstract:

Coatings based on polyaniline (PANI) can improve the resistance of steel against corrosion. Two forms of PANI are generally accepted to have effective protection of steel: the conducting emeraldine salt (ES) and the non-conducting emeraldine base (EB). The ability to intercept electrons at the metal surface and to transport them is typically attributed to ES, while the success of EB as an anticorrosive additive in the coating is attributed to its ability to oxidize and reduce in a reversible way. This electrochemical mechanism is probably combined with barrier effect against corrosion species. In this work, we describe the preparation of stable suspensions of colloidal PANI-SiO₂ particles, suitable for obtaining of composite anticorrosive coating on steel. Electrokinetic data as a function of pH are presented, showing that the zeta potentials of the PANI-SiO₂ particles are governed primarily by the charged groups at the silica oxide surface. Electrosteric stabilization of the PANI-SiO₂ particles’ suspension against aggregation is realized at pH > 5.5 (EB form of PANI) by adsorption of positively charged polyelectrolyte molecules onto negatively charged PANI-SiO₂ particles. We anticipate that incorporation of the small particles will provide a more homogeneous distribution in the coating matrix and will decrease the negative effect on barrier properties of the composite coating.

Keywords: particles, stable dispersion, composite coatings, corrosion protection

Procedia PDF Downloads 147
648 Biocompatibility and Electrochemical Assessment of Biomedical Ti-24Nb-4Zr-8Sn Produced by Spark Plasma Sintering

Authors: Jerman Madonsela, Wallace Matizamhuka, Akiko Yamamoto, Ronald Machaka, Brendon Shongwe

Abstract:

In this study, biocompatibility evaluation of nanostructured near beta Ti-24Nb-4Zr-8Sn (Ti2448) alloy with non-toxic elements produced utilizing Spark plasma sintering (SPS) of very fine microsized powders attained through mechanical alloying was performed. The results were compared with pure titanium and Ti-6Al-4V (Ti64) alloy. Cell proliferation test was performed using murine osteoblastic cells, MC3T3-E1 at two cell densities; 400 and 4000 cells/mL for 7 days incubation. Pure titanium took a lead under both conditions suggesting that the presence of other oxide layers influence cell proliferation. No significant difference in cell proliferation was observed between Ti64 and Ti2448. Potentiodynamic measurement in Hanks, 0.9% NaCl and cell culture medium showed no distinct difference on the anodic polarization curves of the three alloys, indicating that the same anodic reaction occurred on their surface but with different rates. However, Ti2448 showed better corrosion resistance in cell culture medium with a slightly lower corrosion rate of 2.96 nA/cm2 compared to 4.86 nA/cm2 and 5.62 nA/cm2 of Ti and Ti64 respectively. Ti2448 adsorbed less protein as compared to Ti and Ti64 though no notable difference in surface wettability was observed.

Keywords: biocompatibility, osteoblast, corrosion, surface wettability, protein adsorption

Procedia PDF Downloads 193
647 PbLi Activation Due to Corrosion Products in WCLL BB (EU-DEMO) and Its Impact on Reactor Design and Recycling

Authors: Nicole Virgili, Marco Utili

Abstract:

The design of the Breeding Blanket in Tokamak fusion energy systems has to guarantee sufficient availability in addition to its functions, that are, tritium breeding self-sufficiency, power extraction and shielding (the magnets and the VV). All these function in the presence of extremely harsh operating conditions in terms of heat flux and neutron dose as well as chemical environment of the coolant and breeder that challenge structural materials (structural resistance and corrosion resistance). The movement and activation of fluids from the BB to the Ex-vessel components in a fusion power plant have an important radiological consideration because flowing material can carry radioactivity to safety-critical areas. This includes gamma-ray emission from activated fluid and activated corrosion products, and secondary activation resulting from neutron emission, with implication for the safety of maintenance personnel and damage to electrical and electronic equipment. In addition to the PbLi breeder activation, it is important to evaluate the contribution due to the activated corrosion products (ACPs) dissolved in the lead-lithium eutectic alloy, at different concentration levels. Therefore, the purpose of the study project is to evaluate the PbLi activity utilizing the FISPACT II inventory code. Emphasis is given on how the design of the EU-DEMO WCLL, and potential recycling of the breeder material will be impacted by the activation of PbLi and the associated active corrosion products (ACPs). For this scope the following Computational Tools, Data and Geometry have been considered: • Neutron source: EU-DEMO neutron flux < 1014/cm2/s • Neutron flux distribution in equatorial breeding blanket module (BBM) #13 in the WCLL BB outboard central zone, which is the most activated zone, with the aim to introduce a conservative component utilizing MNCP6. • The recommended geometry model: 2017 EU DEMO CAD model. • Blanket Module Material Specifications (Composition) • Activation calculations for different ACP concentration levels in the PbLi breeder, with a given chemistry in stationary equilibrium conditions, using FISPACT II code. Results suggest that there should be a waiting time of about 10 years from the shut-down (SD) to be able to safely manipulate the PbLi for recycling operations with simple shielding requirements. The dose rate is mainly given by the PbLi and the ACP concentration (x1 or x 100) does not shift the result. In conclusion, the results show that there is no impact on PbLi activation due to ACPs levels.

Keywords: activation, corrosion products, recycling, WCLL BB., PbLi

Procedia PDF Downloads 82
646 Evaluation of Chitin Filled Epoxy Coating for Corrosion Protection of Q235 Steel in Saline Environment

Authors: Innocent O. Arukalam, Emeka E. Oguzie

Abstract:

Interest in the development of eco-friendly anti-corrosion coatings using bio-based renewable materials is gaining momentum recently. To this effect, chitin biopolymer, which is non-toxic, biodegradable, and inherently possesses anti-microbial property, was successfully synthesized from snail shells and used as a filler in the preparation of epoxy coating. The chitin particles were characterized with contact angle goniometer, scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, and X-ray diffractometer (XRD). The performance of the coatings was evaluated by immersion and electrochemical impedance spectroscopy (EIS) tests. Electronic structure properties of the coating ingredients and molecular level interaction of the corrodent and coated Q235 steel were appraised by quantum chemical computations (QCC) and molecular dynamics (MD) simulation techniques, respectively. The water contact angle (WCA) measurement of chitin particles was found to be 129.3o while that of chitin particles modified with amino trimethoxy silane (ATMS) was 149.6o, suggesting it is highly hydrophobic. Immersion and EIS analyses revealed that epoxy coating containing silane-modified chitin exhibited lowest water absorption and highest barrier as well as anti-corrosion performances. The QCC showed that quantum parameters for the coating containing silane-modified chitin are optimum and therefore corresponds to high corrosion protection. The high negative value of adsorption energies (Eads) for the coating containing silane-modified chitin indicates the coating molecules interacted and adsorbed strongly on the steel surface. The observed results have shown that silane-modified epoxy-chitin coating would perform satisfactorily for surface protection of metal structures in saline environment.

Keywords: chitin, EIS, epoxy coating, hydrophobic, molecular dynamics simulation, quantum chemical computation

Procedia PDF Downloads 58
645 Synthesis and Molecular Docking Studies of Hydrazone Derivatives Potent Inhibitors as a Human Carbonic Anhydrase IX

Authors: Sema Şenoğlu, Sevgi Karakuş

Abstract:

Hydrazone scaffold is important to design new drug groups and is found to possess numerous uses in pharmaceutical chemistry. Besides, hydrazone derivatives are also known for biological activities such as anticancer, antimicrobial, antiviral, and antifungal. Hydrazone derivatives are promising anticancer agents because they inhibit cancer proliferation and induce apoptosis. Human carbonic anhydrase IX has a high potential to be an antiproliferative drug target, and targeting this protein is also important for obtaining potential anticancer inhibitors. The protein construct was retrieved as a PDB file from the RCSB protein database. This binding interaction of proteins and ligands was performed using Discovery Studio Visualizer. In vitro inhibitory activity of hydrazone derivatives was tested against enzyme carbonic anhydrase IX on the PyRx programme. Most of these molecules showed remarkable human carbonic anhydrase IX inhibitory activity compared to the acetazolamide. As a result, these compounds appear to be a potential target in drug design against human carbonic anhydrase IX.

Keywords: cancer, carbonic anhydrase IX enzyme, docking, hydrazone

Procedia PDF Downloads 43
644 Curcumin Derivatives as Potent Inhibitors of Inducible Nitric Oxide Synthase in Osteoarthritis: A Molecular Docking Study

Authors: F. Ambreen, A.Naheed

Abstract:

Osteoarthritis (OA) is a degenerative disorder affecting millions of people worldwide. Nitric oxide (NO) was found to play a catabolic role in the development of osteoarthritis. It is a toxic free radical gas generated during the metabolism of L-arginine by the enzyme Nitric oxide synthase (NOS). Inducible Nitric Oxide Synthase (iNOS) is one of the isoform of NOS, and its overexpression leads to the excessive formation of NO that results in pathophysiological joint conditions. Several synthetic anti-inflammatory drugs and inhibitors are present to date, but all showed side effects and complications. Therefore, the pursuit of natural disease-modifying drugs remains a top priority. Curcumin is an active component of turmeric, and the past few decades have witnessed intense research devoted to the antioxidant and anti-inflammatory properties of curcumin. The present study focused on curcumin and its derivatives in the search for new iNOS inhibitors for the treatment of osteoarthritis. We conducted a molecular docking study on curcumin and its four derivatives; cyclocurcumin, tetrahydrocurcumin, demethoxycurcumin and curcumin monoglucoside with iNOS using CLC Drug discovery work bench 3.02. We selected two co-crystallized ligands for this study; tetrahydrobiopterin and N-omega-propyl-L-arginine present in complex with the enzyme iNOS. Results showed the best binding affinity of N-omega-propyl-L-arginine with cyclocurcumin and curcumin monoglucoside that exhibit binding energies of -65.2 kcal/mol and -68 kcal/mol respectively. Whereas with tetrahydrobiopterin, best binding scores of -64.7 kcal/mol and -62.2 kcal/mol were found with tetrahydrocurcumin and demethoxycurcumin respectively. This information could open doors of research for the designing of novel drugs using herbs such as curcumin for the treatment of inflammatory joint diseases.

Keywords: curcumin, iNOS, molecular docking, osteoarthritis

Procedia PDF Downloads 104
643 Functional Plasma-Spray Ceramic Coatings for Corrosion Protection of RAFM Steels in Fusion Energy Systems

Authors: Chen Jiang, Eric Jordan, Maurice Gell, Balakrishnan Nair

Abstract:

Nuclear fusion, one of the most promising options for reliably generating large amounts of carbon-free energy in the future, has seen a plethora of ground-breaking technological advances in recent years. An efficient and durable “breeding blanket”, needed to ensure a reactor’s self-sufficiency by maintaining the optimal coolant temperature as well as by minimizing radiation dosage behind the blanket, still remains a technological challenge for the various reactor designs for commercial fusion power plants. A relatively new dual-coolant lead-lithium (DCLL) breeder design has exhibited great potential for high-temperature (>700oC), high-thermal-efficiency (>40%) fusion reactor operation. However, the structural material, namely reduced activation ferritic-martensitic (RAFM) steel, is not chemically stable in contact with molten Pb-17%Li coolant. Thus, to utilize this new promising reactor design, the demand for effective corrosion-resistant coatings on RAFM steels represents a pressing need. Solution Spray Technologies LLC (SST) is developing a double-layer ceramic coating design to address the corrosion protection of RAFM steels, using a novel solution and solution/suspension plasma spray technology through a US Department of Energy-funded project. Plasma spray is a coating deposition method widely used in many energy applications. Novel derivatives of the conventional powder plasma spray process, known as the solution-precursor and solution/suspension-hybrid plasma spray process, are powerful methods to fabricate thin, dense ceramic coatings with complex compositions necessary for the corrosion protection in DCLL breeders. These processes can be used to produce ultra-fine molten splats and to allow fine adjustment of coating chemistry. Thin, dense ceramic coatings with chosen chemistry for superior chemical stability in molten Pb-Li, low activation properties, and good radiation tolerance, is ideal for corrosion-protection of RAFM steels. A key challenge is to accommodate its CTE mismatch with the RAFM substrate through the selection and incorporation of appropriate bond layers, thus allowing for enhanced coating durability and robustness. Systematic process optimization is being used to define the optimal plasma spray conditions for both the topcoat and bond-layer, and X-ray diffraction and SEM-EDS are applied to successfully validate the chemistry and phase composition of the coatings. The plasma-sprayed double-layer corrosion resistant coatings were also deposited onto simulated RAFM steel substrates, which are being tested separately under thermal cycling, high-temperature moist air oxidation as well as molten Pb-Li capsule corrosion conditions. Results from this testing on coated samples, and comparisons with bare RAFM reference samples will be presented and conclusions will be presented assessing the viability of the new ceramic coatings to be viable corrosion prevention systems for DCLL breeders in commercial nuclear fusion reactors.

Keywords: breeding blanket, corrosion protection, coating, plasma spray

Procedia PDF Downloads 281
642 NLRP3-Inflammassome Participates in the Inflammatory Response Induced by Paracoccidioides brasiliensis

Authors: Eduardo Kanagushiku Pereira, Frank Gregory Cavalcante da Silva, Barbara Soares Gonçalves, Ana Lúcia Bergamasco Galastri, Ronei Luciano Mamoni

Abstract:

The inflammatory response initiates after the recognition of pathogens by receptors expressed by innate immune cells. Among these receptors, the NLRP3 was associated with the recognition of pathogenic fungi in experimental models. NLRP3 operates forming a multiproteic complex called inflammasome, which actives caspase-1, responsible for the production of the inflammatory cytokines IL-1beta and IL-18. In this study, we aimed to investigate the involvement of NLRP3 in the inflammatory response elicited in macrophages against Paracoccidioides brasiliensis (Pb), the etiologic agent of PCM. Macrophages were differentiated from THP-1 cells by treatment with phorbol-myristate-acetate. Following differentiation, macrophages were stimulated by Pb yeast cells for 24 hours, after previous treatment with specific NLRP3 (3,4-methylenedioxy-beta-nitrostyrene) and/or caspase-1 (VX-765) inhibitors, or specific inhibitors of pathways involved in NLRP3 activation such as: Reactive Oxigen Species (ROS) production (N-Acetyl-L-cysteine), K+ efflux (Glibenclamide) or phagossome acidification (Bafilomycin). Quantification of IL-1beta and IL-18 in supernatants was performed by ELISA. Our results showed that the production of IL-1beta and IL-18 by THP-1-derived-macrophages stimulated with Pb yeast cells was dependent on NLRP3 and caspase-1 activation, once the presence of their specific inhibitors diminished the production of these cytokines. Furthermore, we found that the major pathways involved in NLRP3 activation, after Pb recognition, were dependent on ROS production and K+ efflux. In conclusion, our results showed that NLRP3 participates in the recognition of Pb yeast cells by macrophages, leading to the activation of the NLRP3-inflammasome and production of IL-1beta and IL-18. Together, these cytokines can induce an inflammatory response against P. brasiliensis, essential for the establishment of the initial inflammatory response and for the development of the subsequent acquired immune response.

Keywords: inflammation, IL-1beta, IL-18, NLRP3, Paracoccidioidomycosis

Procedia PDF Downloads 245
641 Molecular Design and Synthesis of Heterocycles Based Anticancer Agents

Authors: Amna J. Ghith, Khaled Abu Zid, Khairia Youssef, Nasser Saad

Abstract:

Backgrounds: The multikinase and vascular endothelial growth factor (VEGF) receptor inhibitors interrupt the pathway by which angiogenesis becomes established and promulgated, resulting in the inadequate nourishment of metastatic disease. VEGFR-2 has been the principal target of anti-angiogenic therapies. We disclose the new thieno pyrimidines as inhibitors of VEGFR-2 designed by a molecular modeling approach with increased synergistic activity and decreased side effects. Purpose: 2-substituted thieno pyrimidines are designed and synthesized with anticipated anticancer activity based on its in silico molecular docking study that supports the initial pharmacophoric hypothesis with a same binding mode of interaction at the ATP-binding site of VEGFR-2 (PDB 2QU5) with high docking score. Methods: A series of compounds were designed using discovery studio 4.1/CDOCKER with a rational that mimic the pharmacophoric features present in the reported active compounds that targeted VEGFR-2. An in silico ADMET study was also performed to validate the bioavailability of the newly designed compounds. Results: The Compounds to be synthesized showed interaction energy comparable to or within the range of the benzimidazole inhibitor ligand when docked with VEGFR-2. ADMET study showed comparable results most of the compounds showed absorption within (95-99) zone varying according to different substitutions attached to thieno pyrimidine ring system. Conclusions: A series of 2-subsituted thienopyrimidines are to be synthesized with anticipated anticancer activity and according to docking study structure requirement for the design of VEGFR-2 inhibitors which can act as powerful anticancer agents.

Keywords: docking, discovery studio 4.1/CDOCKER, heterocycles based anticancer agents, 2-subsituted thienopyrimidines

Procedia PDF Downloads 212
640 Corrosion Analysis of Brazed Copper-Based Conducts in Particle Accelerator Water Cooling Circuits

Authors: A. T. Perez Fontenla, S. Sgobba, A. Bartkowska, Y. Askar, M. Dalemir Celuch, A. Newborough, M. Karppinen, H. Haalien, S. Deleval, S. Larcher, C. Charvet, L. Bruno, R. Trant

Abstract:

The present study investigates the corrosion behavior of copper (Cu) based conducts predominantly brazed with Sil-Fos (self-fluxing copper-based filler with silver and phosphorus) within various cooling circuits of demineralized water across different particle accelerator components at CERN. The study covers a range of sample service time, from a few months to fifty years, and includes various accelerator components such as quadrupoles, dipoles, and bending magnets. The investigation comprises the established sample extraction procedure, examination methodology including non-destructive testing, evaluation of the corrosion phenomena, and identification of commonalities across the studied components as well as analysis of the environmental influence. The systematic analysis included computed microtomography (CT) of the joints that revealed distributed defects across all brazing interfaces. Some defects appeared to result from areas not wetted by the filler during the brazing operation, displaying round shapes, while others exhibited irregular contours and radial alignment, indicative of a network or interconnection. The subsequent dry cutting performed facilitated access to the conduct's inner surface and the brazed joints for further inspection through light and electron microscopy (SEM) and chemical analysis via Energy Dispersive X-ray spectroscopy (EDS). Brazing analysis away from affected areas identified the expected phases for a Sil-Fos alloy. In contrast, the affected locations displayed micrometric cavities propagating into the material, along with selective corrosion of the bulk Cu initiated at the conductor-braze interface. Corrosion product analysis highlighted the consistent presence of sulfur (up to 6 % in weight), whose origin and role in the corrosion initiation and extension is being further investigated. The importance of this study is paramount as it plays a crucial role in comprehending the underlying factors contributing to recently identified water leaks and evaluating the extent of the issue. Its primary objective is to provide essential insights for the repair of impacted brazed joints when accessibility permits. Moreover, the study seeks to contribute to the improvement of design and manufacturing practices for future components, ultimately enhancing the overall reliability and performance of magnet systems within CERN accelerator facilities.

Keywords: accelerator facilities, brazed copper conducts, demineralized water, magnets

Procedia PDF Downloads 20
639 A Finite Element Model to Study the Behaviour of Corroded Reinforced Concrete Beams Repaired with near Surface Mounted Technique

Authors: B. Almassri, F. Almahmoud, R. Francois

Abstract:

Near surface mounted reinforcement (NSM) technique is one of the promising techniques used nowadays to strengthen reinforced concrete (RC) structures. In the NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. This paper studies the non-classical mode of failure ‘the separation of concrete cover’ according to experimental and numerical FE modelling results. Experimental results and numerical modelling results of a 3D finite element (FE) model using the commercial software Abaqus and 2D FE model FEMIX were obtained on two beams, one corroded (25 years of corrosion procedure) and one control (A1CL3-R and A1T-R) were each repaired in bending using NSM CFRP rod and were then tested up to failure. The results showed that the NSM technique increased the overall capacity of control and corroded beams despite a non-classical mode of failure with separation of the concrete cover occurring in the corroded beam due to damage induced by corrosion. Another FE model used external steel stirrups around the repaired corroded beam A1CL3-R which failed with the separation of concrete cover, this model showed a change in the mode of failure form a non-classical mode of failure by the separation of concrete cover to the same mode of failure of the repaired control beam by the crushing of compressed concrete.

Keywords: corrosion, repair, Reinforced Concrete, FEM, CFRP, FEMIX

Procedia PDF Downloads 139
638 Vegetable Oil-Based Anticorrosive Coatings for Metals Protection

Authors: Brindusa Balanuca, Raluca Stan, Cristina Ott, Matei Raicopol

Abstract:

The current study aims to develop anti corrosive coatings using vegetable oil (VO)-based polymers. Due to their chemical versatility, reduced costs and more important, higher hydrophobicity, VO’s are great candidates in the field of anti-corrosive materials. Lignin (Ln) derivatives were also used in this research study in order to achieve performant hydrophobic anti-corrosion layers. Methods Through a rational functionalization pathway, the selected VO (linseed oil) is converted to more reactive monomer – methacrylate linseed oil (noted MLO). The synthesized MLO cover the metals surface in a thin layer and through different polymerization techniques (using visible radiation or temperature, respectively) and well-established reaction conditions, is converted to a hydrophobic coating capable to protect the metals against corrosive factors. In order to increase the anti-corrosion protection, lignin (Ln) was selected to be used together with MLO macromonomer. Thus, super hydrophobic protective coatings will be formulated. Results The selected synthetic strategy to convert the VO in more reactive compounds – MLO – has led to a functionalization degree of greater than 80%. The obtained monomers were characterized through NMR and FT-IR by monitoring the characteristic signals after each synthesis step. Using H-NMR data, the functionalization degrees were established. VO-based and also VO-Ln anti corrosion formulations were both photochemical and thermal polymerized in specific reaction conditions (initiators, temperature range, reaction time) and were tested as anticorrosive coatings. Complete and advances characterization of the synthesized materials will be presented in terms of thermal, mechanical and morphological properties. The anticorrosive properties were also evaluated and will be presented. Conclusions Through the design strategy briefly presented, new composite materials for metal corrosion protection were successfully developed, using natural derivatives: vegetable oils and lignin, respectively.

Keywords: anticorrosion protection, hydrophobe layers, lignin, methacrylates, vegetable oil

Procedia PDF Downloads 148
637 Performance Study of Experimental Ferritic Alloy with High Content of Molybdenum in Corrosive Environment of Soybean Methyl Biodiesel

Authors: Maurício N. Kleinberg, Ana P. R. N. Barroso, Frederico R. Silva, Natasha l. Gomes, Rodrigo F. Guimarães, Marcelo M. V. Parente, Jackson Q. Malveira

Abstract:

Increased production of biofuels, especially biodiesel, as an option to replace the diesel derived from oil is already a reality in countries seeking a renewable and environmentally friendly fuel, as is the case in Brazil. However, it is known that the use of fuels, renewable or not, implies that it is in contact with various metallic materials which may cause corrosion. In the search for more corrosion resistant materials has been experimentally observed that the addition of molybdenum in ferritic steels increases their protective character without significantly burdening the cost of production. In order to evaluate the effect of adding molybdenum, samples of commercial steel (austenitic, ferritic and carbon steel) and the experimental ferritic alloy with a high molybdenum content (5.3%) were immersed separately into biodiesel derived from transesterification of soy oil to monitor the corrosion process of these metal samples, and in parallel to analyze the oxidative degradation of biodiesel itself. During the immersion time of 258 days, biodiesel samples were taken for analysis of acidity, kinematic viscosity, density and refraction. Likewise, the metal samples were taken from the biodiesel to be weighed and microstructurally analyzed by light microscopy. The results obtained at the end of 258 days shown that biodiesel presented a considerable increase on the values of the studied parameters for all the samples. However, this increase was not able to produce significant mass loss in metallic samples. As regards the microstructural analysis, it showed the onset of surface oxidation on the carbon steel sample. As for the other samples, no significant surface changes were shown. These results are consistent with literature for short immersion times. It is concluded that the increase in the values of the studied parameters is not significant yet, probably due to the low time of immersion and exposure of the samples. Thus, it is necessary to continue the tests so that the objectives of this work are achieved.

Keywords: biodiesel, corrosion, immersion, experimental alloy

Procedia PDF Downloads 415
636 Development of Excellent Water-Repellent Coatings for Metallic and Ceramic Surfaces

Authors: Aditya Kumar

Abstract:

One of the most fascinating properties of various insects and plant surfaces in nature is their water-repellent (superhydrophobicity) capability. The nature offers new insights to learn and replicate the same in designing artificial superhydrophobic structures for a wide range of applications such as micro-fluidics, micro-electronics, textiles, self-cleaning surfaces, anti-corrosion, anti-fingerprint, oil/water separation, etc. In general, artificial superhydrophobic surfaces are synthesized by creating roughness and then treating the surface with low surface energy materials. In this work, various super-hydrophobic coatings on metallic surfaces (aluminum, steel, copper, steel mesh) were synthesized by chemical etching process using different etchants and fatty acid. Also, SiO2 nano/micro-particles embedded polyethylene, polystyrene, and poly(methyl methacrylate) superhydrophobic coatings were synthesized on glass substrates. Also, the effect of process parameters such as etching time, etchant concentration, and particle concentration on wettability was studied. To know the applications of the coatings, surface morphology, contact angle, self-cleaning, corrosion-resistance, and water-repellent characteristics were investigated at various conditions. Furthermore, durabilities of coatings were also studied by performing thermal, ultra-violet, and mechanical stability tests. The surface morphology confirms the creation of rough microstructures by chemical etching or by embedding particles, and the contact angle measurements reveal the superhydrophobic nature. Experimentally it is found that the coatings have excellent self-cleaning, anti-corrosion and water-repellent nature. These coatings also withstand mechanical disturbances such surface bending, adhesive peeling, and abrasion. Coatings are also found to be thermal and ultra-violet stable. Additionally, coatings are also reproducible. Hence aforesaid durable superhydrophobic surfaces have many potential industrial applications.

Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning

Procedia PDF Downloads 269
635 Naltrexone and Borderline Personality Disorder: A Brief Review

Authors: Azadeh Moghaddas, Mehrnoush Dianatkhah, Padideh Ghaeli

Abstract:

The main characteristics of borderline personality disorder (BPD) are instable regulation of affect and self-image, impulsive behavior, and lack of interpersonal relationships. Clinically, emotional dysregulation, impulsive aggression, repeated self-injury, and suicidal thought are noted with this disorder. Proper management of patients with BPD is a difficult challenge due to the complex features of this disorder. Pharmacotherapy of BPD in order to control impulsive behavior and to stabilize affect in patients with BPD has been receiving a lot of attention. Anticonvulsant agents such as topiramate, valproate, or lamotrigine, atypical antipsychotics such as aripiprazole and olanzapine and antidepressants such as monoamine oxidase inhibitors and selective serotonin reuptake inhibitors like fluvoxamine have been implicated in the treatment of BPD. Unfortunately, none of these medications can be used alone or even in combination as sole treatment of BPD. Medications may be used mostly to resolve or reduce impulsivity and aggression in these patients. Naltrexone (NTX), a nonspecific competitive opiate antagonist has been suggested, in the literature, to control self-injurious behavior (SIB) and dissociative symptoms in patients with BPD. This brief review has been intended to look at all documented evidence on the use of NTX in the management of BPD and to reach a comprehensive conclusion.

Keywords: borderline personality disorder, naltrexone, self-injurious behavior, dissociative symptoms

Procedia PDF Downloads 271
634 Potential of Polyphenols from Tamarix Gallica towards Common Pathological Features of Diabetes and Alzheimer’s Diseases

Authors: Asma Ben Hmidene, Mizuho Hanaki, Kazuma Murakami, Kazuhiro Irie, Hiroko Isoda, Hideyuki Shigemori

Abstract:

Type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) are characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system, respectively. It is now widely recognized that T2DM and AD share many pathophysiological features including glucose metabolism, increased oxidative stress and amyloid aggregation. Amyloid beta (Aβ) is the components of the amyloid deposits in the AD brain and while the component of the amyloidogenic peptide deposit in the pancreatic islets of Langerhans is identified as human islet amyloid polypeptide (hIAPP). These two proteins are originated from the amyloid precursor protein and have a high sequence similarity. Although the amino acid sequences of amyloidogenic proteins are diverse, they all adopt a similar structure in aggregates called cross-beta-spine. Add at that, extensive studies in the past years have found that like Aβ1-42, IAPP forms early intermediate assemblies as spherical oligomers, implicating that these oligomers possess a common folding pattern or conformation. These similarities can be used in the search for effective pharmacotherapy for DM, since potent therapeutic agents such as antioxidants with a catechol moiety, proved to inhibit Aβ aggregation, may play a key role in the inhibit the aggregation of hIAPP treatment of patients with DM. Tamarix gallica is one of the halophyte species having a powerful antioxidant system. Although it was traditionally used for the treatment of various liver metabolic disorders, there is no report about the use of this plant for the treatment or prevention of T2DM and AD. Therefore, the aim of this work is to investigate their protective effect towards T2DM and AD by isolation and identification of α-glucosidase inhibitors, with antioxidant potential, that play an important role in the glucose metabolism in diabetic patient, as well as, the polymerization of hIAPP and Aβ aggregation inhibitors. Structure-activity relationship study was conducted for both assays. And as for α-glucosidase inhibitors, their mechanism of action and their synergistic potential when applied with a very low concentration of acarbose were also suggesting that they can be used not only as α-glucosidase inhibitors but also be combined with established α-glucosidase inhibitors to reduce their adverse effect. The antioxidant potential of the purified substances was evaluated by DPPH and SOD assays. Th-T assay using 42-mer amyloid β-protein (Aβ42) for AD and hIAPP which is a 37-residue peptide secreted by the pancreatic β –cells for T2DM and Transmission electronic microscopy (TEM) were conducted to evaluate the amyloid aggragation of the actives substances. For α-glucosidase, p-NPG and glucose oxidase assays were performed for determining the inhibition potential and structure-activity relationship study. The Enzyme kinetic protocol was used to study the mechanism of action. From this research, it was concluded that polyphenols playing a role in the glucose metabolism and oxidative stress can also inhibit the amyloid aggregation, and that substances with a catechol and glucuronide moieties inhibiting amyloid-β aggregation, might be used to inhibit the aggregation of hIAPP.

Keywords: α-glucosidase inhibitors, amyloid aggregation inhibition, mechanism of action, polyphenols, structure activity relationship, synergistic potential, tamarix gallica

Procedia PDF Downloads 254
633 Hard Sludge Formation and Consolidation in Pressurized Water Reactor Steam Generators: An Experimental Study

Authors: R. Fernandez-Saavedra, M. B. Gomez-Mancebo, D. Gomez-Briceno

Abstract:

The gradual corrosion of PWR (Pressurized Water Reactor) feedwater, condensate and drain systems results in the inevitable liberation of corrosion products, principally metallic oxides, to the secondary circuit. In addition, other contaminants and impurities are introduced into the makeup water, auxiliary feedwater and by condenser leaks. All these compounds circulating in the secondary flow can eventually be transported to steam generators and be transformed into deposits on their surfaces. Deposits that accumulate on the tube sheet are known as sludge piles and when they consolidate and harden become into hard sludge. Hard sludge is especially detrimental because it favors tube deformation or denting at the top of tube sheet and further stress corrosion cracking (SCC). These failures affect the efficiency of nuclear power plants. In a recent work, a model for the formation and consolidation of hard sludge has been formulated, highlighting the influence of aluminum and silicon compounds in the initial formation of hard sludge. In this work, an experimental study has been performed in order to get a deeper understanding of the behavior of Al and Si species in hard sludge formation and consolidation. For this purpose, the key components of hard sludge (magnetite, aluminum and/or silicon sources) have been isothermally autoclaved in representative secondary circuit conditions during one week, and the resulting products have been chemically and structurally characterized by XRF and XRD techniques, respectively.

Keywords: consolidation, hard sludge, secondary circuit, steam generator

Procedia PDF Downloads 162
632 Thermal Stress and Computational Fluid Dynamics Analysis of Coatings for High-Temperature Corrosion

Authors: Ali Kadir, O. Anwar Beg

Abstract:

Thermal barrier coatings are among the most popular methods for providing corrosion protection in high temperature applications including aircraft engine systems, external spacecraft structures, rocket chambers etc. Many different materials are available for such coatings, of which ceramics generally perform the best. Motivated by these applications, the current investigation presents detailed finite element simulations of coating stress analysis for a 3- dimensional, 3-layered model of a test sample representing a typical gas turbine component scenario. Structural steel is selected for the main inner layer, Titanium (Ti) alloy for the middle layer and Silicon Carbide (SiC) for the outermost layer. The model dimensions are 20 mm (width), 10 mm (height) and three 1mm deep layers. ANSYS software is employed to conduct three types of analysis- static structural, thermal stress analysis and also computational fluid dynamic erosion/corrosion analysis (via ANSYS FLUENT). The specified geometry which corresponds to corrosion test samples exactly is discretized using a body-sizing meshing approach, comprising mainly of tetrahedron cells. Refinements were concentrated at the connection points between the layers to shift the focus towards the static effects dissipated between them. A detailed grid independence study is conducted to confirm the accuracy of the selected mesh densities. To recreate gas turbine scenarios; in the stress analysis simulations, static loading and thermal environment conditions of up to 1000 N and 1000 degrees Kelvin are imposed. The default solver was used to set the controls for the simulation with the fixed support being set as one side of the model while subjecting the opposite side to a tabular force of 500 and 1000 Newtons. Equivalent elastic strain, total deformation, equivalent stress and strain energy were computed for all cases. Each analysis was duplicated twice to remove one of the layers each time, to allow testing of the static and thermal effects with each of the coatings. ANSYS FLUENT simulation was conducted to study the effect of corrosion on the model under similar thermal conditions. The momentum and energy equations were solved and the viscous heating option was applied to represent improved thermal physics of heat transfer between the layers of the structures. A Discrete Phase Model (DPM) in ANSYS FLUENT was employed which allows for the injection of continuous uniform air particles onto the model, thereby enabling an option for calculating the corrosion factor caused by hot air injection (particles prescribed 5 m/s velocity and 1273.15 K). Extensive visualization of results is provided. The simulations reveal interesting features associated with coating response to realistic gas turbine loading conditions including significantly different stress concentrations with different coatings.

Keywords: thermal coating, corrosion, ANSYS FEA, CFD

Procedia PDF Downloads 118
631 Efficacy of Celecoxib Adjunct Treatment on Bipolar Disorder: Systematic Review and Meta-Analysis

Authors: Daniela V. Bavaresco, Tamy Colonetti, Antonio Jose Grande, Francesc Colom, Joao Quevedo, Samira S. Valvassori, Maria Ines da Rosa

Abstract:

Objective: Performed a systematic review and meta-analysis to evaluated the potential effect of the cyclo-oxygenases (Cox)-2 inhibitor Celecoxib adjunct treatment in Bipolar Disorder (BD), through of randomized controlled trials. Method: A search of the electronic databases was proceeded, on MEDLINE, EMBASE, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL), Biomed Central, Web of Science, IBECS, LILACS, PsycINFO (American Psychological Association), Congress Abstracts, and Grey literature (Google Scholar and the British Library) for studies published from January 1990 to February 2018. A search strategy was developed using the terms: 'Bipolar disorder' or 'Bipolar mania' or 'Bipolar depression' or 'Bipolar mixed' or 'Bipolar euthymic' and 'Celecoxib' or 'Cyclooxygenase-2 inhibitors' or 'Cox-2 inhibitors' as text words and Medical Subject Headings (i.e., MeSH and EMTREE) and searched. The therapeutic effects of adjunctive treatment with Celecoxib were analyzed, it was possible to carry out a meta-analysis of three studies included in the systematic review. The meta-analysis was performed including the final results of the Young Mania Rating Scale (YMRS) at the end of randomized controlled trials (RCT). Results: Three primary studies were included in the systematic review, with a total of 121 patients. The meta-analysis had significant effect in the YMRS scores from patients with BD who used Celecoxib adjuvant treatment in comparison to placebo. The weighted mean difference was 5.54 (95%CI=3.26-7.82); p < 0.001; I2 =0%). Conclusion: The systematic review suggests that adjuvant treatment with Celecoxib improves the response of major treatments in patients with BD when compared with adjuvant placebo treatment.

Keywords: bipolar disorder, Cox-2 inhibitors, Celecoxib, systematic review, meta-analysis

Procedia PDF Downloads 463